JP2004087505A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell Download PDF

Info

Publication number
JP2004087505A
JP2004087505A JP2003400719A JP2003400719A JP2004087505A JP 2004087505 A JP2004087505 A JP 2004087505A JP 2003400719 A JP2003400719 A JP 2003400719A JP 2003400719 A JP2003400719 A JP 2003400719A JP 2004087505 A JP2004087505 A JP 2004087505A
Authority
JP
Japan
Prior art keywords
fuel
electrode
polymer electrolyte
oxidant
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003400719A
Other languages
Japanese (ja)
Other versions
JP4503994B2 (en
Inventor
Yoshiharu Muku
椋 儀晴
Atsuo Muneuchi
宗内 篤夫
Soichiro Shimotori
霜鳥 宗一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003400719A priority Critical patent/JP4503994B2/en
Publication of JP2004087505A publication Critical patent/JP2004087505A/en
Application granted granted Critical
Publication of JP4503994B2 publication Critical patent/JP4503994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact solid polymer fuel cell capable of largely being improved in its service life. <P>SOLUTION: This solid polymer fuel cell has a unit cell that comprises a polymer electrolytic film; a fuel pole and an oxidant pole placed to hold the polymer electrolytic film; a fuel pole side current collector having a fuel supply channel for supplying fuel gas to the fuel pole; and an oxidizing pole side current collector having an oxidant supply channel for supplying oxidant gas to the oxidant pole. Reinforcing sheets are held between the fuel pole and a polymer electrolytic film, and between the oxidant pole and the polymer electrolytic film. Edges of areas of the fuel electrode pole and oxidant pole contacting to the polymer electrolytic film sandwich the electrolytic film but do not overlap with each other. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、水素イオン伝導性を有する高分子膜あるいは水素イオン伝導性を有する無機または有機材料粉末と結着剤としての高分子材料との複合材を電解質として用いる固体高分子型燃料電池に関する。 The present invention relates to a polymer electrolyte fuel cell using, as an electrolyte, a polymer film having hydrogen ion conductivity or a composite material of an inorganic or organic material powder having hydrogen ion conductivity and a polymer material as a binder.

 近年、高効率のエネルギ変換装置として、燃料電池が注目を集めている。燃料電池は、用いる電解質の種類により、たとえばアルカリ型,固体高分子型,リン酸型などの低温作動燃料電池と、溶融炭酸塩型,固体酸化物型などの高温作動燃料電池とに大別される。 In recent years, fuel cells have attracted attention as high-efficiency energy conversion devices. Depending on the type of electrolyte used, fuel cells are broadly classified into low-temperature operating fuel cells such as alkaline type, solid polymer type and phosphoric acid type, and high-temperature operating fuel cells such as molten carbonate type and solid oxide type. You.

 これらのうち、電解質としてイオン伝導性を有する高分子電解質膜を用いる固体高分子型燃料電池(PEFC)は、コンパクトな構造で高出力密度が得られ、しかも簡易なシステムで運転が可能なことから、宇宙用、離島用、定地用、車両用などの電源として注目されている。 Among these, polymer electrolyte fuel cells (PEFCs), which use a polymer electrolyte membrane having ion conductivity as the electrolyte, have a compact structure, high power density, and can be operated with a simple system. , For space, remote islands, land, and vehicles.

 高分子電解質膜としては、スルホン酸基を持つポリスチレン系の陽イオン交換膜、フルオロカーボンスルホン酸とポリビニリデンフルオライドとの混合物質、フルオロカーボンマトリックスにトリフルオロエチレンをグラフト化して添加したもの等が知られている。最近ではパーフルオロカーボンスルホン酸膜(たとえば、ナフィオン:商品名、デュポン社製)等が用いられている。 Known polymer electrolyte membranes include polystyrene-based cation exchange membranes having sulfonic acid groups, mixed substances of fluorocarbon sulfonic acid and polyvinylidene fluoride, and those obtained by adding trifluoroethylene to a fluorocarbon matrix by grafting. ing. Recently, a perfluorocarbon sulfonic acid membrane (for example, Nafion: trade name, manufactured by DuPont) or the like has been used.

 このような高分子電解質膜を電解質として用いる固体高分子型燃料電池は、通常、図17に示すように形成された単位セル1を複数積層した積層体構造として構成されている。 固体 A polymer electrolyte fuel cell using such a polymer electrolyte membrane as an electrolyte is usually configured as a stacked structure in which a plurality of unit cells 1 formed as shown in FIG. 17 are stacked.

 単位セル1は、高分子電解質膜10と、白金等の触媒を担持した多孔質体で形成されて高分子電解質膜10を相互で挾持するように配置された燃料極11および酸化剤極12と、燃料極11の背面に接触配置された多孔質体製の燃料極側集電体13と、酸化剤極12の背面に接触配置された酸化剤極側集電体14と、燃料極側集電体13の燃料極11に接触する面に形成されて燃料極11に燃料ガスを分配供給する複数の燃料供給溝15と、酸化剤極側集電体14の酸化剤極12に接触する面に形成されて酸化剤極12に酸化剤ガスを分配供給する複数の酸化剤供給溝16と、燃料極側集電体13の背面側に設けられた冷却板17と、この冷却板17に設けられて冷却水を案内する冷却水案内溝18と、この冷却水案内溝18によって案内された水の一部が燃料極側集電体13へ移行する量を制御する加湿水透過板19とで構成されている。 The unit cell 1 includes a polymer electrolyte membrane 10 and a fuel electrode 11 and an oxidizer electrode 12 which are formed of a porous body carrying a catalyst such as platinum and arranged so as to sandwich the polymer electrolyte membrane 10 therebetween. A fuel electrode-side current collector 13 made of a porous material and disposed in contact with the back surface of the fuel electrode 11; an oxidant electrode-side current collector 14 disposed in contact with the back surface of the oxidant electrode 12; A plurality of fuel supply grooves 15 formed on a surface of the electric body 13 which is in contact with the fuel electrode 11 to supply and distribute fuel gas to the fuel electrode 11, and a surface of the oxidant electrode side current collector 14 which is in contact with the oxidant electrode 12. A plurality of oxidant supply grooves 16 formed to distribute and supply oxidant gas to the oxidant electrode 12, a cooling plate 17 provided on the back side of the fuel electrode side current collector 13, and provided on the cooling plate 17. Cooling water guide groove 18 for guiding cooling water The portion of the water is constituted by the humidifying water transmission plate 19 for controlling the amount of shift to the fuel electrode side current collector 13.

 なお、図17中、20,21は、高分子電解質膜10,燃料極11および酸化剤極12からなる膜電極複合体の周囲を取り囲んで燃料ガスおよび酸化剤ガスの漏洩を防止するとともに燃料極側集電体13と酸化剤極側集電体14との間の絶縁を確保する額縁状スペーサを示している。また、冷却板17を介在させない場合には燃料極側集電体13と酸化剤極側集電体14とが一体化されている場合もある。 In FIG. 17, reference numerals 20 and 21 denote a fuel electrode and an oxidant gas surrounding the membrane electrode assembly composed of the polymer electrolyte membrane 10, the fuel electrode 11, and the oxidant electrode 12, while preventing leakage of the fuel gas and the oxidant gas. A frame spacer for ensuring insulation between the side current collector 13 and the oxidant electrode side current collector 14 is shown. When the cooling plate 17 is not interposed, the fuel electrode side current collector 13 and the oxidant electrode side current collector 14 may be integrated.

 高分子電解質膜10,燃料極11および酸化剤極12は、シート状に形成されており、内部抵抗低減のためにその厚みは1mm以下に形成されている。また、高分子電解質膜10,燃料極11および酸化剤極12は、生産性を考慮して正方形に形成されている場合が多い。そして、その面積は発電に必要な電流値および単位面積当たりの電流値すなわち電流密度によって決まり、概ね100cm2以上、すなわち一辺が10cm以上に設定されているものが多い。 The polymer electrolyte membrane 10, the fuel electrode 11, and the oxidant electrode 12 are formed in a sheet shape, and their thickness is set to 1 mm or less to reduce internal resistance. Further, the polymer electrolyte membrane 10, the fuel electrode 11, and the oxidizer electrode 12 are often formed in a square shape in consideration of productivity. The area is determined by a current value required for power generation and a current value per unit area, that is, a current density, and is generally set to 100 cm 2 or more, that is, 10 cm or more on one side.

 燃料極側集電体13および酸化剤極側集電体14は、図18に燃料極側集電体13を代表して示すように、高分子電解質膜10や各極11,12の形状に合せて正方形に形成されているものが多い。そして、中央部に各極11,12の形状に合せて正方形の領域を設定し、この正方形の領域に燃料ガス供給溝15(酸化剤ガス供給溝16)を複数平行に設けている。冷却板17についても同様で、中央部に各極11,12の形状に合せて正方形の領域を設定し、この正方形の領域に冷却水案内溝18を複数平行に設けている。 The fuel electrode side current collector 13 and the oxidant electrode side current collector 14 are formed in the shape of the polymer electrolyte membrane 10 and each of the electrodes 11 and 12 as representatively shown in FIG. Many are formed in a square shape. A square area is set in the center according to the shape of each of the poles 11 and 12, and a plurality of fuel gas supply grooves 15 (oxidant gas supply grooves 16) are provided in parallel with this square area. Similarly, the cooling plate 17 has a square area in the center according to the shape of the poles 11 and 12, and a plurality of cooling water guide grooves 18 are provided in parallel with the square area.

 燃料ガス供給溝15の両端部は、それぞれ燃料ガス供給溝15とほぼ同じ深さに形成された連絡通路22,23を介して積層要素の周縁部に積層方向に設けられた燃料ガス供給マニホールド24および燃料ガス排出マニホールド25に通じている。同様に、酸化剤ガス供給溝16の両端部は酸化剤ガス供給マニホールド26および酸化剤ガス排出マニホールド27に通じており、冷却水案内溝18の両端部は冷却水供給マニホールド28および冷却水排出マニホールド29に通じている。一方、加湿水透過板19は、金属粉末または親水性のカーボン粉末を焼結して得た導電性の多孔質薄板で形成されている。 Both ends of the fuel gas supply groove 15 are connected to fuel gas supply manifolds 24 provided in the stacking direction at the peripheral edge of the stacking element via communication passages 22 and 23 formed at substantially the same depth as the fuel gas supply groove 15. And a fuel gas discharge manifold 25. Similarly, both ends of the oxidizing gas supply groove 16 communicate with an oxidizing gas supply manifold 26 and an oxidizing gas discharge manifold 27, and both ends of the cooling water guide groove 18 are connected to a cooling water supply manifold 28 and a cooling water discharge manifold. It leads to 29. On the other hand, the humidified water permeable plate 19 is formed of a conductive porous thin plate obtained by sintering a metal powder or a hydrophilic carbon powder.

 このように構成された単位セル1の起電力は1V以下と小さいため、複数の単位セルを積層し、直列に接続して必要な起電力を得るようにしている。 単 位 Since the electromotive force of the unit cell 1 configured as described above is as small as 1 V or less, a plurality of unit cells are stacked and connected in series to obtain a required electromotive force.

 しかしながら、上記のように構成された従来の固体高分子型燃料電池にあっては次のような問題があった。 However, the conventional polymer electrolyte fuel cell configured as described above has the following problems.

 すなわち、燃料極11に水素を含む燃料ガスを供給するとともに酸化剤極12に酸素を含む酸化剤ガスを供給しながら電池反応を行なわせると、この電池反応の副産物として酸化剤極12側に水が発生する。この水は生成水と呼ばれている。この生成水が多量に存在していると、酸化剤ガスの供給の妨げになる。したがって、生成水を速やかに外部に排除する必要がある。生成水は酸化剤ガス供給溝16に移行し易い。このため、一般には、酸化剤ガスを過剰に供給し、未反応の酸化剤ガスによって排出する方法が採られている。この方法では、過剰な酸化剤ガスの流量とともに酸化剤ガスの流速が重要なパラメータとなる。すなわち、流速が早いほど生成水を多く排出できる。 That is, when a fuel gas containing hydrogen is supplied to the fuel electrode 11 and an oxidizing gas containing oxygen is supplied to the oxidizing electrode 12, the battery reaction is performed. As a by-product of the battery reaction, water is supplied to the oxidizing electrode 12 side. Occurs. This water is called product water. If a large amount of the generated water is present, supply of the oxidizing gas is hindered. Therefore, it is necessary to promptly remove generated water to the outside. The generated water easily moves to the oxidizing gas supply groove 16. For this reason, a method is generally adopted in which an oxidizing gas is excessively supplied and discharged by an unreacted oxidizing gas. In this method, the flow rate of the oxidizing gas and the flow rate of the excess oxidizing gas are important parameters. That is, the higher the flow rate, the more the generated water can be discharged.

 しかし、従来の固体高分子型燃料電池では、正方形に形成された酸化剤極側集電体14の中央部に正方形の領域を設定し、この正方形の領域に酸化剤ガス供給溝16を複数平行に設けているので、酸化剤ガスの流速を上げることが困難で、電池の寿命を長くすることが困難であった。 However, in the conventional polymer electrolyte fuel cell, a square area is set in the center of the oxidant electrode side current collector 14 formed in a square, and a plurality of oxidant gas supply grooves 16 are formed in the square area in parallel. Therefore, it is difficult to increase the flow rate of the oxidizing gas, and it is difficult to extend the life of the battery.

 なお、酸化剤ガスの流速を上げるには、各酸化剤ガス供給溝16の断面積、つまり溝の深さと幅を小さくすることで実現できるが、電極の面積が小さい場合には加工精度の点から実現が困難となる。 The flow rate of the oxidizing gas can be increased by reducing the cross-sectional area of each of the oxidizing gas supply grooves 16, that is, the depth and width of the grooves. Is difficult to realize.

 また、従来の固体高分子型燃料電池にあっては、燃料極11と酸化剤極12とを同一寸法および同一面積に形成している。このため、燃料極11の高分子電解質膜10に接触する領域のエッジ部と酸化剤極12の高分子電解質膜10に接触する領域のエッジ部分とが高分子電解質膜10を挟んで重なったものとなり、高分子電解質膜10,燃料極11および酸化剤極12からなる膜電極複合体をプレス成形するときにエッジ部分に圧力が集中し、高分子電解質膜10の上記エッジ部分に接触している部分が両方から押されて破損する虞があった。さらに、高分子電解質膜10の上記両エッジ部分に挟まれている部分は、発電時ではセルの締め付けにより、常に機械的ストレスが掛かっている状態にあり、長時間運転を行うと高分子電解質膜10の上記両エッジ部分に挟まれている部分が劣化し、破損する可能性もあった。 In the conventional polymer electrolyte fuel cell, the fuel electrode 11 and the oxidant electrode 12 are formed to have the same dimensions and the same area. Therefore, the edge portion of the region of the fuel electrode 11 in contact with the polymer electrolyte membrane 10 and the edge portion of the region of the oxidant electrode 12 in contact with the polymer electrolyte film 10 overlap with the polymer electrolyte membrane 10 interposed therebetween. When the membrane electrode assembly including the polymer electrolyte membrane 10, the fuel electrode 11, and the oxidant electrode 12 is press-molded, pressure concentrates on an edge portion and is in contact with the edge portion of the polymer electrolyte membrane 10. There was a possibility that the portion was pushed from both sides and damaged. Further, the portion of the polymer electrolyte membrane 10 sandwiched between the both edge portions is always in a state of being subjected to mechanical stress due to the tightening of the cell during power generation. There is also a possibility that the portion between the two edge portions of 10 deteriorates and is damaged.

 また、従来の固体高分子型燃料電池にあっては、金属粉末またはカーボン粉末を焼結して得た加湿水透過板19を用いている。このような焼結体では、焼結の条件によって多孔質構造に異なりが生じ易い。また、焼結時に均一な孔径や細孔容量のコントロールが困難である。このため、同じ加湿水透過板19においても各部の孔径や細孔容量にばらつきが生じ、さらに加湿水透過板19の一枚一枚について孔径や細孔容量にばらつきが生じる。このようなばらつきにより、高分子電解質膜10に供給される加湿水が不均一になり、電池性能が不安定になる問題もあった。 (4) In the conventional polymer electrolyte fuel cell, a humidified water permeable plate 19 obtained by sintering metal powder or carbon powder is used. In such a sintered body, the porous structure is likely to differ depending on the sintering conditions. Further, it is difficult to control the uniform pore size and pore volume during sintering. For this reason, even in the same humidified water permeable plate 19, the hole diameter and the pore volume of each part vary, and further, the hole diameter and the pore volume of each humidified water permeable plate 19 vary. Due to such variations, the humidification water supplied to the polymer electrolyte membrane 10 becomes non-uniform, and the battery performance becomes unstable.

 さらに、セルのコンパクト化のためには薄く、機械的強度のあるものが必要となるが、粉末を焼結する従来の製作法では、概略1mm程度の厚さが必要となる。また、金属またはカーボンの多孔質体であるため、薄くすると機械的強度がなくなってしまい、結局、従来の加湿水透過板では薄く、機械的強度のあるものを製作できず、コンパクトなセルを実現することはできない。 Furthermore, in order to make the cell compact, it is necessary to have a thin and mechanically strong one. However, the conventional manufacturing method of sintering powder requires a thickness of about 1 mm. In addition, because it is a porous body made of metal or carbon, if it is made thin, its mechanical strength will be lost, and eventually a conventional humidified water permeable plate cannot be made thin and has high mechanical strength, and a compact cell is realized. I can't.

 上述の如く、従来の固体高分子型燃料電池にあっては、生成水の速やかな排出が困難で、しかも高分子電解質膜に大きな機械的ストレスが加わり易く、そのうえ高分子電解質膜に良好に給水できないなどの理由で、電池としての寿命が短いという問題があった。 As described above, in the conventional polymer electrolyte fuel cell, it is difficult to quickly discharge generated water, and large mechanical stress is easily applied to the polymer electrolyte membrane. There is a problem that the life of the battery is short because it cannot be performed.

 そこで本発明は、寿命を著しく向上させ得るとともにコンパクトな固体高分子型燃料電池を提供することを目的としている。 Accordingly, an object of the present invention is to provide a compact polymer electrolyte fuel cell which can significantly improve the life and is compact.

 上記目的を達成するために、次のような手段により固体高分子型燃料電池を構成する。 た め In order to achieve the above object, a polymer electrolyte fuel cell is constructed by the following means.

 請求項1に対応する発明は、高分子電解質膜と、この高分子電解質膜を挟持するように配置された燃料極および酸化剤極と、前記燃料極に燃料ガスを供給する燃料供給溝を備えた燃料極側集電体と、前記酸化剤極に酸化剤ガスを供給する酸化剤供給溝を備えた酸化剤極側集電体とからなる単位セルを備えた固体高分子型燃料電池において、前記燃料極と前記高分子電解質膜の間及び前記酸化剤極と前記高分子電解質膜の間に補強シートが装着され、前記燃料極および酸化剤極が前記高分子電解質膜に接触する領域のエッジ部分が上記高分子電解質膜を挟んで重合しない形状に形成されている。 The invention corresponding to claim 1 includes a polymer electrolyte membrane, a fuel electrode and an oxidant electrode arranged so as to sandwich the polymer electrolyte membrane, and a fuel supply groove for supplying a fuel gas to the fuel electrode. A fuel electrode side current collector, and a polymer electrolyte fuel cell comprising a unit cell comprising an oxidant electrode side current collector having an oxidant supply groove for supplying an oxidant gas to the oxidant electrode, A reinforcing sheet is attached between the fuel electrode and the polymer electrolyte membrane and between the oxidant electrode and the polymer electrolyte membrane, and an edge of a region where the fuel electrode and the oxidant electrode contact the polymer electrolyte membrane. The part is formed in a shape that does not polymerize with the polymer electrolyte membrane interposed therebetween.

 請求項2に対応する発明は、請求項1に対応する発明の固体高分子型燃料電池において、前記燃料極および前記酸化剤極の前記高分子電解質膜に接触する領域に凸部がそれぞれ形成されており、これら凸部を取り囲むように前記凸部の高さとほぼ同じ厚みに形成された補強シートが装着されている。 According to a second aspect of the present invention, in the polymer electrolyte fuel cell according to the first aspect of the present invention, convex portions are formed in regions of the fuel electrode and the oxidant electrode that are in contact with the polymer electrolyte membrane. A reinforcing sheet having a thickness substantially equal to the height of the convex portion is attached so as to surround the convex portion.

 請求項3に対応する発明は、請求項1に対応する発明の固体高分子型燃料電池において、前記燃料極および前記酸化剤極は、前記高分子電解質膜に接触する面積が異なっている。 According to a third aspect of the present invention, in the polymer electrolyte fuel cell according to the first aspect of the present invention, the fuel electrode and the oxidant electrode have different areas in contact with the polymer electrolyte membrane.

 請求項4に対応する発明は、請求項1に対応する発明の固体高分子型燃料電池において、前記補強シートの形状が額縁状である。 According to a fourth aspect of the present invention, in the polymer electrolyte fuel cell according to the first aspect of the present invention, the reinforcing sheet has a frame shape.

 本発明によれば、寿命を大幅に向上させることができる。 According to the present invention, the life can be greatly improved.

  以下、図面を参照しながら本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

 図1には本発明の一実施形態に係る固体高分子型燃料電池、ここには固体高分子型燃料電池41を4個直列に接続して電気自動車用の電源を構成した例の斜視図が示されている。 FIG. 1 is a perspective view of a solid polymer fuel cell according to an embodiment of the present invention, in which four solid polymer fuel cells 41 are connected in series to constitute a power source for an electric vehicle. It is shown.

 各固体高分子型燃料電池41は、図2に示すように、単位セル42を複数積層し、この積層体の両端部に導電板43a,43b、絶縁板44a,44b、端板45a,45bをそれぞれ当てがい、この状態で端板45a,45bの4隅位置間を絶縁ロッド46を使って締付けて一体化したものとなっている。 As shown in FIG. 2, each of the polymer electrolyte fuel cells 41 has a plurality of unit cells 42 stacked, and conductive plates 43a and 43b, insulating plates 44a and 44b, and end plates 45a and 45b are provided at both ends of the stacked body. In this state, the end plates 45a and 45b are integrated by tightening using an insulating rod 46 between the four corner positions.

 このように構成された各固体高分子型燃料電池41は、積層方向と直交する断面が長方形に形成されている。そして、4個の固体高分子型燃料電池41を、その断面における短辺と短辺とを隣接させ、単位セル42が積層される方向に対して直交する方向に並設し、導電板43a,43bに突設されたボスバー47をリード線48で接続して隣接する積層体間を電気的に直列に接続している。このように固体高分子型燃料電池41を配置することにより、電源を設置するスペースの全高を低くでき、自動車の床下などの高さの低いスペースに設置できるようにしている。 各 Each of the polymer electrolyte fuel cells 41 thus configured has a rectangular cross section orthogonal to the stacking direction. Then, the four polymer electrolyte fuel cells 41 are arranged side by side in a direction orthogonal to the direction in which the unit cells 42 are stacked, with the short sides thereof adjacent to each other in the cross section, and the conductive plates 43a, Boss bars 47 protruding from 43b are connected by lead wires 48 to electrically connect adjacent laminates in series. By arranging the polymer electrolyte fuel cell 41 in this manner, the total height of the space for installing the power source can be reduced, and the fuel cell can be installed in a low space such as under the floor of an automobile.

 各固体高分子型燃料電池41には、従来の電池と同様に、発電に必要な燃料ガス、酸化剤ガス、冷却水を供給および排出するための、燃料ガス供給マニホールド49a,燃料ガス排出マニホールド49b、給水マニホールド50a,排水マニホールド50b、酸化剤ガス供給マニホールド51a,酸化剤ガス排出マニホールド51bが積層方向に形成されている。この例では隣接する固体高分子型燃料電池41の対応するマニホールド同士を直列に接続している。勿論、並列に供給することもできる。 Each of the polymer electrolyte fuel cells 41 has a fuel gas supply manifold 49a and a fuel gas discharge manifold 49b for supplying and discharging fuel gas, oxidizing gas, and cooling water necessary for power generation, similarly to the conventional battery. A water supply manifold 50a, a drain manifold 50b, an oxidizing gas supply manifold 51a, and an oxidizing gas discharge manifold 51b are formed in the stacking direction. In this example, the corresponding manifolds of adjacent polymer electrolyte fuel cells 41 are connected in series. Of course, they can be supplied in parallel.

 図3には単位セル42の分解斜視図が示されている。単位セル42は、公知のものと同様の材質で形成された高分子電解質膜60を備えている。この高分子電解質膜60は厚さがたとえば0.18mm程度のもので、両面には高分子電解質膜より小さい面積でマニホールドの形成されている側に短辺が位置するように長方形(たとえば短辺10cm、長辺20cm、電極面積200cm2)に形成された燃料極61と酸化剤極62とが接触配置されている。燃料極61および酸化剤極62は、厚さがたとえば0.4mmのカーボン製多孔質体の表面に白金を含んだカーボン粒子を塗布したもので形成されている。 FIG. 3 is an exploded perspective view of the unit cell 42. The unit cell 42 includes a polymer electrolyte membrane 60 formed of a material similar to a known one. The polymer electrolyte membrane 60 has a thickness of, for example, about 0.18 mm, and has a smaller area on both sides than the polymer electrolyte membrane and a rectangle (for example, a short side) such that the short side is located on the side where the manifold is formed. The fuel electrode 61 and the oxidant electrode 62 formed in a size of 10 cm, a long side of 20 cm, and an electrode area of 200 cm 2 are arranged in contact with each other. The fuel electrode 61 and the oxidizer electrode 62 are formed by coating a surface of a carbon porous body having a thickness of, for example, 0.4 mm with carbon particles containing platinum.

 燃料極61には、図6および図7に示すように高分子電解質膜60に接触する長方形の領域(面積)を規定する凸部63が形成されている。同様に、酸化剤極62にも図6および図7に示すように高分子電解質膜60に接触する長方形の領域を規定する凸部64が形成されている。凸部64の面積は凸部63の面積とは異なり、ここでは大に設定されている。すなわち、凸部63のエッジ部Aと凸部64のエッジ部Bとが高分子電解質膜60を挟んで積層方向に重ならない面積関係となっている。具体的には、エッジ部Aよりエッジ部Bが2〜5mm外側に位置する面積関係となっている。そして、燃料極61に形成された凸部63を取り囲むように、凸部63の高さとほぼ同じ厚みのフッ素樹脂系シートあるいは高分子電解質膜60と同じ材質で凸部63の高さとほぼ同じ厚みのシート形状に形成された額縁状補強シート65が装着されている。同様に、酸化剤極62に形成された凸部64の周囲にも同様のシート形状に形成された額縁状補強シート65が装着されている。また、燃料極61および酸化剤極62の外周部分には、これら外周部分とほぼ同じ厚みを有したフッ素ゴム等の絶縁性シートで額縁状に形成されたシール材67,68が配置されている。 (6) On the fuel electrode 61, as shown in FIGS. 6 and 7, a convex portion 63 that defines a rectangular region (area) in contact with the polymer electrolyte membrane 60 is formed. Similarly, as shown in FIGS. 6 and 7, the oxidant electrode 62 is also formed with a convex portion 64 that defines a rectangular region that contacts the polymer electrolyte membrane 60. The area of the convex portion 64 is different from the area of the convex portion 63, and is set to be large here. That is, the edge portion A of the convex portion 63 and the edge portion B of the convex portion 64 have an area relationship such that they do not overlap in the stacking direction with the polymer electrolyte membrane 60 interposed therebetween. Specifically, the area relationship is such that the edge portion B is located 2 to 5 mm outside the edge portion A. Then, a fluororesin-based sheet or the same material as that of the polymer electrolyte membrane 60 having substantially the same thickness as the height of the convex portion 63 so as to surround the convex portion 63 formed on the fuel electrode 61, and having substantially the same thickness as the height of the convex portion 63. The frame-shaped reinforcing sheet 65 formed in the sheet shape is mounted. Similarly, a frame-shaped reinforcing sheet 65 formed in a similar sheet shape is mounted around the convex portion 64 formed on the oxidant electrode 62. Further, on the outer peripheral portions of the fuel electrode 61 and the oxidizer electrode 62, sealing materials 67 and 68 formed in a frame shape with an insulating sheet made of fluoro rubber or the like having substantially the same thickness as these outer peripheral portions are arranged. .

 燃料極61の背面側、つまり燃料極61の図3および図6中下面側には、燃料極61への燃料ガスの供給機能と集電機能とを発揮する燃料極側集電板69が接触配置されている。この燃料極側集電板69は、親水性のカーボン多孔質板で形成されている。燃料極側集電板69における燃料極61との接触面内には、図5および図6にも示すように、燃料極61に燃料ガスを供給するための燃料供給溝70が燃料極61の面積より小さな長方形の領域Cに燃料極61の長辺に沿う方向に延びる関係に複数形成されている。燃料供給溝70は、たとえば幅1mm、深さ0.5mm、長さ20cm、2mmピッチに50本設けられている。同様に、酸化剤極62の背面側、つまり酸化剤極62の図3および図6中上面側には、酸化剤極62への酸化剤ガスの供給機能と集電機能とを発揮する酸化剤極側集電板71が接触配置されている。この酸化剤極側集電板71は、緻密なカーボン板で形成されている。酸化剤極側集電板71における酸化剤極62との接触面内には、図4および図6に示すように、酸化剤ガスを酸化剤極62に供給するための酸化剤供給溝72が酸化剤極62の面積より小さな長方形の領域Dに酸化剤極62の長辺に沿う方向に延びる関係に複数形成されている。この酸化剤供給溝72も、たとえば幅1mm、深さ0.5mm、長さ20cm、2mmピッチに50本設けられている。なお、図4は酸化剤極側集電板71を図3における下側から見た図として示されている。 A fuel electrode side current collector plate 69 that has a function of supplying fuel gas to the fuel electrode 61 and a function of collecting power is in contact with the back side of the fuel electrode 61, that is, the lower surface side of the fuel electrode 61 in FIGS. Are located. The fuel electrode side current collector plate 69 is formed of a hydrophilic carbon porous plate. As shown in FIGS. 5 and 6, a fuel supply groove 70 for supplying a fuel gas to the fuel electrode 61 is formed in a contact surface of the fuel electrode side current collector plate 69 with the fuel electrode 61. A plurality of rectangular areas C having a smaller area are formed so as to extend in a direction along the long side of the fuel electrode 61. For example, 50 fuel supply grooves 70 are provided with a width of 1 mm, a depth of 0.5 mm, a length of 20 cm, and a pitch of 2 mm. Similarly, on the rear side of the oxidant electrode 62, that is, on the upper side in FIGS. 3 and 6 of the oxidant electrode 62, an oxidant that exhibits a function of supplying an oxidant gas to the oxidant electrode 62 and a function of collecting electricity. The pole-side current collector 71 is disposed in contact with the pole. The oxidant electrode side current collector 71 is formed of a dense carbon plate. As shown in FIGS. 4 and 6, an oxidant supply groove 72 for supplying an oxidant gas to the oxidant electrode 62 is provided in a contact surface of the oxidant electrode side current collector plate 71 with the oxidant electrode 62. A plurality of regions are formed in a rectangular region D smaller than the area of the oxidant electrode 62 so as to extend in a direction along the long side of the oxidant electrode 62. For example, 50 oxidant supply grooves 72 are provided at a pitch of 1 mm, a depth of 0.5 mm, a length of 20 cm, and a pitch of 2 mm. 4 shows the oxidant electrode-side current collector 71 as viewed from below in FIG.

 燃料極側集電板69の図3および図6中下面側には加湿水透過板73が接触配置されており、この加湿水透過板73の図3および図6中下面側には冷却板74が接触配置されている。加湿水透過板73は、導電性を有する非焼結板、たとえば図8に示すように、燃料ガス供給溝70の配設領域と対向する領域に孔径10μmの細孔75を数百個設けたステンレスの薄板76の両面に、孔径10μm、細孔容量70%の多孔質フッ素樹脂系シートにカーボンを30%混入させた薄板77を配置して一体化した厚さ0.16mmのもので形成されている。 A humidified water permeable plate 73 is disposed in contact with the lower surface side of the fuel electrode side current collector plate 69 in FIGS. 3 and 6, and a cooling plate 74 is provided on the lower surface side of the humidified water permeable plate 73 in FIGS. 3 and 6. Are arranged in contact. The humidified water permeable plate 73 is provided with a conductive non-sintered plate, for example, as shown in FIG. 8, several hundred pores 75 having a hole diameter of 10 μm in a region opposed to a region where the fuel gas supply groove 70 is provided. On both sides of a stainless steel thin plate 76, a thin plate 77 in which 30% of carbon is mixed in a porous fluororesin-based sheet having a pore diameter of 10 μm and a pore volume of 70% is arranged and integrated to have a thickness of 0.16 mm. ing.

 冷却板74は緻密なカーボン板あるいは金属板で形成されている。冷却板74の加湿水透過板73側に位置する面には、冷却水を案内するための案内溝78が燃料ガス供給溝70の配設領域と対向する領域に燃料ガス供給溝70と平行に複数形成されている。 The cooling plate 74 is formed of a dense carbon plate or a metal plate. On the surface of the cooling plate 74 located on the humidified water permeable plate 73 side, a guide groove 78 for guiding cooling water is provided in a region facing the region where the fuel gas supply groove 70 is provided, in parallel with the fuel gas supply groove 70. A plurality is formed.

 高分子電解質膜60、額縁状補強シート65,66、シール材67,68、燃料極側集電板69、酸化剤極側集電板71、加湿水透過板73、冷却板74の両短辺部(長方形の領域C,Dの短辺側で、かつ上記長方形の領域外)には、燃料ガス供給マニホールド49aおよび燃料ガス排出マニホールド49bを構成する孔80,81、給水マニホールド50aおよび排水マニホールド50bを構成する孔82,83、酸化剤ガス供給マニホールド51aおよび酸化剤ガス排出マニホールド51bを構成する孔84,85がそれぞれ積層方向に通じる関係に形成されている。 Both short sides of the polymer electrolyte membrane 60, the frame-shaped reinforcing sheets 65 and 66, the sealing materials 67 and 68, the fuel electrode side current collector 69, the oxidant electrode side current collector 71, the humidified water transmission plate 73, and the cooling plate 74 Portions (on the short sides of the rectangular regions C and D and outside the rectangular regions), holes 80 and 81 constituting the fuel gas supply manifold 49a and the fuel gas discharge manifold 49b, the water supply manifold 50a and the drainage manifold 50b Are formed so as to communicate with each other in the stacking direction with the holes 84 and 85 forming the oxidizing gas supply manifold 51a and the oxidizing gas discharge manifold 51b.

 そして、燃料極側集電板69に設けられた燃料ガス供給溝70は燃料ガスを供給/排出するための孔80,81に通じ、酸化剤極側集電板71に設けられた酸化剤供給溝72は酸化剤ガスを供給/排出するための孔84,85に通じ、冷却板74に設けられた案内溝78は冷却水を供給/排出するための孔82,83に通じている。 The fuel gas supply groove 70 provided on the fuel electrode side current collector plate 69 communicates with holes 80 and 81 for supplying / discharging the fuel gas, and the oxidant supply hole provided on the oxidant electrode side current collector plate 71. The groove 72 communicates with holes 84 and 85 for supplying / discharging the oxidizing gas, and the guide groove 78 provided on the cooling plate 74 communicates with holes 82 and 83 for supplying / discharging the cooling water.

 このように、この例に係る固体高分子型燃料電池41では、酸化剤極側集電体71の酸化剤極62に接触する面のほぼ長方形の領域Dに長方形の長辺に沿って酸化剤ガスを案内する複数の酸化剤供給溝72を設けているので、各酸化剤供給溝の深さや幅を小さくすることなく、酸化剤ガスの流速を増加させることができ、この結果、酸化剤極62で発生した生成水を良好に排除できる。 As described above, in the polymer electrolyte fuel cell 41 according to this example, the oxidizing agent extends along the longer side of the rectangle in the substantially rectangular region D of the surface of the oxidizing electrode side current collector 71 that contacts the oxidizing electrode 62. Since the plurality of oxidant supply grooves 72 for guiding the gas are provided, the flow rate of the oxidant gas can be increased without reducing the depth and width of each oxidant supply groove. The generated water generated in 62 can be satisfactorily removed.

 すなわち、この例の場合には、酸化剤極62として短辺10cm、長辺20cm、電極面積200cm2のものを用いており、酸化剤供給溝72は幅1mm、深さ0.5mm、長さ20cm、2mmピッチで50本設けている。今、電流密度を0.4A/cm2とし、空気利用率を40% とし、酸化剤ガス(空気)供給圧力を1atmとすると、各酸化剤供給溝72を流れる酸化剤ガスの流速は、300cm/secとなる。一方、同じ電極面積200cm2で正方形の電極(一辺の長さ14cm)を用い、同じ溝幅、溝深さ、配設ピッチの酸化剤供給溝を設け、同じ条件で酸化剤ガスを供給した場合、各酸化剤供給溝を流れる酸化剤ガスの流速は210cm/secとなる。このように、本例では同じ電極面積でありながら酸化剤ガスの流速を1.5倍に増加させることができる。したがって、生成水の排出を良好に行うことができる。この結果、生成水が酸化剤極62内に滞留して酸化剤ガスの供給を妨げることがなくなり、長時間に亙って電池性能を維持させることができる。 That is, in this example, the oxidant electrode 62 has a short side of 10 cm, a long side of 20 cm, and an electrode area of 200 cm 2 , and the oxidant supply groove 72 has a width of 1 mm, a depth of 0.5 mm, and a length of 0.5 mm. 50 pieces are provided at a pitch of 20 cm and 2 mm. Now, assuming that the current density is 0.4 A / cm 2 , the air utilization rate is 40%, and the oxidant gas (air) supply pressure is 1 atm, the flow rate of the oxidant gas flowing through each oxidant supply groove 72 is 300 cm. / sec. On the other hand, a square electrode (side length 14 cm) having the same electrode area of 200 cm 2 , an oxidant supply groove having the same groove width, groove depth, and arrangement pitch is provided, and oxidant gas is supplied under the same conditions. The flow rate of the oxidizing gas flowing through each oxidizing agent supply groove is 210 cm / sec. Thus, in this example, the flow rate of the oxidizing gas can be increased by a factor of 1.5 while maintaining the same electrode area. Therefore, the generated water can be discharged well. As a result, the generated water does not stay in the oxidant electrode 62 to hinder the supply of the oxidant gas, and the battery performance can be maintained for a long time.

 また、このように酸化剤極62および燃料極61を長方形に形成できることは、単位セル42の平面形状も長方形に形成できることになり、燃料電池積層体の積層方向と直交する断面積も長方形に形成できることになる。すなわち、必要な電極面積を確保した状態で燃料電池積層体を偏平に近い形状に形成できることになるので、たとえば電気自動車等のように高さの低い設置空間しか持たない対象にも対応することが可能となる。 The fact that the oxidant electrode 62 and the fuel electrode 61 can be formed in a rectangular shape in this way means that the planar shape of the unit cell 42 can also be formed in a rectangular shape, and that the cross-sectional area orthogonal to the stacking direction of the fuel cell stack is also formed in a rectangular shape. You can do it. That is, the fuel cell stack can be formed in a nearly flat shape with the required electrode area secured, so that it can be applied to objects having only a low installation space, such as electric vehicles. It becomes possible.

 また、上記例では、燃料極61および酸化剤極62の高分子電解質膜60に接触する領域のエッジ部分A,Bが高分子電解質膜60を挟んで重合しないように燃料極61および酸化剤極62を形成している。したがって、高分子電解質膜60には両エッジ部分A,Bよって挟まれる部分が存在しないことになる。このため、膜電極複合体をプレス成形するときは勿論こと、発電時のセル締め付けに際しても上述したエッジ部分A,Bの存在によって高分子電解質膜60が破損するのを防止することが可能となる。 Further, in the above example, the fuel electrode 61 and the oxidizer electrode 62 are so formed that the edge portions A and B of the regions of the fuel electrode 61 and the oxidizer electrode 62 that come into contact with the polymer electrolyte membrane 60 do not polymerize with the polymer electrolyte membrane 60 interposed therebetween. 62 are formed. Therefore, the polymer electrolyte membrane 60 does not have a portion sandwiched between both edge portions A and B. For this reason, it is possible to prevent the polymer electrolyte membrane 60 from being damaged due to the presence of the above-described edge portions A and B when the cell is fastened during power generation, as well as when the membrane electrode assembly is pressed. .

 図9には、この例に係る単位セルと従来例の単位セルとを用い、性能を比較するための発電試験を行った結果が示されている。従来例の単位セルでは約2000時間でセル電圧が0.2Vまで低下したが、この例に係る単位セルでは4000時間を越えてもセル電圧の低下はみられなかった。 FIG. 9 shows the results of a power generation test for comparing performance using the unit cell according to this example and the unit cell according to the related art. In the unit cell of the conventional example, the cell voltage dropped to 0.2 V in about 2000 hours, but in the unit cell according to this example, the cell voltage did not decrease even after more than 4000 hours.

 さらに、スクリーン印刷機により、電極の周辺部が額縁状補強シート65,66の厚みだけ薄くなるようなスクリーンパターンを用いて製作した燃料極および酸化剤極を用いて発電試験を行ったところ、図9に示す特性と同等の結果を得た。 Further, a power generation test was performed by a screen printer using a fuel electrode and an oxidizer electrode manufactured using a screen pattern in which the peripheral portion of the electrode was thinned by the thickness of the frame-shaped reinforcing sheets 65 and 66. A result equivalent to the characteristic shown in FIG. 9 was obtained.

 また、上記例では加湿水透過板73を導電性の非焼結部材、導電材料を含む多孔質構造のフッ素系樹脂材料の薄板と細孔を備えた金属板で形成しているので、孔径や細孔容量のコントロールが極めて容易で、この結果、高分子電解質膜60に加湿水を均一に供給することができる。 Further, in the above example, the humidified water permeable plate 73 is formed of a conductive non-sintered member, a thin plate of a fluororesin material having a porous structure containing a conductive material, and a metal plate having pores. It is very easy to control the pore volume, and as a result, humidified water can be uniformly supplied to the polymer electrolyte membrane 60.

 すなわち、図10には上記例に係る単位セルを5段積層した5セル積層電池の発電試験結果が示されており、図11には従来例の単位セルを5段積層した5セル積層電池の発電試験結果が示されている。 That is, FIG. 10 shows a power generation test result of a five-cell stacked battery in which five unit cells according to the above example are stacked, and FIG. 11 shows a conventional five-cell stacked battery in which five unit cells are stacked. The power generation test results are shown.

 従来例の単位セルを用いた積層電池では、発電開始直後から各セル毎にセル電圧がばらつき、5000時間後でもセル電圧はばらついたままであり、さらに平均0.12V低下した。しかし、本例に係る単位セルを用いた積層電池では、発電開始直後からセル電圧が揃っており、5000時間後でもセル電圧のばらつきや低下はみられなかった。さらに、加湿水透過板73として、100メッシュ、線径85μmのメツシユ構造のフッ素樹脂系シートとカーボンとを30%複合したものと、中央の10cm×10cmの領域にエッチング加工で10μmの細孔を300個設けたステンレスの薄板とを用いて上記の発電試験を行ったところ、双方とも同等の結果を得た。これらは、高分子電解質膜60に加湿水を均一に供給することができたことによる。 (4) In the conventional laminated battery using unit cells, the cell voltage varied from cell to cell immediately after the start of power generation, and the cell voltage remained variable even after 5000 hours, and further decreased by an average of 0.12 V. However, in the stacked battery using the unit cells according to the present example, the cell voltages were uniform immediately after the start of power generation, and there was no variation or decrease in the cell voltage even after 5000 hours. Further, as the humidifying water permeable plate 73, a 30% composite of a 100-mesh, fluororesin-based sheet having a mesh structure with a wire diameter of 85 μm and carbon 30%, and 10 μm pores formed by etching in the central 10 cm × 10 cm area. When the above-described power generation test was performed using 300 stainless steel sheets, the same results were obtained in both cases. These are due to the fact that humidified water could be uniformly supplied to the polymer electrolyte membrane 60.

 なお、本発明は上述した例に限定されるものではなく種々変形できる。 The present invention is not limited to the above-described example, and can be variously modified.

 すなわち、上記例では、燃料極61の大きさと酸化剤極62の大きさとを同じにしているが、図12に示すように異ならせてもよい。 That is, in the above example, the size of the fuel electrode 61 and the size of the oxidant electrode 62 are the same, but may be different as shown in FIG.

 また、図13に示すように、高分子電解質膜60の面積を燃料極61または酸化剤極62の大きさと同じにし、その外側にフッ素樹脂系シートなどで額縁状に形成されたシール材91を配置してもよい。さらに、図14に示すように、単に燃料極61と酸化剤極62の大きさだけを変えた構成でもよい。 Further, as shown in FIG. 13, the area of the polymer electrolyte membrane 60 is made the same as the size of the fuel electrode 61 or the oxidant electrode 62, and a sealing material 91 formed in a frame shape with a fluororesin sheet or the like is provided on the outside thereof. It may be arranged. Further, as shown in FIG. 14, a configuration in which only the sizes of the fuel electrode 61 and the oxidant electrode 62 are changed.

 また、加湿水透過板の構成も上述した例に限られるものではなく、図15に示すように、冷却板の冷却水案内溝の設けられている領域に対応する部分がメッシュ構造であるフッ素樹脂系シートとカーボンとを複合化した部材92で形成され、その回りがフッ素樹脂系シートなどの部材93で形成された加湿水透過板73aを用いてもよい。 Further, the configuration of the humidification water permeable plate is not limited to the above-described example. As shown in FIG. 15, a portion corresponding to the region where the cooling water guide groove of the cooling plate is provided has a mesh structure. A humidified water permeable plate 73a formed of a member 92 in which a base sheet and carbon are combined and formed around a member 93 such as a fluororesin sheet may be used.

 さらに、図16に示すように、加湿水透過板73bをステンレスの薄板94で形成し、この薄板94の冷却水案内溝上に位置する部分に孔径の異なる細孔95を設けたものを用いてもよい。この例では冷却水案内溝長を3つに区分けし、上流に位置している1/3の領域には15μm、中流に位置している1/3の領域には10μm、下流に位置している1/3の領域には5μmの細孔95を設け、細孔の径を上流から下流に進むにしたがって小さくしている。このような構成の加湿水透過板73bを用いると、生成水によって加湿量が過剰になりやすい下流部への加湿水供給量をコントロールすることができる。なお、金属板への細孔の形成はエッチング加工、レーザ加工、放電加工、ドリル加工等によって形成できる。また、加湿水透過板の厚みは0.5mm以下であることが好ましい。 Further, as shown in FIG. 16, it is also possible to use a humidification water permeable plate 73b formed of a stainless steel thin plate 94 and provided with pores 95 having different hole diameters in a portion of the thin plate 94 located on the cooling water guide groove. Good. In this example, the length of the cooling water guide groove is divided into three, 15 μm in the 1/3 region located upstream, 10 μm in the 1/3 region located in the middle stream, and 3 μm downstream. In one-third of the region, a 5 μm pore 95 is provided, and the diameter of the pore is reduced from upstream to downstream. By using the humidification water permeable plate 73b having such a configuration, it is possible to control the amount of humidification water supplied to the downstream portion where the amount of humidification tends to be excessive due to the generated water. The pores can be formed in the metal plate by etching, laser processing, electric discharge machining, drilling, or the like. Further, the thickness of the humidified water permeable plate is preferably 0.5 mm or less.

本発明の一実施形態に係る固体高分子型燃料電池の実装形態の一例を示す斜視図。FIG. 1 is a perspective view showing an example of a mounting mode of a polymer electrolyte fuel cell according to an embodiment of the present invention. 同固体高分子型燃料電池の側面図。FIG. 2 is a side view of the polymer electrolyte fuel cell. 同固体高分子型燃料電池に組み込まれた単位セルの分解斜視図。FIG. 3 is an exploded perspective view of a unit cell incorporated in the polymer electrolyte fuel cell. 同単位セルに組み込まれた酸化剤極側集電板の一表面を示す図。The figure which shows one surface of the oxidant electrode side current collector incorporated in the unit cell. 同単位セルに組み込まれた燃料極側集電板の一表面を示す図。The figure which shows one surface of the fuel electrode side current collection plate built in the same unit cell. 同単位セルの縦断面図。FIG. 4 is a longitudinal sectional view of the unit cell. 同単位セルの要部の分解断面図。FIG. 3 is an exploded cross-sectional view of a main part of the unit cell. 同単位セルに組み込まれた加湿水透過板の分解斜視図。FIG. 3 is an exploded perspective view of a humidified water permeable plate incorporated in the unit cell. 同単位セルの発電特性を従来例と比較して示す図。The figure which shows the electric power generation characteristic of the same unit cell compared with the conventional example. 同固体高分子型燃料電池の発電特性を示す図。The figure which shows the electric power generation characteristic of the same polymer electrolyte fuel cell. 従来の固体高分子型燃料電池の発電特性を示す図。The figure which shows the electric power generation characteristic of the conventional polymer electrolyte fuel cell. 本発明の変形例を説明するための図。The figure for explaining the modification of the present invention. 本発明の別の変形例を説明するための図。The figure for explaining another modification of the present invention. 本発明のさらに別の変形例を説明するための図。FIG. 10 is a view for explaining still another modified example of the present invention. 本発明の異なる変形例を説明するための図。FIG. 9 is a view for explaining a different modification of the present invention. 本発明のさらに異なる変形例を説明するための図。FIG. 9 is a diagram for explaining still another modified example of the present invention. 従来の固体高分子型燃料電池に組み込まれた単位セルの縦断面図。FIG. 5 is a longitudinal sectional view of a unit cell incorporated in a conventional polymer electrolyte fuel cell. 同単位セルに組み込まれた燃料極側集電板の一表面を示す図本発明の…示す図。The figure which shows one surface of the fuel electrode side current collection plate incorporated in the same unit cell ... figure of this invention.

符号の説明Explanation of reference numerals

 41…固体高分子型燃料電池、42…単位セル、49a…燃料ガス供給マニホールド、49b…燃料ガス排出マニホールド、50a…給水マニホールド、50b…排水マニホールド、51a…酸化剤ガス供給マニホールド、51b…酸化剤ガス排出マニホールド、60…高分子電解質膜、61…燃料極、62…酸化剤極、63,64…凸部、65,66…額縁状補強シート、67,68…シール材、69…燃料極側集電板、70…燃料供給溝、71…酸化剤極側集電板、72…酸化剤供給溝、73,73a,73b…加湿水透過板、74…冷却板、78…案内溝、A,B…エッジ部、C,D…長方形の領域 41: solid polymer fuel cell, 42: unit cell, 49a: fuel gas supply manifold, 49b: fuel gas discharge manifold, 50a: water supply manifold, 50b: drain manifold, 51a: oxidant gas supply manifold, 51b: oxidant Gas discharge manifold, 60 ... Polymer electrolyte membrane, 61 ... Fuel electrode, 62 ... Oxidizer electrode, 63,64 ... Protrusion, 65,66 ... Frame-shaped reinforcing sheet, 67,68 ... Seal material, 69 ... Fuel electrode side Current collector plate, 70: fuel supply groove, 71: oxidant electrode side current collector plate, 72: oxidant supply groove, 73, 73a, 73b: humidified water permeable plate, 74: cooling plate, 78: guide groove, A, B: edge part, C, D: rectangular area

Claims (4)

 高分子電解質膜と、この高分子電解質膜を挟持するように配置された燃料極および酸化剤極と、前記燃料極に燃料ガスを供給する燃料供給溝を備えた燃料極側集電体と、前記酸化剤極に酸化剤ガスを供給する酸化剤供給溝を備えた酸化剤極側集電体とからなる単位セルを備えた固体高分子型燃料電池において、
 前記燃料極と前記高分子電解質膜の間及び前記酸化剤極と前記高分子電解質膜の間に補強シートが装着され、前記燃料極および酸化剤極が前記高分子電解質膜に接触する領域のエッジ部分が上記高分子電解質膜を挟んで重合しない形状に形成されていることを特徴とする固体高分子型燃料電池。
A polymer electrolyte membrane, a fuel electrode and an oxidizer electrode arranged to sandwich the polymer electrolyte membrane, and a fuel electrode side current collector having a fuel supply groove for supplying a fuel gas to the fuel electrode; A polymer electrolyte fuel cell comprising a unit cell comprising an oxidant electrode-side current collector having an oxidant supply groove for supplying an oxidant gas to the oxidant electrode,
A reinforcing sheet is attached between the fuel electrode and the polymer electrolyte membrane and between the oxidant electrode and the polymer electrolyte membrane, and an edge of a region where the fuel electrode and the oxidant electrode contact the polymer electrolyte membrane. A polymer electrolyte fuel cell, wherein the portion is formed in a shape that does not polymerize across the polymer electrolyte membrane.
 前記燃料極および前記酸化剤極の前記高分子電解質膜に接触する領域に凸部がそれぞれ形成されており、これら凸部を取り囲むように前記凸部の高さとほぼ同じ厚みに形成された補強シートが装着されていることを特徴とする請求項1に記載の固体高分子型燃料電池。 Protrusions are respectively formed in regions of the fuel electrode and the oxidant electrode that are in contact with the polymer electrolyte membrane, and a reinforcing sheet formed to have a thickness substantially equal to the height of the protrusions so as to surround these protrusions. The polymer electrolyte fuel cell according to claim 1, wherein:  前記燃料極および前記酸化剤極は、前記高分子電解質膜に接触する面積が異なっていることを特徴とする請求項1に記載の固体高分子型燃料電池。 The solid polymer fuel cell according to claim 1, wherein the fuel electrode and the oxidant electrode have different areas in contact with the polymer electrolyte membrane.  前記補強シートの形状が額縁状であることを特徴とする請求項1に記載の固体高分子型燃料電池。 The solid polymer fuel cell according to claim 1, wherein the reinforcing sheet has a frame shape.
JP2003400719A 2003-11-28 2003-11-28 Polymer electrolyte fuel cell Expired - Lifetime JP4503994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400719A JP4503994B2 (en) 2003-11-28 2003-11-28 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003400719A JP4503994B2 (en) 2003-11-28 2003-11-28 Polymer electrolyte fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8326733A Division JPH10172587A (en) 1996-12-06 1996-12-06 Solid highpolymer type fuel cell

Publications (2)

Publication Number Publication Date
JP2004087505A true JP2004087505A (en) 2004-03-18
JP4503994B2 JP4503994B2 (en) 2010-07-14

Family

ID=32064725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400719A Expired - Lifetime JP4503994B2 (en) 2003-11-28 2003-11-28 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4503994B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043394A1 (en) * 2004-10-19 2006-04-27 Matsushita Electric Industrial Co., Ltd. Membrane electrode assembly, method for producing same and polymer electrolyte fuel cell
JP2007214101A (en) * 2005-05-31 2007-08-23 Nissan Motor Co Ltd Electrolyte membrane-electrode assembly and its manufacturing method
WO2010016384A1 (en) * 2008-08-04 2010-02-11 本田技研工業株式会社 Electrolyte membrane/electrode structure and fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226972A (en) * 1990-02-01 1991-10-07 Mitsubishi Electric Corp Fuel cell
JPH05174845A (en) * 1991-12-21 1993-07-13 Agency Of Ind Science & Technol Macromolecular electrolyte type fuel cell and its manufacture
JPH06267556A (en) * 1993-03-10 1994-09-22 Mitsubishi Electric Corp Electrochemical device and its manufacture, and fluid passage
JPH07183037A (en) * 1993-12-22 1995-07-21 Toshiba Corp Fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226972A (en) * 1990-02-01 1991-10-07 Mitsubishi Electric Corp Fuel cell
JPH05174845A (en) * 1991-12-21 1993-07-13 Agency Of Ind Science & Technol Macromolecular electrolyte type fuel cell and its manufacture
JPH06267556A (en) * 1993-03-10 1994-09-22 Mitsubishi Electric Corp Electrochemical device and its manufacture, and fluid passage
JPH07183037A (en) * 1993-12-22 1995-07-21 Toshiba Corp Fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043394A1 (en) * 2004-10-19 2006-04-27 Matsushita Electric Industrial Co., Ltd. Membrane electrode assembly, method for producing same and polymer electrolyte fuel cell
CN100444435C (en) * 2004-10-19 2008-12-17 松下电器产业株式会社 Membrane electrode assembly, method for producing same and polymer electrolyte fuel cell
US7687184B2 (en) 2004-10-19 2010-03-30 Panasonic Corporation Membrane electrode assembly with a fibrous substrate, method for producing the same and polymer electrolyte fuel cell
JP2007214101A (en) * 2005-05-31 2007-08-23 Nissan Motor Co Ltd Electrolyte membrane-electrode assembly and its manufacturing method
WO2010016384A1 (en) * 2008-08-04 2010-02-11 本田技研工業株式会社 Electrolyte membrane/electrode structure and fuel cell
JP2010040278A (en) * 2008-08-04 2010-02-18 Honda Motor Co Ltd Electrolyte membrane-electrode assembly, and fuel cell
US8486578B2 (en) 2008-08-04 2013-07-16 Honda Motor Co., Ltd. Electrolyte membrane/electrode structure and fuel cell

Also Published As

Publication number Publication date
JP4503994B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JPH10172587A (en) Solid highpolymer type fuel cell
EP0979534B1 (en) Polymer electrolyte membrane fuel cell with fluid distribution layer having integral sealing capability
US6743541B2 (en) Monopolar cell pack of proton exchange membrane fuel cell and direct methanol fuel cell
US20020192530A1 (en) Fuel cell that can stably generate electricity with excellent characteristics
US20050186459A1 (en) Fuel cell
JP4828841B2 (en) Fuel cell
JP4956870B2 (en) Fuel cell and fuel cell manufacturing method
KR101343475B1 (en) Fuel cell stack
US7638227B2 (en) Fuel cell having stack structure
WO2024037530A1 (en) Fuel cell
JP2004103255A (en) Fuel cell
JP2006294603A (en) Direct type fuel cell
JP5541291B2 (en) Fuel cell and vehicle equipped with fuel cell
JP4821111B2 (en) Fuel cell
JP4503994B2 (en) Polymer electrolyte fuel cell
JP2000251901A (en) Cell for fuel cell and fuel cell using it
JP5341321B2 (en) Electrolyte membrane / electrode structure for polymer electrolyte fuel cells
JP2002198072A (en) Solid polymer fuel cell
JP4422505B2 (en) Fuel cell
JP2004087318A (en) Fuel cell
JP2005141994A (en) Polyelectrolyte fuel cell
JP2004349013A (en) Fuel cell stack
JP2004111118A (en) Fuel cell stack
KR100792869B1 (en) Separating plate for fuel cell
JP2004311056A (en) Fuel cell stack

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

EXPY Cancellation because of completion of term