JP2778767B2 - Porous electrode and method of using the same - Google Patents

Porous electrode and method of using the same

Info

Publication number
JP2778767B2
JP2778767B2 JP1319009A JP31900989A JP2778767B2 JP 2778767 B2 JP2778767 B2 JP 2778767B2 JP 1319009 A JP1319009 A JP 1319009A JP 31900989 A JP31900989 A JP 31900989A JP 2778767 B2 JP2778767 B2 JP 2778767B2
Authority
JP
Japan
Prior art keywords
gas
porous electrode
water
gas diffusion
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1319009A
Other languages
Japanese (ja)
Other versions
JPH03182052A (en
Inventor
長一 古屋
国延 市川
香 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1319009A priority Critical patent/JP2778767B2/en
Publication of JPH03182052A publication Critical patent/JPH03182052A/en
Application granted granted Critical
Publication of JP2778767B2 publication Critical patent/JP2778767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、アルカリ電解液や固体高分子電解質などを
用いたガス燃料電池あるいは水電解プロセス等に用いて
有用な多孔質電極及びその使用方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a porous electrode useful in a gas fuel cell or a water electrolysis process using an alkaline electrolyte or a solid polymer electrolyte, and a method of using the same. About.

<従来の技術> 従来より、アルカリ電解液燃料電池、固体高分子電解
質燃料電池などのガス燃料電池は、水素やメタノールな
どの燃料ガスと酸素とを用いて高効率で電気エネルギを
得るものとして周知である。これらガス燃料電池は、ア
ルカリ電解液を吸蔵する電解質膜あるいは固体電解質膜
の両面に接合されるガス拡散電極を有しており、これら
のガス拡散電極と電解質との接触面で主に電池反応を生
じさせて電気エネルギを取り出すものである。一方、同
様の構成として、両電極に通電することにより水電解を
行う水電解プロセスも知られている。
<Prior Art> Conventionally, gas fuel cells such as an alkaline electrolyte fuel cell and a solid polymer electrolyte fuel cell are well known as ones that obtain electric energy with high efficiency by using a fuel gas such as hydrogen or methanol and oxygen. It is. These gas fuel cells have gas diffusion electrodes bonded to both sides of an electrolyte membrane or a solid electrolyte membrane that stores an alkaline electrolyte, and the cell reaction mainly occurs at the contact surface between these gas diffusion electrodes and the electrolyte. This is to generate electric energy. On the other hand, as a similar configuration, a water electrolysis process for performing water electrolysis by energizing both electrodes is also known.

このようなガス燃料電池や水電解プロセスで用いられ
るガス拡散電極は、導電性の他、電解液若しくは電解質
中の水は通過させないが燃料ガスや酸素は通過させると
いう性質を有する必要がある。したがって、従来のガス
拡散電極は一般に第7図に示すような構造を有してい
る。
A gas diffusion electrode used in such a gas fuel cell or a water electrolysis process needs to have conductivity and a property of not allowing water in an electrolytic solution or an electrolyte to pass but allowing fuel gas and oxygen to pass. Therefore, a conventional gas diffusion electrode generally has a structure as shown in FIG.

第7図に示すように、このガス拡散電極01は反応膜02
にガス拡散膜03を接合してなる。ここで、反応膜02は疎
水性カーボン及びフッ素樹脂などの疎水性樹脂からな
り、これに触媒を担持させた親水性カーボン微粒子若し
くは触媒微粒子を分散させたものである。電解質と接触
するのはこの反応膜02であり、反応膜02は電解液や水を
透過させる性質を有している。一方、ガス拡散膜03は、
通気性はあるが通水性は有さないものであり、疎水性カ
ーボン及びフッ素樹脂などの疎水性樹脂からなる。
As shown in FIG. 7, this gas diffusion electrode 01 is
And a gas diffusion film 03. Here, the reaction film 02 is made of hydrophobic resin such as hydrophobic carbon and fluorocarbon resin, and is made by dispersing hydrophilic carbon fine particles or catalyst fine particles supporting a catalyst on this. It is this reaction membrane 02 that comes into contact with the electrolyte, and the reaction membrane 02 has the property of permeating the electrolyte and water. On the other hand, the gas diffusion film 03
It has air permeability but does not have water permeability, and is made of hydrophobic resin such as hydrophobic carbon and fluororesin.

<発明が解決しようとする課題> しかしながら、上述した従来のガス拡散電極01はガス
拡散膜03が撥水性を有するので次のような問題が生じ
る。
<Problems to be Solved by the Invention> However, in the conventional gas diffusion electrode 01 described above, the following problem occurs because the gas diffusion film 03 has water repellency.

例えば固体電解質燃料電池では、固体電解質を常に湿
潤状態とするために加湿する必要があるが、この加湿の
ために水蒸気を用いなければならない。したがって、急
速に負荷が上昇したときにも加湿速度を大きくできず、
急速な負荷増加に伴う発熱で電解質が乾燥して性能が急
速に低下してしまうという問題がある。
For example, in a solid electrolyte fuel cell, it is necessary to humidify the solid electrolyte to keep the solid electrolyte moist, and steam must be used for this humidification. Therefore, even when the load increases rapidly, the humidification rate cannot be increased,
There is a problem that the electrolyte is dried due to the heat generated by the rapid increase in load, and the performance is rapidly reduced.

また、水電解プロセスにおいても、ガス拡散電極を介
して電解質に水を供給することができないので連続して
水電解を行うことができないという問題がある。
Also, in the water electrolysis process, water cannot be supplied to the electrolyte via the gas diffusion electrode, so that there is a problem that water electrolysis cannot be performed continuously.

本発明はこのような事情に鑑み、接触する電解質に水
分をも供給できる多孔質電極及びその使用方法を提供す
ることを目的とする。
In view of such circumstances, an object of the present invention is to provide a porous electrode capable of supplying moisture to an electrolyte in contact with the porous electrode and a method of using the same.

<課題を解決するための手段> 上記目的を達成する本発明に係る多孔質電極は、疎水
性カーボン及び疎水性樹脂からなり通気性を有するガス
拡散膜に、触媒を担持させた親水性カーボン微粒子若し
くは触媒微粒子を含有する、疎水性カーボン及び疎水性
樹脂からなる反応膜を接合してなる電極であって、少な
くとも上記ガス拡散膜をその厚さ方向に貫通する貫通部
を有し、該貫通部内には親水部が存在することを特徴と
する。また、その使用方法は、上記構成の多孔質電極を
ガス燃料電池又は水電解プロセスの陽極及び/又は陰極
とし、反応膜を有しない側から反応膜側へ気液混相流を
供給することを特徴とし、また、上記構成の多孔質電極
をガス燃料電池又は水電解プロセス陽極及び/又は陰極
とし、上記貫通部には電解液若しくは水を、他の部分に
はガスをそれぞれ反応膜を有しない側から反応膜側へ供
給することを特徴とする。
<Means for Solving the Problems> A porous electrode according to the present invention that achieves the above object is a hydrophilic carbon fine particle in which a catalyst is supported on a gas diffusion film made of hydrophobic carbon and a hydrophobic resin and having gas permeability. Or, an electrode formed by joining a reaction film made of hydrophobic carbon and a hydrophobic resin, which contains catalyst fine particles, and has at least a penetrating portion penetrating the gas diffusion film in its thickness direction. Has a hydrophilic portion. Further, the method of use is characterized in that the porous electrode having the above structure is used as an anode and / or a cathode of a gas fuel cell or a water electrolysis process, and a gas-liquid multiphase flow is supplied from a side having no reaction film to a side of the reaction film. In addition, the porous electrode having the above structure is used as a gas fuel cell or a water electrolysis process anode and / or a cathode, and an electrolyte solution or water is supplied to the penetrating portion, and a gas is supplied to the other portion. From the supply to the reaction membrane side.

上記構成の多孔質電極は、貫通部若しくは貫通部内に
存在する親水部を有しているので、これらを介して電解
質に電解液若しくは液体状態の水を供給できるという特
性を有する。
Since the porous electrode having the above configuration has a penetrating portion or a hydrophilic portion present in the penetrating portion, the porous electrode has a characteristic that an electrolytic solution or water in a liquid state can be supplied to the electrolyte through these.

ここで、貫通部は少なくともガス拡散膜を貫通するよ
うに設けられていればよいが、反応膜をも貫通するよう
に設けられていてもよく、その形状は円形状、長孔、長
溝状など特に限定されない。また、貫通部内には必要に
応じて親水部を充填するとよい。この親水部としては、
親水性カーボン及びフッ素樹脂などの疎水性樹脂に必要
に応じて疎水性カーボンを混合することにより適度の親
水性を有するようにしたものなどを挙げることができ
る。このように親水部を設ける場合、親水部に適当な親
水性を持たせると共に、該親水部が設けられている貫通
部の寸法を適宜調節することにより、水等が浸透するに
は適当な圧力が必要であるようにすることができる。ま
た、親水部の形状は上記貫通部の形状に合せ、円柱状、
長円柱状、角柱状などとなる。
Here, the penetrating portion only needs to be provided so as to penetrate at least the gas diffusion film, but may also be provided so as to penetrate the reaction film, and has a circular shape, a long hole, a long groove shape, or the like. There is no particular limitation. Further, a hydrophilic portion may be filled in the through portion as necessary. As this hydrophilic part,
Examples thereof include those obtained by mixing a hydrophobic carbon such as a hydrophilic resin and a fluorocarbon resin with a hydrophobic carbon as necessary so as to have appropriate hydrophilicity. When the hydrophilic portion is provided in this manner, the hydrophilic portion is provided with appropriate hydrophilicity, and by appropriately adjusting the dimensions of the penetrating portion provided with the hydrophilic portion, an appropriate pressure is required for water or the like to penetrate. Can be required. In addition, the shape of the hydrophilic portion matches the shape of the penetrating portion, a columnar shape,
It has an elongated columnar shape, a prismatic shape, and the like.

なお、本発明の多孔質電解の親水部以外の基本構成は
従来のガス拡散電極と同様でよく、特に限定されない。
The basic configuration of the porous electrolysis of the present invention other than the hydrophilic portion may be the same as that of the conventional gas diffusion electrode, and is not particularly limited.

以上説明した多孔質電極を燃料電池若くしは水電解プ
ロセス等の電極として用いた場合、燃料ガス若しくは酸
素などのガスと共に、電解液や液体状態の水を併せて電
解質へ供給することができる。また、この方法は特に限
定されないが、多孔質電極の電解質との接触面とは反対
側(反応膜とは反対側)から上述したような気液の混相
流を供給するようにするのが好適である。勿論、貫通部
には対応する部分に電解液若しくは水を、その他の部分
にはガスを、それぞれ別々に供給することもできる。
When the above-described porous electrode is used as an electrode for a fuel cell or a water electrolysis process, it is possible to supply an electrolyte or liquid water together with a gas such as a fuel gas or oxygen to the electrolyte. Although this method is not particularly limited, it is preferable to supply the gas-liquid multiphase flow as described above from the side opposite to the contact surface of the porous electrode with the electrolyte (the side opposite to the reaction film). It is. Of course, it is also possible to separately supply the electrolytic solution or water to the corresponding portion of the through portion and the gas to the other portion.

<実 施 例> 以下、本発明を実施例に基づいて説明する。<Examples> Hereinafter, the present invention will be described based on examples.

第1図(a),(b)には一実施例に係る多孔質電極
の断面及びそのA矢視を示す。両図に示すように、この
多孔質電極1は反応膜2とガス拡散膜3とを接合したも
のであり、ガス拡散膜3は通気性を有する疎水部4と通
水性を有する円柱状の親水部5とからなる。親水部5は
ガス拡散膜3を厚さ方向に貫通する貫通部6内に設けら
れており、貫通部6はガス拡散膜3の表面にほぼ均一に
点在するように設けられている。
1 (a) and 1 (b) show a cross section of a porous electrode according to one embodiment and its arrow A view. As shown in both figures, the porous electrode 1 is obtained by joining a reaction film 2 and a gas diffusion film 3, and the gas diffusion film 3 is formed of a hydrophobic part 4 having air permeability and a columnar hydrophilic part having water permeability. 5. The hydrophilic portion 5 is provided in a penetrating portion 6 penetrating the gas diffusion film 3 in the thickness direction, and the penetrating portions 6 are provided so as to be almost uniformly scattered on the surface of the gas diffusion film 3.

この多孔質電極1の一製造例について説明する。 One example of manufacturing the porous electrode 1 will be described.

まず、疎水性カーボンブラック(デンカブラック;電
気化学工業社製)及びポリテトラフルオロエチレンから
なる0.5mm厚のガス拡散膜を製造し、このガス拡散膜に
上述した貫通部6として1mmφの穴を5mm毎に形成する。
この貫通部に、親水性カーボンにポリテトラフルオロエ
チレン(10%)を混合してなる親水部5を充填し、一体
化する。かかるガス拡散膜3に、触媒としての白金粉
末、親水性カーボンブラック、疎水性カーボンブラック
及びポリテトラフルオロエチレンよりなる0.1mm厚反応
膜2を380℃,500kg/cm2プレス成型により接合し、多孔
質電極1とする。
First, a 0.5 mm thick gas diffusion film made of hydrophobic carbon black (Denka Black; manufactured by Denki Kagaku Kogyo Co., Ltd.) and polytetrafluoroethylene was manufactured. It is formed every time.
The penetrating part is filled with a hydrophilic part 5 formed by mixing polytetrafluoroethylene (10%) with hydrophilic carbon, and integrated. A 0.1 mm thick reaction film 2 made of platinum powder as a catalyst, hydrophilic carbon black, hydrophobic carbon black, and polytetrafluoroethylene was bonded to the gas diffusion film 3 by press molding at 380 ° C. and 500 kg / cm 2 to form a porous film. Electrode 1.

次に、かかる多孔質電極1を陰極として用いた固体高
分子電解質燃料電池について説明する。なお、この例で
は陽極には従来と同様のガス拡散電極を用いている。
Next, a solid polymer electrolyte fuel cell using the porous electrode 1 as a cathode will be described. In this example, a gas diffusion electrode similar to the conventional one is used for the anode.

第2図にはその燃料電池の基本構造を示す。同図に示
すように、固体高分子電解質膜7の両側に、上記多孔質
電極1及びガス拡散電極8をホットプレスにより接合し
て電池本体としている。ここで、電解質膜7としては厚
さ0.17mmのデュポン社製のナフィオン(商品名)を用い
ている。
FIG. 2 shows the basic structure of the fuel cell. As shown in the figure, the porous electrode 1 and the gas diffusion electrode 8 are joined to both sides of the solid polymer electrolyte membrane 7 by hot pressing to form a battery body. Here, Nafion (trade name) manufactured by DuPont having a thickness of 0.17 mm is used as the electrolyte membrane 7.

このような構成において、陰極としての多孔質電極1
側に設けた通路9からは水素と液体の水との気液混相
を、陽極としてのガス拡散電極8側に設けた通路10から
は飽和水蒸気を含む空気を、それぞれ供給した。この場
合、多孔質電極1側ではH2は疎水部4を介して、また、
液体の水は親水部5を介してそれぞれ固体高分子電解質
膜7と反応膜2との接触面へ供給される。このように液
体の水を供給することができるので、固体高分子膜7を
十分に湿潤することができ、急激な負荷上昇にも対応す
ることができる。
In such a configuration, the porous electrode 1 as a cathode
A gas-liquid mixed phase of hydrogen and liquid water was supplied from a passage 9 provided on the side, and air containing saturated steam was supplied from a passage 10 provided on a gas diffusion electrode 8 side as an anode. In this case, on the porous electrode 1 side, H 2 passes through the hydrophobic portion 4 and
Liquid water is supplied to the contact surface between the solid polymer electrolyte membrane 7 and the reaction membrane 2 via the hydrophilic portion 5. Since liquid water can be supplied in this manner, the solid polymer membrane 7 can be sufficiently wetted, and can cope with a sudden increase in load.

なお、上記実施例と、従来のガス拡散電極を用いた比
較例とについての電池特性の比較を第3図に示す。
FIG. 3 shows a comparison of battery characteristics between the above example and a comparative example using a conventional gas diffusion electrode.

また、第4図には第1図に示すガス拡散電極1の親水
部5に電解液若しくは水を、他の部分に燃料ガス若しく
は酸素を、それぞれ別別に供給するためのガスセパレー
タの一例を示す。同図に示すように、ガスセパレータ11
はガス拡散電極1の反応膜2とは反対側に密着されるも
のであり、内側にガス通路12、外側に水通路13を有して
おり、この水通路13と親水部5とを連通する連通路14が
ガス通路12内に設けられている。なお、これら連通路14
は各親水部5に対応するように設けられている。
FIG. 4 shows an example of a gas separator for separately supplying an electrolytic solution or water to the hydrophilic portion 5 of the gas diffusion electrode 1 shown in FIG. 1, and a fuel gas or oxygen to the other portion, respectively. . As shown in FIG.
Is in close contact with the gas diffusion electrode 1 on the side opposite to the reaction film 2 and has a gas passage 12 on the inside and a water passage 13 on the outside. The water passage 13 communicates with the hydrophilic portion 5. A communication passage 14 is provided in the gas passage 12. These communication paths 14
Are provided so as to correspond to the respective hydrophilic portions 5.

第5図には他のガスセパレータ15を示す。このガスセ
パレータ15のガス拡散電極1との密着面には水供給溝16
とガス供給溝17とが交互に形成されている。水供給溝16
はそれぞれ並らんだ親水部の5の一列に対応するように
なっており、ガス供給溝17は各水供給溝16の間に形成さ
れている。また、各水供給溝16は水連通路18A,18Bによ
り、各ガス供給溝17はガス連通路19A,19Bにより、それ
ぞれ連結されており、水やガスはそれぞれ水連結路18A,
18B及びガス連通路19A,19Bを介して供給されるようにな
っている。
FIG. 5 shows another gas separator 15. A water supply groove 16 is provided on the gas separator 15 in close contact with the gas diffusion electrode 1.
And gas supply grooves 17 are formed alternately. Water supply groove 16
The gas supply grooves 17 are formed between the respective water supply grooves 16. Further, each water supply groove 16 is connected by water communication passages 18A and 18B, and each gas supply groove 17 is connected by gas communication passages 19A and 19B, and water and gas are respectively connected by water connection passages 18A and 18A.
The gas is supplied via the gas communication passages 18A and the gas communication passages 19A and 19B.

また、第6図(a)〜(c)には親水部と疎水部との
配置例を示す。第6図(a)は疎水部4A中に、上記親水
部5を一列連結したような貫通部を設け、この中に四角
柱状の親水部5Aを配したものである。一方、第6図
(b)は疎水部4Bと親水部5Bとを図中上下で分けたもの
である。また、第6図(c)疎水部4Cの中央に大きく形
成した四角の貫通部内に親水部4Cを配置したものであ
る。
FIGS. 6A to 6C show examples of the arrangement of the hydrophilic part and the hydrophobic part. FIG. 6 (a) shows a structure in which a hydrophobic portion 4A is provided with a penetrating portion in which the hydrophilic portions 5 are connected in a line, and a rectangular column-shaped hydrophilic portion 5A is disposed therein. On the other hand, FIG. 6 (b) shows the hydrophobic part 4B and the hydrophilic part 5B divided in the upper and lower parts of the figure. Also, FIG. 6 (c) shows a structure in which a hydrophilic portion 4C is arranged in a square penetrating portion formed largely at the center of the hydrophobic portion 4C.

以上、ガス拡散電極、ガスセパレータについて種々の
例を挙げて説明したが、これらに限定されるものではな
いことは言うまでもない。
As described above, the gas diffusion electrode and the gas separator have been described with various examples, but it is needless to say that the invention is not limited thereto.

なお、上述した例では多孔質電極を陰極としてのみ用
いたが、勿論、陽極のみ、あるいは両方に用いてもよ
い。
In the above-described example, the porous electrode is used only as the cathode, but may be used only as the anode or both.

また、固体高分子電解質膜の代りに、例えば苛性カリ
水溶液を含有させた石綿マトリックスを用いるようなア
ルカリ電解液燃料電池の場合には、例えば陰極に用いた
多孔質電極から、水素と共に苛性カリ水溶液を供給する
ようにすればよい。
In the case of an alkaline electrolyte fuel cell using, for example, an asbestos matrix containing an aqueous potassium hydroxide solution instead of the solid polymer electrolyte membrane, for example, an aqueous potassium hydroxide solution is supplied together with hydrogen from a porous electrode used as a cathode. What should I do?

さらに、以上説明した燃料電池と同様にして、水電解
プロセス、HCl電解、H2−Cl2燃料電池などに本発明の多
孔質電極を用いれば、電解液若しくは水を供給しながら
水電解等を連続的に行うことができる。
Further, in the same manner as in the fuel cell described above, if the porous electrode of the present invention is used in a water electrolysis process, HCl electrolysis, or an H 2 -Cl 2 fuel cell, water electrolysis or the like can be performed while supplying an electrolytic solution or water. Can be performed continuously.

<発明の効果> 以上説明したように、本発明に係る多孔質電極を用い
れば、燃料ガスや酸素と共に液体状態の水や電解液を電
解質に供給することができるので、加湿が十分に行うこ
とができる。したがって、燃料電池の性能を大幅に向上
させ、また、水電解等を連続的に行うことができるとい
う効果を奏する。
<Effect of the Invention> As described above, when the porous electrode according to the present invention is used, water in a liquid state and an electrolyte can be supplied to the electrolyte together with the fuel gas and oxygen, so that humidification can be sufficiently performed. Can be. Therefore, there is an effect that the performance of the fuel cell is greatly improved, and water electrolysis and the like can be continuously performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は本発明の一実施例に係る多孔質電極の断
面図、第1図(b)はそのA矢視図、第2図はその多孔
質電極を用いた固体高分子電解質燃料電池の基本構造
図、第3図は実施例1及び比較例の電池特性図、第4図
及び第5図はガス拡散電極に水及びガスを供給するため
のガスセパレータの例を示す説明図、第6図(a)〜
(c)は他のガス拡散電極の例を示す説明図、第7図は
従来技術に係るガス拡散電極を示す断面図である。 図面中、 1は多孔質電極、 2は反応膜、 3はガス拡散膜、 4,4A,4B,4Cは疎水部、 5,5A,5B,5Cは親水部、 6は貫通部、 7は固体高分子電解質膜、 8はガス拡散膜、 9,10は通路、 11,15はガスセパレータである。
FIG. 1 (a) is a cross-sectional view of a porous electrode according to one embodiment of the present invention, FIG. 1 (b) is a view as viewed from an arrow A, and FIG. 2 is a solid polymer electrolyte using the porous electrode. FIG. 3 is a diagram showing the basic structure of a fuel cell, FIG. 3 is a cell characteristic diagram of Example 1 and Comparative Example, and FIGS. 4 and 5 are explanatory diagrams showing examples of gas separators for supplying water and gas to gas diffusion electrodes. , FIG. 6 (a)-
(C) is an explanatory view showing another example of a gas diffusion electrode, and FIG. 7 is a cross-sectional view showing a gas diffusion electrode according to the prior art. In the drawing, 1 is a porous electrode, 2 is a reaction membrane, 3 is a gas diffusion membrane, 4,4A, 4B, 4C are hydrophobic parts, 5,5A, 5B, 5C are hydrophilic parts, 6 is a penetration part, 7 is a solid part. 8 is a gas diffusion membrane, 9 and 10 are passages, and 11 and 15 are gas separators.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/96 H01M 8/02 C25B 11/03 C25B 11/12Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/96 H01M 8/02 C25B 11/03 C25B 11/12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】疎水性カーボン及び疎水性樹脂からなり通
気性を有するガス拡散膜に、触媒を担持させた親水性カ
ーボン微粒子若しくは触媒微粒子を含有する、疎水性カ
ーボン及び疎水性樹脂からなる反応膜を接合してなる電
極であって、 少なくとも上記ガス拡散膜をその厚さ方向に貫通する貫
通部を有し、該貫通部内には親水部が存在することを特
徴とする多孔質電極。
1. A reaction film made of hydrophobic carbon and a hydrophobic resin, wherein the gas diffusion film made of hydrophobic carbon and a hydrophobic resin and containing gas-permeable hydrophilic carbon particles or catalyst particles in a gas permeable gas diffusion film. A porous electrode having at least a penetrating portion penetrating the gas diffusion film in a thickness direction thereof, wherein a hydrophilic portion is present in the penetrating portion.
【請求項2】請求項1記載の多孔質電極をガス燃料電池
又は水電解プロセスの陽極及び/又は陰極とし、反応膜
を有しない側から反応膜側へ気液混相流を供給すること
を特徴とする多孔質電極の使用方法。
2. A gas-liquid mixed-phase flow is supplied from a side having no reaction film to a side of the reaction membrane, wherein the porous electrode according to claim 1 is used as an anode and / or a cathode of a gas fuel cell or a water electrolysis process. How to use a porous electrode.
【請求項3】請求項1記載の多孔質電極をガス燃料電池
又は水電解プロセスの陽極及び/又は陰極とし、上記貫
通部には電解液若しくは水を、他の部分にはガスをそれ
ぞれ反応膜を有しない側から反応膜側へ供給することを
特徴とする多孔質電極の使用方法。
3. The porous electrode according to claim 1, which is used as an anode and / or a cathode in a gas fuel cell or a water electrolysis process, wherein an electrolyte or water is supplied to the through portion, and a gas is supplied to the other portion. A method for using a porous electrode, wherein the porous electrode is supplied to the reaction membrane side from the side having no porous film.
JP1319009A 1989-12-11 1989-12-11 Porous electrode and method of using the same Expired - Fee Related JP2778767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1319009A JP2778767B2 (en) 1989-12-11 1989-12-11 Porous electrode and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1319009A JP2778767B2 (en) 1989-12-11 1989-12-11 Porous electrode and method of using the same

Publications (2)

Publication Number Publication Date
JPH03182052A JPH03182052A (en) 1991-08-08
JP2778767B2 true JP2778767B2 (en) 1998-07-23

Family

ID=18105483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1319009A Expired - Fee Related JP2778767B2 (en) 1989-12-11 1989-12-11 Porous electrode and method of using the same

Country Status (1)

Country Link
JP (1) JP2778767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101181852B1 (en) * 2005-01-26 2012-09-11 삼성에스디아이 주식회사 Membrane-electrode assembly and fuel cell system comprising the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583897B2 (en) * 1997-04-11 2004-11-04 三洋電機株式会社 Fuel cell
JP3559693B2 (en) * 1997-10-28 2004-09-02 株式会社東芝 Solid polymer electrolyte fuel cell
AU2270701A (en) * 1999-12-17 2001-06-25 International Fuel Cells, Llc Fuel cell having a hydrophilic substrate layer
US6780533B2 (en) * 1999-12-17 2004-08-24 Utc Fuel Cells, Llc Fuel cell having interdigitated flow channels and water transport plates
JP3698038B2 (en) 2000-09-12 2005-09-21 日産自動車株式会社 Solid polymer membrane fuel cell
JP2002352827A (en) * 2001-05-22 2002-12-06 Denso Corp Fuel cell system
JP4723828B2 (en) * 2004-08-04 2011-07-13 セイコーインスツル株式会社 Polymer electrolyte fuel cell
US8241818B2 (en) * 2004-08-06 2012-08-14 GM Global Technology Operations LLC Diffusion media with hydrophobic and hydrophilic properties
KR101233317B1 (en) * 2005-01-26 2013-02-14 삼성에스디아이 주식회사 Method of manufacturing electrode for fuel cell, and membrane-electrode assembly and fuel cell system comprising the electrode manufactured by the method
US7998638B2 (en) 2004-11-03 2011-08-16 Samsung Sdi Co., Ltd. Electrode for fuel cell, and membrane-electrode assembly and fuel cell system comprising the same
JP2007179870A (en) * 2005-12-28 2007-07-12 Tomoegawa Paper Co Ltd Gas diffusion electrode, membrane-electrolyte assembly, polymer electrolyte fuel cell and methods for producing them
JP2007273215A (en) * 2006-03-31 2007-10-18 Equos Research Co Ltd Manufacturing method of diffusion layer for fuel cell
JP4973396B2 (en) * 2007-09-03 2012-07-11 トヨタ自動車株式会社 Fuel cell and diffusion layer
JP5454051B2 (en) * 2009-09-28 2014-03-26 凸版印刷株式会社 Solid polymer fuel cell single cell, method for producing the same, and fuel cell stack having the same
WO2014061280A1 (en) * 2012-10-19 2014-04-24 パナソニック株式会社 Fuel cell gas diffusion layer and method for manufacturing same
NO343985B1 (en) 2017-07-03 2019-08-05 Sintef Tto As Polymer electrolyte membrane (PEM) water electrolyser cell, stack and system and a method for producing hydrogen in said PEM water electrolyser system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101181852B1 (en) * 2005-01-26 2012-09-11 삼성에스디아이 주식회사 Membrane-electrode assembly and fuel cell system comprising the same

Also Published As

Publication number Publication date
JPH03182052A (en) 1991-08-08

Similar Documents

Publication Publication Date Title
US6743541B2 (en) Monopolar cell pack of proton exchange membrane fuel cell and direct methanol fuel cell
JP2778767B2 (en) Porous electrode and method of using the same
JP4304101B2 (en) Electrolyte membrane / electrode structure and fuel cell
US4678724A (en) Fuel cell battery with improved membrane cooling
JPH04259759A (en) Diaphragm humidifying structure for solid high polymer electrolytic fuel cell and electrolytic cell
JPH1116590A (en) Fuel cell
JP4956870B2 (en) Fuel cell and fuel cell manufacturing method
KR100548118B1 (en) Electrode for fuel cell and fuel cell
US7638227B2 (en) Fuel cell having stack structure
JPH08255619A (en) Fuel cell
JP3555209B2 (en) Power generation layer of fuel cell and method of manufacturing the same
JP2001015123A (en) Electrode substrate and electrode for fuel cell and fuel cell using the same
JPH10208757A (en) Fuel cell generating set
JP2009043688A (en) Fuel cell
WO2002091506A1 (en) Flow field plates and a method for forming a seal between them
JP2005135708A (en) Fuel cell
JP3350260B2 (en) Solid polymer electrolyte fuel cell
JP2004349013A (en) Fuel cell stack
JP2000228205A (en) High polymer electrolyte fuel cell
JP2004103592A (en) Fuel cell
JP2005142027A (en) Polyelectrolyte fuel cell
JPH07335234A (en) Fuel cell
JP2009009839A (en) Electrolyte membrane for solid polymer fuel cell-electrode structure
JPH08287924A (en) Solid high polymer fuel cell
JP2004087505A (en) Solid polymer fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees