JP3062540B2 - Bipolar plate for water electrolysis tank and cell using the same - Google Patents

Bipolar plate for water electrolysis tank and cell using the same

Info

Publication number
JP3062540B2
JP3062540B2 JP9311479A JP31147997A JP3062540B2 JP 3062540 B2 JP3062540 B2 JP 3062540B2 JP 9311479 A JP9311479 A JP 9311479A JP 31147997 A JP31147997 A JP 31147997A JP 3062540 B2 JP3062540 B2 JP 3062540B2
Authority
JP
Japan
Prior art keywords
cell
water
bipolar plate
plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9311479A
Other languages
Japanese (ja)
Other versions
JPH10204672A (en
Inventor
守孝 加藤
彰二 前澤
浩章 森
啓恭 竹中
啓介 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Hitachi Zosen Corp
JFE Engineering Corp
Original Assignee
Research Institute of Innovative Technology for Earth
Hitachi Zosen Corp
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth, Hitachi Zosen Corp, JFE Engineering Corp filed Critical Research Institute of Innovative Technology for Earth
Priority to JP9311479A priority Critical patent/JP3062540B2/en
Publication of JPH10204672A publication Critical patent/JPH10204672A/en
Application granted granted Critical
Publication of JP3062540B2 publication Critical patent/JP3062540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質膜を
用いる水素及び酸素製造のための水電解槽用の複極板及
びそれを用いたセルに関するものである。
TECHNICAL FIELD The present invention relates to a bipolar plate for a water electrolyzer for producing hydrogen and oxygen using a polymer electrolyte membrane and a cell using the same.

【0002】[0002]

【従来の技術】従来、高分子電解質膜を用いて水電解に
よって水素及び酸素を製造する場合のフィルタープレス
式電解槽の構造は、図5に示すような構成になってお
り、陽極主電極1、陰極主電極2、イオン交換膜4と触
媒電極層5、6とからなる電極複合体膜3、陽極給電体
7、陰極給電体8、複極板9及びこれらを一体とするた
めの締め付けボルト及びナットから構成されており、商
業規模の電解槽では、80枚から600枚のイオン交換
膜を一体としている。水が電解槽下部に設けられた吸水
ヘッダー10から上方に流路のある陽極主電極1及び複
極板9の陽極側に供給されると、触媒電極層5、6の表
面で、陽極側では酸素、陰極側では水素がそれぞれ発生
する。発生した酸素及び水素はそれぞれ多孔質の給電体
7、8を通ってそれぞれの極板に達し、更にそれぞれの
極板に設けられた流路を通って電解槽上部に達し、ここ
に設けられたそれぞれのヘッダー11、12を通って外
部に排出される。
2. Description of the Related Art Conventionally, when hydrogen and oxygen are produced by water electrolysis using a polymer electrolyte membrane, the structure of a filter press type electrolytic cell is as shown in FIG. , Cathode main electrode 2, electrode composite membrane 3 comprising ion exchange membrane 4 and catalyst electrode layers 5, 6, anode feeder 7, cathode feeder 8, double pole plate 9 and fastening bolts for integrating these And a nut. In a commercial-scale electrolytic cell, 80 to 600 ion exchange membranes are integrated. When water is supplied from the water absorption header 10 provided at the lower part of the electrolytic cell to the anode side of the anode main electrode 1 and the multi-electrode plate 9 having a flow path upward, on the surface of the catalyst electrode layers 5 and 6, Oxygen and hydrogen are generated on the cathode side, respectively. The generated oxygen and hydrogen reach the respective electrode plates through the porous power supply bodies 7 and 8, respectively, further reach the upper part of the electrolytic cell through the flow passages provided in the respective electrode plates, and are provided here. It is discharged outside through the respective headers 11 and 12.

【0003】これらの構成材の中で、最も過酷な条件を
要求されるのは、複極板9である。つまり、材質的な条
件としては、導電性が良いことはもちろん、陽極側では
酸化性雰囲気、陰極側では還元性雰囲気という全く逆の
条件が同じ材料に要求される。更に構造的な条件として
は、給電体6、7に電流を一様に伝えること、並びに供
給水及び発生したガスを均一に流せる流路が確保できる
ことといった機能が要求される。このような条件を満足
するものとして、現状では、純チタンを機械加工又はプ
レス加工したものの表面を、白金メッキしたものやカー
ボンをモールディしたものが用いられている。
[0003] Among these components, the most severe condition is required for the bipolar plate 9. That is, as the material conditions, the same material is required to have not only good conductivity but also an oxidizing atmosphere on the anode side and a reducing atmosphere on the cathode side. Further, as structural conditions, functions such as uniformly transmitting the current to the power supply bodies 6 and 7 and securing a flow path through which the supply water and the generated gas can flow uniformly are required. In order to satisfy such a condition, at present, a pure titanium machined or pressed and the surface of which is plated with platinum or molded with carbon is used.

【0004】[0004]

【発明が解決しようとする課題】従来技術であるチタン
の機械加工により複極板を作製する場合、次のような問
題があった。 (1)表面を精度よく加工することが難しい。特に大型
のものでは顕著である。 (2)両面を精度よく加工しなくてはならないため、板
厚が厚くなる。 (3)コストが高いため、複雑な形状に加工することは
経済的にできない。また、チタンのプレス加工により複
極板を作製する場合、次のような問題があった。 (4)純チタンをプレス加工する場合、チタンの曲げ係
数(Bend factor)が大きいため、複極板の流路の幅が
大きくなり且つ複雑な加工ができないので、結果的に、
給電体への電力の供給及び電極への水の供給が均一にな
らない。
When a multipolar plate is manufactured by machining titanium, which is a conventional technique, there are the following problems. (1) It is difficult to accurately process the surface. This is particularly noticeable for large ones. (2) Since both surfaces must be processed with high precision, the plate thickness becomes thick. (3) Due to the high cost, it is not economically possible to process into a complicated shape. Further, in the case of producing a multi-electrode plate by pressing titanium, there are the following problems. (4) When press working pure titanium, since the bending factor (Bend factor) of titanium is large, the width of the flow path of the bipolar plate becomes large and complicated processing cannot be performed.
The supply of power to the power supply and the supply of water to the electrodes are not uniform.

【0005】更に、カーボンをモールディングして複極
板を作製する場合、次のような問題があった。 (5)カーボンは脆いため、大型のものは製造が困難で
あり且つ取扱いが難しい。 (6)板厚は、機械加工したものと同程度になる。 (7)チタンの成形とカーボンの成形及び密着工程とい
う複雑な工程が必要で、高価になる。更に、共通する問
題点として、 (8)運転中の給水ヘッダー及び排ガスヘッダーの圧力
勾配により、複数のセルに均一の水を供給することが難
しい。このため水の供給不足により膜がダメージされる
ことがあった。特に、高電流密度で運転することが大き
な特徴である高分子電解質膜を用いる電解槽では、大き
な問題点である。
[0005] Further, when a multi-pole plate is manufactured by molding carbon, there are the following problems. (5) Because carbon is brittle, large ones are difficult to manufacture and handle. (6) The plate thickness is almost the same as that of the machined one. (7) Complicated steps of forming titanium and forming and adhering carbon are required, which is expensive. Further, common problems are: (8) It is difficult to supply uniform water to a plurality of cells due to the pressure gradient of the feed water header and the exhaust gas header during operation. For this reason, the film was sometimes damaged by insufficient water supply. In particular, this is a major problem in an electrolytic cell using a polymer electrolyte membrane, which is characterized by operating at a high current density.

【0006】本発明は、上記のような問題点を解決する
ためになされたもので、設備をコンパクトにし、製造コ
ストを大幅に低下させるとともに、電解槽内の流体の流
れを均一にすることにより、膜の長寿命化をはかること
を、その目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has been made by making the equipment compact, greatly reducing the production cost, and making the fluid flow in the electrolytic cell uniform. Its purpose is to extend the life of the film.

【0007】[0007]

【課題を解決するための手段】本発明によれば、上記課
題を解決するため、山部と谷部が微細ピッチで繰り返す
形状に超塑性加工されたチタン合金の薄板からなる水電
解槽用複極板が提供される。また、本発明によれば、山
部と谷部が微細ピッチで繰り返す形状に超塑性加工され
たチタン合金の薄板からなる2枚の複極板を、一方の複
極板の山部及び谷部がそれぞれ他方の複極板の谷部及び
山部に対応するように配置し、かつこれら2枚の複極板
の間に陽極給電体と高分子電解質膜を用いる電極複合体
膜と陰極給電体とを挟み込んだ構造とするとともに、当
該セルの給水ヘッダー及び酸素、水素の出口ヘッダーに
多孔質ガスケットを設置したことを特徴とする水電解槽
用セルが提供される。
According to the present invention, in order to solve the above-mentioned problems, a composite for a water electrolyzer comprising a titanium alloy thin plate superplastically processed to have a shape in which peaks and valleys are repeated at a fine pitch. An electrode plate is provided. Further, according to the present invention, the two bipolar plates made of a titanium alloy thin plate superplastically processed into a shape in which the peaks and the valleys repeat at a fine pitch are combined with the peaks and the valleys of one of the bipolar plates. Are disposed so as to correspond to the valleys and peaks of the other bipolar plate, respectively, and an electrode composite film and a cathode power supply using an anode power supply and a polymer electrolyte membrane are provided between these two bipolar plates. A cell for a water electrolysis tank is provided which has a sandwiched structure and is provided with a porous gasket at a water supply header and an oxygen and hydrogen outlet header of the cell.

【0008】本発明における複極板は、チタン合金の薄
板を超塑性加工することにより複雑で精密な形状に加工
することが可能となり、複極板に要求される前述の機能
をすべて満足し、多孔質のガスケット(特にリングガス
ケット)と組み合わせることにより、電解槽の1組の複
極板、電極複合体膜及び給電体からなるユニットセルの
厚さを3〜3.5mmする事が可能となる。その厚さ
は、従来のものの1/3以下であり、重量は、機械加工
した場合と比べると、約1/30である。電極室体積
は、従来の商業アルカリ水電解槽(電流密度20A/d
2)の1/16以下、高分子電解質を用いた従来の電
解槽(電流密度100A/dm2)の1/3以下にな
る。更に、給水ヘッダー及び出口ヘッダーに設置する多
孔質のガスケット(特にリングガスケット)の空隙率又
は幅を調製することにより、各セルへの水の供給量を均
一にすることができる。
The bipolar plate of the present invention can be processed into a complex and precise shape by superplastic processing of a titanium alloy thin plate, and satisfies all the functions required for the bipolar plate. By combining with a porous gasket (especially a ring gasket), it becomes possible to reduce the thickness of a unit cell comprising one set of a bipolar plate, an electrode composite film, and a power supply of an electrolytic cell to 3 to 3.5 mm. . Its thickness is 1/3 or less of the conventional one, and its weight is about 1/30 as compared with the case of machining. The electrode chamber volume is the same as that of a conventional commercial alkaline water electrolyzer (current density 20 A / d).
m 2 ) or less and 1/3 or less of a conventional electrolytic cell (current density 100 A / dm 2 ) using a polymer electrolyte. Further, by adjusting the porosity or width of a porous gasket (particularly a ring gasket) installed in the water supply header and the outlet header, the amount of water supplied to each cell can be made uniform.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。 実施例1 図1に最も代表的な実施例における電解槽の分解構造図
を示す。実際には、1基の電解槽は、複極板9を80〜
600枚備え、これらを複数(この図では4本)の通し
ボルトで締め付けることにより一体構造としている。図
1に沿って、本発明の水電解槽の作用を説明すると、先
ず電解槽下部の給水ヘッダー10から供給された水は、
陽極側電極に設けられた流路を通って上方に流れる。こ
の供給水は多孔質でできた陽極給電体7を通って、電極
複合体膜3の陽極側触媒電極層(図5における5)に達
する。ここで付加された電力により電気分解反応が起こ
り、酸素が発生する。発生した酸素は陽極給電体7を通
り、陽極側電極に設けられた流路内を未反応の水ととも
に上昇し、複極板9の酸素ヘッダー部外周に設けられた
多孔質スペーサーを通って酸素ヘッダー11に排出され
る。一方、電極複合体膜3の陰極側触媒電極層(図5に
おける6)表面で発生した水素とイオン交換膜(図5に
おける4)を透過した水は、多孔質でできた陰極給電体
8を通り、陰極側電極に設けられた流路内を上昇し、複
極板9の水素ヘッダー部外周に設けられた多孔質スペー
サーを通って水素ヘッダー12に排出される。なお、図
1において、21はフランジ、22はノズルプレート、
23は絶縁パッキン、AはOリングガスケット、Bは多
孔質ガスケット、Cはシールガスケットを、それぞれ示
す。
Embodiments of the present invention will be described below. Embodiment 1 FIG. 1 shows an exploded structural view of an electrolytic cell in the most typical embodiment. In practice, one electrolytic cell is composed of a bipolar plate 9
600 sheets are provided, and these are tightened with a plurality of (four in this figure) through bolts to form an integral structure. The operation of the water electrolyzer according to the present invention will be described with reference to FIG. 1. First, water supplied from the water supply header 10 at the bottom of the electrolyzer is
It flows upward through a channel provided in the anode-side electrode. This supply water passes through the porous anode feeder 7 and reaches the anode-side catalyst electrode layer (5 in FIG. 5) of the electrode composite membrane 3. The electrolysis reaction occurs by the added electric power, and oxygen is generated. The generated oxygen passes through the anode power supply 7 and rises in the flow path provided in the anode side electrode together with unreacted water, and passes through the porous spacer provided on the outer periphery of the oxygen header portion of the bipolar plate 9. It is discharged to the header 11. On the other hand, hydrogen generated on the surface of the cathode-side catalyst electrode layer (6 in FIG. 5) of the electrode composite membrane 3 and water permeated through the ion-exchange membrane (4 in FIG. 5) pass through the porous cathode feeder 8. As a result, the gas flows upward in the flow path provided in the cathode-side electrode, and is discharged to the hydrogen header 12 through the porous spacer provided on the outer periphery of the hydrogen header portion of the bipolar plate 9. In addition, in FIG. 1, 21 is a flange, 22 is a nozzle plate,
23 indicates an insulating packing, A indicates an O-ring gasket, B indicates a porous gasket, and C indicates a seal gasket.

【0010】図2に本発明に係るユニットセル(2枚の
複極板9、9の間に陽極給電体7と電極複合体膜3と陰
極給電体8とを挟みこんだもの)の平面図を、また図3
(a)、(b)及び図4(c)、(d)にそのA断面、
B断面、C断面及びD断面における部分断面図の一例
を、それぞれ示す。この例では、複極板9は一枚の板を
超塑性加工することにより、複極板として要求される条
件をすべて満足している。つまり、図2の中央部のA断
面では、図3(a)に示されるように、(1)山部と谷
部が微細ピッチで繰り返す形状を有するように超塑性加
工された2枚の複極板9、9を、一方の複極板の山部及
び谷部がそれぞれ他方の複極板の谷部及び山部に対応す
るように配置させるとともに、これら2枚の複極板9、
9の間に陽極給電体7と高分子電解質膜を用いる電極複
合体膜3と陰極給電体8とを挟み込んだ構造とすること
により、給電体7、8の接触を維持し、且つセルの弾力
性が得られる、(2)陽極側及び陰極側の谷部がそれぞ
れ酸素及び水素の上方への流路となっている。複極板9
における山部と谷部の繰り返し形状におけるピッチ装置
規模に応じて適宜設定可能であるが、1〜3mm程度が
適当である。なお、本明細書において、複極板の「山
部」と「谷部」とは、陽極給電体7と複合体膜3と陰極
給電体8からなる層を基準にしたときに、それぞれ、凸
部をなす部分が山部であり、凹部をなす部分が谷部であ
るものとする。またこの図では、山部と谷部の比率が等
しくなっているが、山部と谷部の間隔を超塑性加工にお
いて離型しやすい比率にすることも可能である。外周部
に設けられた凹凸は、シールのためのOリングの溝であ
る。図2の上下の部分は、流体が上下左右に自由に流動
でき且つ複合体膜3を均一にサポートする機能が要求さ
れる。この例では、B断面において、図3(b)に示さ
れるように、立方体の突起によって複合体膜3を左右か
ら交互にサポートし、それ以外の部分が流路として機能
する。
FIG. 2 is a plan view of a unit cell according to the present invention (an anode power supply 7, an electrode composite film 3, and a cathode power supply 8 sandwiched between two bipolar plates 9, 9). And FIG.
(A), (b) and FIGS. 4 (c), (d) show the A section thereof.
Examples of partial cross-sectional views of a B section, a C section, and a D section are shown, respectively. In this example, the bipolar plate 9 satisfies all the conditions required as a bipolar plate by superplastically processing one plate. In other words, as shown in FIG. 3 (a), in the cross section A at the center of FIG. 2, (1) two sheets of superplastically processed two or more superplastics are formed so that peaks and valleys have a shape repeated at a fine pitch. The pole plates 9 and 9 are arranged so that the peaks and valleys of one bipolar plate correspond to the valleys and peaks of the other bipolar plate, respectively.
9, the anode power feeder 7, the electrode composite film 3 using the polymer electrolyte membrane, and the cathode power feeder 8 are sandwiched to maintain the contact between the power feeders 7, 8 and the elasticity of the cell. (2) The valleys on the anode and cathode sides are flow paths for oxygen and hydrogen, respectively. Double pole plate 9
Can be set as appropriate according to the pitch device scale in the repetitive shape of the peaks and valleys, but about 1-3 mm is appropriate. In the present specification, the “peaks” and “valleys” of the bipolar plate are respectively convex when referred to a layer composed of the anode power supply 7, the composite film 3, and the cathode power supply 8. It is assumed that a portion forming a portion is a peak portion and a portion forming a concave portion is a valley portion. Also, in this figure, the ratio between the peaks and the valleys is equal, but the interval between the peaks and the valleys can be set to a ratio that facilitates mold release in superplastic working. The unevenness provided on the outer peripheral portion is an O-ring groove for sealing. The upper and lower portions in FIG. 2 are required to have a function that allows the fluid to flow freely up, down, left, and right and that supports the composite membrane 3 uniformly. In this example, as shown in FIG. 3B, in the cross section B, the composite membrane 3 is alternately supported by the cubic projections from the left and right, and the other portions function as flow channels.

【0011】図1の下部の穴は吸水孔で、上部左側の穴
は酸素側の排出孔である。これらの断面は、図4(c)
に示される断面Cのように加工することにより、水が陽
極側に供給され、発生した酸素が酸素側ヘッダーに排出
されることが可能になる。なお、図4(c)において、
31は多孔質スペーサーを、32はパッキンを、それぞ
れ示す。図1上部右側の穴は水素側の排出孔で、この部
分は、図4(d)に示される断面Dのように加工するこ
とにより、発生した水素が水素側ヘッダーに排出される
ことが可能になる。複極板中央部の電極部分は、流体が
均一に流れることが望ましい。偏流があると、極端な場
合その部分がドライになり、膜をダメージするといった
事故の原因となる。この構造では、上下の立方体の突起
部分の形状及び分布を流体力学的に設計することによ
り、より均一な流れを実現することが可能である。更
に、入り口及び出口の多孔質スペーサー31の空隙率を
調整することにより、各セルへの水の流入量を均一にす
ることができる。このような構造を採用すると、1組の
複極板9、複合体膜3、給電体7、8からなる単位セル
の厚さは、3〜3.5mm程度となる。上述の説明は、
電解槽を水平に設置する場合に付いてのものであるが、
電解槽を垂直に設置する場合も効果は同様である。
The lower hole in FIG. 1 is a water absorption hole, and the upper left hole is an oxygen-side discharge hole. These cross sections are shown in FIG.
By processing as shown in the cross section C shown in FIG. 5, water can be supplied to the anode side, and the generated oxygen can be discharged to the oxygen side header. In FIG. 4C,
31 indicates a porous spacer, and 32 indicates a packing. The hole on the upper right side of FIG. 1 is a discharge hole on the hydrogen side. By processing this part as shown in the cross section D shown in FIG. 4D, the generated hydrogen can be discharged to the hydrogen side header. become. It is desirable that the fluid flows uniformly in the electrode portion at the center of the bipolar plate. If there is a drift, in an extreme case, the portion becomes dry, which causes an accident such as damaging the film. In this structure, a more uniform flow can be realized by hydrodynamically designing the shape and distribution of the projections of the upper and lower cubes. Further, by adjusting the porosity of the porous spacers 31 at the entrance and the exit, the amount of water flowing into each cell can be made uniform. When such a structure is adopted, the thickness of a unit cell including one set of the bipolar plate 9, the composite film 3, and the power feeders 7 and 8 is about 3 to 3.5 mm. The above explanation is
It is attached when the electrolytic cell is installed horizontally,
The effect is the same when the electrolytic cell is installed vertically.

【0012】実施例2 実施例1の水電解槽の形状は角型であったが、本実施例
は丸型とした。実施例1の水電解槽では、10Kg/c
2以下の比較的運転圧力の低い条件しか採用できなか
ったが、水電解槽の形状を丸型にし、実施例1と同様の
構成にすれば、30Kg/cm2程度の運転圧力にも耐
えられる水電解槽を、実施例1と同等の構成で作製する
ことができる。
Example 2 The shape of the water electrolyzer in Example 1 was square, but this example was round. In the water electrolyzer of Example 1, 10 kg / c
Although only a relatively low operating pressure condition of m 2 or less could be adopted, if the shape of the water electrolysis tank was round and the same configuration as in Example 1 was used, it could withstand an operating pressure of about 30 kg / cm 2. The resulting water electrolysis tank can be manufactured with the same configuration as that of the first embodiment.

【0013】実施例3 実施例1の水電解槽は、複極板全体をチタン合金で一体
成形したものであるが、導電性が要求されるのは電極部
だけであり、周囲のノズル部及びシール部は、その必要
はなく、むしろ導電性がない方が操業上好ましい。超塑
性加工した電極部を芯として外周を耐熱性耐薬品性のあ
るフッ素樹脂あるいはポリイミド樹脂で成形し複極板を
作製すれば、実施例1あるいは実施例2と同様に構成す
ることができる。
Example 3 The water electrolyzer of Example 1 is one in which the entire bipolar plate is integrally formed of a titanium alloy. However, only the electrode portion needs to have conductivity, and the surrounding nozzle portion and The seal portion does not need to be provided, and it is rather preferable that the seal portion has no conductivity. If the multi-pole plate is manufactured by molding the outer periphery of the electrode portion which has been superplastically processed as a core with a fluorine resin or a polyimide resin having heat resistance and chemical resistance, the configuration can be the same as that of the first or second embodiment.

【0014】実施例4 実施例3の水電解槽は、複極板だけを一体成形したもの
であるが、更に、陽極及び陰極給電体も一体として成形
すれば、更に組立の作業性が向上する。
Embodiment 4 The water electrolyzer of Embodiment 3 is one in which only a bipolar plate is integrally formed. However, if the anode and cathode power supply bodies are also integrally formed, the workability of assembly is further improved. .

【0015】[0015]

【発明の効果】請求項1に係る複極板は、その山部と谷
部の繰り返し形状が、チタン合金の薄板を超塑性加工し
て形成したので、複極板に要求される前述の機能を全部
満足したものとなる。また、請求項2に係るユニット
は、上記のごとき複極板を用いるとともに、これに多孔
質ガスケットを組み合わせたことから、電解槽のサイズ
がコンパクトになり、装置の製作費が安価になる。その
上、各セルへの水の供給及びガスの抜き出しを均一にす
ることができるので、電解槽を高電流密度で安定して運
転することができ、結果的に、長期運転が可能となる。
According to the first aspect of the present invention, the repetitive shape of the peaks and valleys is formed by superplastic processing of a titanium alloy thin plate. Are all satisfied. In addition, the unit according to claim 2 uses the bipolar plate as described above and combines it with the porous gasket, so that the size of the electrolytic cell becomes compact and the manufacturing cost of the device becomes low. In addition, since the supply of water to each cell and the extraction of gas can be made uniform, the electrolytic cell can be stably operated at a high current density, and as a result, long-term operation is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における電解槽の分解構造図
である。
FIG. 1 is an exploded structural view of an electrolytic cell in Embodiment 1 of the present invention.

【図2】本発明の実施例1における2枚の複極板の間に
単位セル(陽極給電体と電極複合体膜と陰極給電体)の
平面図である。
FIG. 2 is a plan view of a unit cell (anode power supply, electrode composite film, and cathode power supply) between two bipolar plates in the first embodiment of the present invention.

【図3】(a)及び(b)は図2に示される単位セルの
A断面及びB断面における部分断面図である。
3 (a) and 3 (b) are partial cross-sectional views of the unit cell shown in FIG. 2 in A section and B section.

【図4】(c)及び(d)は図2に示される複極板のC
断面及びD断面における部分断面である。
4 (c) and (d) show C of the bipolar plate shown in FIG.
It is a cross section in a cross section and a D cross section.

【図5】水素及び酸素を製造する場合の従来のフィルタ
ープレス式電解槽の構造を示す模式断面図である。
FIG. 5 is a schematic sectional view showing the structure of a conventional filter press type electrolytic cell when producing hydrogen and oxygen.

【符号の説明】[Explanation of symbols]

1 陽極主電極 2 陰極主電極 3 電極複合体膜 4 イオン交換膜 5 陽極側触媒電極層 6 陰極側触媒電極層 7 陽極給電体 8 陰極給電体 9 複極板 10 給水ヘッダー 11 酸素ヘッダー 12 水素ヘッダー 21 フランジ 22 ノズルプレート 23 絶縁パッキン 31 多孔質スペーサー 32 パッキン A Oリングガスケット B 多孔質ガスケット C シールガスケット DESCRIPTION OF SYMBOLS 1 Anode main electrode 2 Cathode main electrode 3 Electrode composite membrane 4 Ion exchange membrane 5 Anode side catalyst electrode layer 6 Cathode side catalyst electrode layer 7 Anode power feeder 8 Cathode power feeder 9 Double electrode plate 10 Water supply header 11 Oxygen header 12 Hydrogen header 21 Flange 22 Nozzle plate 23 Insulation packing 31 Porous spacer 32 Packing A O-ring gasket B Porous gasket C Seal gasket

───────────────────────────────────────────────────── フロントページの続き (74)上記3名の代理人 100074505 弁理士 池浦 敏明 (72)発明者 加藤 守孝 東京都港区西新橋2−8−11 第7東洋 海事ビル8階 財団法人地球環境産業技 術研究機構 CO2固定化等プロジェク ト室内 (72)発明者 前澤 彰二 東京都港区西新橋2−8−11 第7東洋 海事ビル8階 財団法人地球環境産業技 術研究機構 CO2固定化等プロジェク ト室内 (72)発明者 森 浩章 東京都港区西新橋2−8−11 第7東洋 海事ビル8階 財団法人地球環境産業技 術研究機構 CO2固定化等プロジェク ト室内 (72)発明者 竹中 啓恭 大阪府池田市緑丘1丁目8番31号 工業 技術院大阪工業技術研究所内 (72)発明者 小黒 啓介 大阪府池田市緑丘1丁目8番31号 工業 技術院大阪工業技術研究所内 審査官 廣野 知子 (56)参考文献 特開 昭48−75496(JP,A) 特開 昭56−38485(JP,A) 特表 昭61−502620(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 ──────────────────────────────────────────────────続 き Continued on the front page (74) The above three agents 100074505 Patent Attorney Toshiaki Ikeura (72) Inventor Moritaka Kato 2-8-11 Nishishinbashi, Minato-ku, Tokyo 8th floor of the 7th Toyo Maritime Building Global Environment Foundation Industrial Technology Research Institute CO2 fixation project room (72) Inventor Shoji Maezawa 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building 8F CO2 Fixation, etc. Project Room (72) Inventor Hiroaki Mori 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 8th floor of the 7th Oriental Maritime Building Research Institute for Global Environmental Innovation Project room such as CO2 fixation (72) Inventor Takenaka Keiyasu 1-8-31 Midorioka, Ikeda-shi, Osaka Inside the Osaka Institute of Industrial Technology (72) Inventor Keisuke Oguro Ike, Osaka Midorioka 1-chome, 8-3-1, Osaka Institute of Industrial Technology, Institute of Industrial Science, Examiner Tomoko Hirono (56) References JP-A-48-75496 (JP, A) JP-A-56-38485 (JP, A) 61-502620 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25B 1/00-15/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 山部と谷部が微細ピッチで繰り返す形状
に超塑性加工されたチタン合金の薄板からなる水電解槽
用複極板。
1. A bipolar plate for a water electrolysis tank comprising a titanium alloy thin plate superplastically processed into a shape in which peaks and valleys repeat at a fine pitch.
【請求項2】 山部と谷部が微細ピッチで繰り返す形状
に超塑性加工されたチタン合金の薄板からなる2枚の複
極板を、一方の複極板の山部及び谷部がそれぞれ他方の
複極板の谷部及び山部に対応するように配置し、かつこ
れら2枚の複極板の間に陽極給電体と高分子電解質膜を
用いる電極複合体膜と陰極給電体とを挟み込んだ構造と
するとともに、当該セルの給水ヘッダー及び酸素、水素
の出口ヘッダーに多孔質ガスケットを設置したことを特
徴とする水電解槽用セル。
2. A two-pole plate made of a titanium alloy thin plate superplastically processed to have a shape in which peaks and valleys are repeated at a fine pitch. A structure in which an anode power supply and an electrode composite film using a polymer electrolyte membrane and a cathode power supply are sandwiched between these two bipolar plates. A cell for a water electrolysis tank, wherein a porous gasket is provided in a water supply header and oxygen and hydrogen outlet headers of the cell.
JP9311479A 1997-10-27 1997-10-27 Bipolar plate for water electrolysis tank and cell using the same Expired - Lifetime JP3062540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9311479A JP3062540B2 (en) 1997-10-27 1997-10-27 Bipolar plate for water electrolysis tank and cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9311479A JP3062540B2 (en) 1997-10-27 1997-10-27 Bipolar plate for water electrolysis tank and cell using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6069964A Division JP2893238B2 (en) 1994-03-14 1994-03-14 Water electrolyzer using polymer electrolyte membrane

Publications (2)

Publication Number Publication Date
JPH10204672A JPH10204672A (en) 1998-08-04
JP3062540B2 true JP3062540B2 (en) 2000-07-10

Family

ID=18017729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9311479A Expired - Lifetime JP3062540B2 (en) 1997-10-27 1997-10-27 Bipolar plate for water electrolysis tank and cell using the same

Country Status (1)

Country Link
JP (1) JP3062540B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106011914B (en) * 2016-05-26 2018-03-27 淳华氢能科技股份有限公司 Proton membrane water electrolytic cell

Also Published As

Publication number Publication date
JPH10204672A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
US6255012B1 (en) Pleated metal bipolar assembly
US5300370A (en) Laminated fluid flow field assembly for electrochemical fuel cells
US6638657B1 (en) Fluid cooled bipolar plate
US5976726A (en) Electrochemical cell with fluid distribution layer having integral sealing capability
JP4796639B2 (en) Electrochemical equipment
US5527363A (en) Method of fabricating an embossed fluid flow field plate
US20020009630A1 (en) Embossed current collector separator for electrochemical fuel cell
US8691060B2 (en) Water electrolysis apparatus
US8894829B2 (en) Water electrolysis apparatus
JPH0425673B2 (en)
JP2778767B2 (en) Porous electrode and method of using the same
JP2893238B2 (en) Water electrolyzer using polymer electrolyte membrane
JP2000100452A (en) Solid high polymer electrolyte fuel cell and manufacture therefor
JPH0995791A (en) Solid polyelectrolyte water electrolyzer and its electrode structure
WO2000060140A1 (en) Electrolytic cell using gas diffusion electrode and power distribution method for the electrolytic cell
JP3122734B2 (en) Water electrolysis tank using solid polymer electrolyte membrane
CA2441623C (en) Fuel cell with a seal member defining a reactant gas flow field
JP3072333B2 (en) Water electrolyzer using solid polymer electrolyte membrane
US7824817B2 (en) Fuel cell
JP3062540B2 (en) Bipolar plate for water electrolysis tank and cell using the same
JP3051893B2 (en) Porous spacer in water electrolyzer or fuel cell
EP1724861A1 (en) Novel materials for alkaline electrolysers and alkaline fuel cells
JP2955675B2 (en) Water electrolyzer using solid polymer electrolyte membrane
KR100546016B1 (en) Current collector for fuel cell, manufacturing method thereof and fuel cell having same
JP2972925B2 (en) Water electrolyzer using solid polymer electrolyte membrane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term