JPH03182052A - Porous electrode and its usage - Google Patents

Porous electrode and its usage

Info

Publication number
JPH03182052A
JPH03182052A JP1319009A JP31900989A JPH03182052A JP H03182052 A JPH03182052 A JP H03182052A JP 1319009 A JP1319009 A JP 1319009A JP 31900989 A JP31900989 A JP 31900989A JP H03182052 A JPH03182052 A JP H03182052A
Authority
JP
Japan
Prior art keywords
water
gas
porous electrode
gas diffusion
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1319009A
Other languages
Japanese (ja)
Other versions
JP2778767B2 (en
Inventor
Choichi Furuya
長一 古屋
Kuninobu Ichikawa
市川 国延
Ko Wada
和田 香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1319009A priority Critical patent/JP2778767B2/en
Publication of JPH03182052A publication Critical patent/JPH03182052A/en
Application granted granted Critical
Publication of JP2778767B2 publication Critical patent/JP2778767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To supply an electrolyte with water, by having a hydrophilic part in a penetration part penetrating a gas diffusion layer in the thickness direction, which layer has a gas diffusion property formed out of hydrophobic carbon and hydrophobic resin. CONSTITUTION:A porous electrode 1 is formed by putting together a reaction film 2 and a gas diffusion film 3 in contact. The film 3 is formed out of a gas-permeable hydrophobic part 4 and water-permeable hydrophilic part 5, which is in the penetration part 6 penetrating the evenly scattered films 3 in the thickness direction. The hydrophilic part 5 can have a proper water- permeability by mixing hydrophobic carbon with hydrophilic carbon and hydrophobic resin such as fluorine resin or the like. This can supply an electrolyte with electrolytic solution or water through the hydrophilic part 5.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、アルカリ電解液や固体高分子電解質などを用
いたガス燃料電池あるいは水電解プロセス等に用いて有
用な多孔質電極及びその使用方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a porous electrode useful for use in gas fuel cells or water electrolysis processes using alkaline electrolytes, solid polymer electrolytes, etc., and methods for using the same. Regarding.

〈従来の技術〉 従来より、アルカリ電解液燃料電池、固体高分子電解質
燃料電池などのガス燃料電池は、水素やメタノールなど
の燃料ガスと酸素とを用いて高効率で電気エネルギを得
るものとして周知である。これらガス燃料電池は、アル
カリ電解液を吸蔵する電解質膜あるいは固体電解質膜の
両面に接合されるガス拡散電極を有しており、これらの
ガス拡散電極と電解質との接触面で主に電池反応を生じ
させて電気ニネルギを取り出すものである。一方、同様
の構成として、画電極に通電することにより水電解を行
う水電解プロセスも知られている。
<Conventional technology> Gas fuel cells such as alkaline electrolyte fuel cells and solid polymer electrolyte fuel cells have been well known as devices that obtain electrical energy with high efficiency using fuel gas such as hydrogen or methanol and oxygen. It is. These gas fuel cells have gas diffusion electrodes bonded to both sides of an electrolyte membrane or solid electrolyte membrane that stores an alkaline electrolyte, and cell reactions are mainly carried out at the contact surfaces between these gas diffusion electrodes and the electrolyte. It is used to generate electrical energy. On the other hand, a water electrolysis process in which water is electrolyzed by applying electricity to a picture electrode is also known as a similar configuration.

このようなガス燃料電池や水電解プロセスで用いられろ
ガス拡散′:4極は、導電性の他、電解液若しく:よ電
解質中の水;よ通過させないが燃料ガスや酸素は通過さ
せるという性質を有する必要がある。したがって、従来
のガス拡散電極は一般に第7図に示すような構造を有し
ている。
The four electrodes used in such gas fuel cells and water electrolysis processes are not only conductive, but also allow the electrolyte or water in the electrolyte to pass through, but do not allow fuel gas or oxygen to pass through. It is necessary to have a characteristic. Therefore, conventional gas diffusion electrodes generally have a structure as shown in FIG.

第7図に示すように、このガス拡散膜Jli01は反応
y、02にガス拡散膜03を接合してなる。ここで、反
応膜02は疎水性カーボン及びフッ素樹脂などの疎水性
樹脂からなり、これに触媒を担持させた親水性カーボン
微粒子若しくは触媒微粒子を分散させたものである。
As shown in FIG. 7, this gas diffusion film Jli01 is formed by bonding a gas diffusion film 03 to reaction y,02. Here, the reaction membrane 02 is made of hydrophobic carbon and a hydrophobic resin such as a fluororesin, in which hydrophilic carbon fine particles or catalyst fine particles carrying a catalyst are dispersed therein.

電解質と接触するの:よこの反応膜02であり、反応膜
021よ電解液や水を透過させる性質を有している。一
方、ガス拡散膜03iよ、通気性はあるが通水性は有さ
ないものであり、疎水性カーボン及びフッ素樹脂などの
疎水性樹脂からなる。
It is the reaction membrane 02 on the side that comes into contact with the electrolyte, and has the property of allowing the electrolyte and water to pass through the reaction membrane 021. On the other hand, the gas diffusion membrane 03i has air permeability but no water permeability, and is made of hydrophobic resin such as hydrophobic carbon and fluororesin.

〈発明が解決しようとする課題〉 しかしながら、上述した従来のガス拡散電極01ばガス
拡散膜03が撥水性を有するので次のような問題が生じ
る。
<Problems to be Solved by the Invention> However, since the conventional gas diffusion electrode 01 and gas diffusion film 03 described above have water repellency, the following problems occur.

例えば固体電解質燃料電池では、固体電解質を常に湿潤
状態とするために加湿する必要があるが、この加湿のた
めに水蒸気を用いなければならない。したがって、急速
に負荷が上昇したときにも加湿速度を大きくできず、急
速な負荷増加に伴う発熱で電解質が乾燥して性能が急速
に低下してしまうという問題がある。
For example, in a solid electrolyte fuel cell, it is necessary to humidify the solid electrolyte to keep it in a wet state, and water vapor must be used for this humidification. Therefore, even when the load increases rapidly, the humidification rate cannot be increased, and the electrolyte dries due to the heat generated due to the rapid increase in load, resulting in a rapid drop in performance.

また、水電解プロセスにおいても、ガス拡散電極を介し
て電解質に水を供給することができないので連続して水
電解を行うことができないという問題がある。
Further, in the water electrolysis process, there is also a problem in that water cannot be continuously carried out because water cannot be supplied to the electrolyte via the gas diffusion electrode.

本発明はこのような事情に鑑み、接触する電解質に水分
をも供給できる多孔質電極及びその使用方法を提供する
ことを目的とする。
In view of these circumstances, an object of the present invention is to provide a porous electrode that can also supply water to the electrolyte it comes into contact with, and a method for using the same.

〈課題を解決するための手段〉 上記目的を達成する本発明に係る多孔質電極;よ、疎水
性カーボン及び疎水性樹脂からなり通気性を有するガス
拡散膜に、触媒を担持させた親水性カーボン微粒子若し
くは触媒微粒子を含有する、疎水性カーボン及び疎水性
樹脂からなる反応膜を接合してなる電極であって、少な
くとも上記ガス拡散膜をその厚さ方向に貫通する貫通部
を有し、該貫通部内には必要に応じて親水部が存在する
ことを特徴とする。また、その使用方法は、上記構成の
多孔質電極をガス燃料電池又は水電解プロセスの陽極及
び/又は陰極とし、反応膜を有しない側から反応膜側へ
気液混相流を供給することを特徴とし、また、上記構成
の多孔質電極をガス燃料電池又は水電解プロセスの陽極
及び/又は陰極とし、上記貫通部には電解液若しくは水
を、他の部分にはガスをそれぞれ反応膜を有しない側か
ら反応膜何へ供給することを特徴とする。
<Means for Solving the Problems> A porous electrode according to the present invention that achieves the above object; a hydrophilic carbon in which a catalyst is supported on a gas diffusion membrane having air permeability and made of hydrophobic carbon and a hydrophobic resin. An electrode formed by bonding a reaction membrane made of hydrophobic carbon and a hydrophobic resin containing fine particles or catalyst fine particles, the electrode having a penetration portion penetrating at least the gas diffusion membrane in its thickness direction, It is characterized in that a hydrophilic part is present in the part as necessary. In addition, the method for using the porous electrode with the above structure is used as an anode and/or cathode in a gas fuel cell or water electrolysis process, and a gas-liquid multiphase flow is supplied from the side without the reaction membrane to the reaction membrane side. In addition, the porous electrode with the above configuration is used as an anode and/or cathode of a gas fuel cell or water electrolysis process, and the penetration part is filled with an electrolytic solution or water, and the other parts are filled with gas, each having no reaction membrane. It is characterized by feeding into the reaction membrane from the side.

上記構成の多孔質電極;よ、貫通部若しくは貫通部内に
存在する親木部を有しているので、これらを介して電解
質に電解液若しくは液体状態の水を供給できるという特
性を有する。
The porous electrode having the above structure has a penetrating portion or a parent xylem existing within the penetrating portion, and therefore has the characteristic that an electrolytic solution or water in a liquid state can be supplied to the electrolyte through these.

ここで、貫通部は少なくともガス拡散膜を貫通するよう
に設けられていればよいが、反応膜をも貫通するように
設けられていてもよく、その形状は円形状、長孔、長溝
状など特に限定されない。また、貫通部内には必要に応
じて親水部を充填するとよい。この親水部としては、親
水性カーボン及びフッ素樹脂などの疎水性樹脂に必要に
応じて疎水性カーボンを混合することにより適度の親水
性を有するようにしたものなどを挙げることができる。
Here, the penetration part may be provided so as to penetrate at least the gas diffusion membrane, but it may also be provided so as to penetrate the reaction membrane, and its shape may be circular, elongated hole, elongated groove, etc. Not particularly limited. Furthermore, the penetrating portion may be filled with a hydrophilic portion if necessary. Examples of the hydrophilic portion include those made to have appropriate hydrophilicity by mixing hydrophobic carbon with hydrophilic carbon and a hydrophobic resin such as a fluororesin, if necessary.

このように親水部を設けろ場合、親水部に適当な親水性
を持たせると共に、該親水部が設けられている貫通部の
寸法を適宜調節することにより、水等が浸透するには適
当な圧力が必要であるようにすることができる。また、
親水部の形状:よ上記貫通部の形状に合せ、円柱状、長
円柱状、角柱状などとなる。
When a hydrophilic part is provided in this way, by making the hydrophilic part have appropriate hydrophilicity and adjusting the dimensions of the penetrating part where the hydrophilic part is provided, an appropriate pressure can be maintained for water etc. to penetrate. can be made as necessary. Also,
Shape of the hydrophilic part: Depending on the shape of the above-mentioned penetrating part, it can be cylindrical, long cylindrical, prismatic, etc.

なお、本発明の多孔質電解の親水部以外の基本構成は従
来のガス拡散電極と同様でよく、特に限定されない。
Note that the basic configuration of the porous electrolyte of the present invention other than the hydrophilic portion may be the same as that of a conventional gas diffusion electrode, and is not particularly limited.

以上説明した多孔質電極を燃料電池若しくは水電解プロ
セス等の電極として用いた場合、燃料ガス若しくは酸素
などのガスと共に、電解液や液体状態の水を併せて電解
質へ供給することができる。また、この方法は特に限定
されないが、多孔質電極の電解質との接触面とは反対側
(反応膜とは反対側)から上述したような気液の混相流
を供給するようにするのが好適である。勿論、貫通部に
は対応する部分に電解液若しくは水を、その他の部分に
はガスを、それぞれ別々に供給することもできる。
When the porous electrode described above is used as an electrode for a fuel cell or a water electrolysis process, an electrolytic solution or water in a liquid state can be supplied to the electrolyte together with a gas such as fuel gas or oxygen. Although this method is not particularly limited, it is preferable to supply the gas-liquid multiphase flow as described above from the side of the porous electrode opposite to the contact surface with the electrolyte (the side opposite to the reaction membrane). It is. Of course, it is also possible to separately supply the electrolytic solution or water to the corresponding portions of the penetrating portion, and the gas to the other portions.

く実 施 例〉 以下、本発明を実施例に基づいて説明する。Example of implementation Hereinafter, the present invention will be explained based on examples.

第1図(al、(blには一実施例に係る多孔質電極の
断面及びその人矢視を示す。両図に示すように、この多
孔′J!;を電極1は反応膜2とガス拡散膜3とを接合
したものであり、ガス拡散膜3は通気性を有する疎水部
4と通水性を有する円柱状の親木部5とからなる。親水
部5はガス拡散膜3を厚さ方向に貫通する貫通部6内に
設けられており、貫通部6はガス拡散膜3の表面にほぼ
均一に点在するように設けられている。
Figure 1 (al, (bl) shows a cross section of a porous electrode according to one embodiment and its human arrow view. As shown in both figures, the electrode 1 is connected to the reaction membrane 2 and gas The gas diffusion membrane 3 is made up of a hydrophobic part 4 that has air permeability and a cylindrical parent part 5 that has water permeability. The gas diffusion film 3 is provided in a through portion 6 that penetrates in the direction, and the through portions 6 are provided so as to be scattered almost uniformly on the surface of the gas diffusion film 3 .

この多孔質電極1の一製造例について説明する。An example of manufacturing this porous electrode 1 will be explained.

まず、疎水性カーボンブラック(デンカブラック;電気
化学工業社製)及びポリテトラフルオロエチレンからな
る0、5+o+厚のガス拡散膜を製造し、このガス拡散
膜に上述した貫通部6として1++nφの穴を5胴毎に
形成する。
First, a gas diffusion film with a thickness of 0.5+o+ is made of hydrophobic carbon black (Denka Black; manufactured by Denki Kagaku Kogyo Co., Ltd.) and polytetrafluoroethylene, and a hole of 1++nφ is formed in this gas diffusion film as the above-mentioned penetration part 6. Form every 5 cylinders.

この貫通部に、親水性カーボンにポリテトラフルオロエ
チレン(10%)を混合してなる親水部5を充填し、一
体化する。かかるガス拡散yI3に、触媒としての白金
粉末、親水注力−ボンブランク、疎水性カーボンブラッ
ク及びプリテトラフルオコエチνンよりなる0、 1+
m厚の反応M2を380℃、500kg/cIiプレス
成型により接合し、多孔質電極1とする。
This penetrating portion is filled with a hydrophilic portion 5 made of hydrophilic carbon mixed with polytetrafluoroethylene (10%) and integrated. In this gas diffusion yI3, 0, 1+ consisting of platinum powder as a catalyst, a hydrophilic carbon blank, a hydrophobic carbon black, and a pritetrafluorocoethylene ν.
The reaction M2 having a thickness of m is joined by press molding at 380° C. and 500 kg/cIi to form a porous electrode 1.

次に、かかる多孔質電極1を陰極として用いた固体高分
子電解質燃料電泊について説明する。なお、この例では
陽極には従来と同様のガス拡散電極を用いている。
Next, a solid polymer electrolyte fuel cell using the porous electrode 1 as a cathode will be described. Note that in this example, a gas diffusion electrode similar to the conventional one is used as the anode.

第2図にはその燃料電池の基本構造を示す。Figure 2 shows the basic structure of the fuel cell.

同図に示すように、固体高分子電解質膜7の両側に、上
記多孔質電極1及びガス拡散電極8をポットプレスによ
り接合して電池本体としてし)る。ここて、電解質膜7
としては厚さ0.17++a++のデュポン社製のナフ
ィオン(商品名)を用いている。
As shown in the figure, the porous electrode 1 and the gas diffusion electrode 8 are joined to both sides of the solid polymer electrolyte membrane 7 by a pot press to form a battery body. Here, electrolyte membrane 7
As the material, Nafion (trade name) manufactured by DuPont and having a thickness of 0.17++a++ is used.

このような構成において、陰緬としての多孔質電極1側
に設けた通路9からは水素と液体の水との気液混相を、
陽極としてのガス拡散電極8側に設けた通路10からは
飽和水蒸気を含む空気を、それぞれ供給した。この場合
、多孔質電極1側ではH2は疎水部4を介して、また、
液体の水は親木部5を介してそれぞれ固体高分子電解質
!il!7と反応膜2との接触面へ供給される。このよ
うに液体の水を供給することができるので、固体高分子
膜7を十分に湿潤することができ、急激な負荷上昇にも
対応することができろ。
In such a configuration, a gas-liquid mixed phase of hydrogen and liquid water is passed through the passage 9 provided on the side of the porous electrode 1 as a shade.
Air containing saturated water vapor was supplied from passages 10 provided on the gas diffusion electrode 8 side serving as an anode. In this case, on the porous electrode 1 side, H2 flows through the hydrophobic part 4 and
Liquid water becomes a solid polymer electrolyte through the parent xylem 5! Il! 7 and the reaction membrane 2. Since liquid water can be supplied in this manner, the solid polymer membrane 7 can be sufficiently moistened, and it is possible to cope with sudden increases in load.

なお、上記実施例と、従来のガス拡散電極を用いた比較
例とについての電池特性の比較を第3図に示す。
Note that FIG. 3 shows a comparison of battery characteristics between the above example and a comparative example using a conventional gas diffusion electrode.

また、第4図には第1図に示すガス拡散電極1の親水部
5に電解液若しくは水を、他の部分に燃料ガス若しくは
酸素を、それぞれ別別に供給するためのガスセパレータ
の一例を示す。同図に示すように、ガスセパレータ11
はガス拡散電極1の反応膜2とは反対側に密着されるも
のであり、内側にガス通路12、外側に水通路13を有
しており、この水通路13と親水部5とを連通ずる連通
路14がガス通路12内に設けられている。なお、これ
ら連通路14;よ各親水部5に対応するように設ニブら
れている。
Moreover, FIG. 4 shows an example of a gas separator for separately supplying electrolyte or water to the hydrophilic part 5 of the gas diffusion electrode 1 shown in FIG. 1, and fuel gas or oxygen to other parts. . As shown in the figure, a gas separator 11
is closely attached to the opposite side of the gas diffusion electrode 1 from the reaction membrane 2, and has a gas passage 12 on the inside and a water passage 13 on the outside, and communicates the water passage 13 with the hydrophilic part 5. A communication passage 14 is provided within the gas passage 12. Note that these communication passages 14 are provided with nibs corresponding to each hydrophilic portion 5.

第5図:こ:よ他のガスセパレータ15を示す。FIG. 5: Another gas separator 15 is shown.

このガスセパレータ15のガス拡散電極1とのV!着面
にCよ水供給溝16とガス供給溝17とが交互に形成さ
れている。水供給溝16;よそれぞれ並らんだ親水部5
の一列に対応するようになっており、ガス供給溝17は
各水供給溝16の間に形成されている。また、各水供給
溝16は水運通路18A、18Bにより、各ガス供給溝
17はガス連通路19 A、 19 Bにより、それぞ
れ連結されており、水やガスはそれぞれ水運通路18A
、18B及び:l/ス連通路19A、19Bを介して供
給されるようになっている。
V! between this gas separator 15 and the gas diffusion electrode 1! Water supply grooves 16 and gas supply grooves 17 are alternately formed on the mounting surface. Water supply groove 16; hydrophilic portions 5 lined up respectively
The gas supply grooves 17 are formed between each water supply groove 16. Further, each water supply groove 16 is connected by a water transport passage 18A, 18B, and each gas supply groove 17 is connected by a gas communication passage 19A, 19B, respectively, and water and gas are connected to each other by a water transport passage 18A.
, 18B and :l/s communication passages 19A, 19B.

また、第6図(a)〜fc)には親水部と疎水部との配
置例を示す。第6図falは疎水部4A中に、上記親水
部5を一列連結したような貫通部を設け、この中に四角
柱状の親水部5Aを配したものである。一方、第6図f
blは疎水部4Bと親水部5Bとを図中上下で分けたも
のである。よた、第6図(C):よ疎水部4Cの中央に
太きく形成した四角の貫通部内に親水部4Cを配置した
ものであろう 以上、ガス拡散電極、ガスセパレータについて種々の例
令挙げて説明したが、これらに限定されるものではない
ことは言うまでもない0 なお、上述した例では多孔質電極を陰極としてのh用い
たが、勿論、陽極のみ、あるいは両方に用いてもよい。
Further, FIGS. 6(a) to 6(fc) show examples of the arrangement of the hydrophilic portion and the hydrophobic portion. In FIG. 6 fal, a penetrating portion in which the hydrophilic portions 5 described above are connected in a row is provided in the hydrophobic portion 4A, and a quadrangular columnar hydrophilic portion 5A is arranged within the penetrating portion. On the other hand, Fig. 6 f
bl is a division of the hydrophobic part 4B and the hydrophilic part 5B into upper and lower parts in the figure. Figure 6 (C): Since the hydrophilic part 4C is arranged in a square penetration part formed thickly in the center of the hydrophobic part 4C, various examples are given for gas diffusion electrodes and gas separators. Although the porous electrode is used as the cathode in the above example, it may of course be used only as the anode or both.

また、固体高分子電解yR膜の代りに、例えば苛性カリ
水溶液を含有させた石綿マ) IJソックス用し)ろよ
うなアルカリ電解液燃料電池の場合には、例え:ゴ陰極
に用いた多孔質電極から、水素と共に苛性カリ水溶液を
供給するようにすればよいっ さらに、以上説明した燃料電池と同様にして、水電解ブ
;セス、HC1電解、I2− CI2燃料電池aどに本
発明の多孔質電極を用いれば、電解液若しく(=水を供
給しながら水電解等を連続的に行うことができる。
In addition, in place of the solid polymer electrolytic yR membrane, for example, in the case of an alkaline electrolyte fuel cell such as an asbestos material containing an aqueous solution of caustic potassium (for IJ socks), a porous electrode used for the cathode can be used. Furthermore, in the same manner as in the fuel cell described above, the porous electrode of the present invention can be used in water electrolysis, HC1 electrolysis, I2-CI2 fuel cells, etc. By using this, water electrolysis etc. can be performed continuously while supplying an electrolytic solution or water.

〈発明の効果〉 以上説明したように、本発明に係る多孔質電極を用いれ
ば、燃料ガスや酸素と共に液体状態の水や電解液を電解
質に供給することができるので、加湿が十分に行うこと
ができる。
<Effects of the Invention> As explained above, by using the porous electrode according to the present invention, liquid water and electrolyte can be supplied to the electrolyte along with fuel gas and oxygen, so that sufficient humidification can be performed. I can do it.

したがって、燃料電池の性能を大幅に向上させ、また、
水電解等を連続的に行うことができるという効果を秦す
る。
Therefore, it can greatly improve the performance of fuel cells and also
The effect is that water electrolysis etc. can be performed continuously.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(lll lよ本発明の一実施例に係る多孔質電
極の断面図、第1図+blはその人矢視図、第2図はそ
の多孔質電極を用いた固体高分子電解質燃料電ず也の基
本構造図、第3図は実施例1及び比較例の電池特性図、
第4図及び第5図はガス拡散電極に水及びガスを供給す
るためのガスセパレータの例を示す説明図、第6図ta
+〜(c)は他のガス拡散1極の例を示す説明図、第7
図は従来技術に係るガス拡散電極を示す断面図である。 図  面  中、 1は多孔質電極、 2は反応膜、 3はガス拡散膜、 4.4A、4B、4Cは疎水部、 5.5A、5B、5Cは親水部、 6は貫通部、 7は固体高分子電解質膜、 8はガス拡散膜、 9.10は通路、 11.15はガスセパレータである。 特  許  出  願  人 三菱重工業株式会社 代    理     人
Figure 1 is a cross-sectional view of a porous electrode according to an embodiment of the present invention, Figure 1+bl is a cross-sectional view of the porous electrode, and Figure 2 is a diagram of a solid polymer electrolyte fuel cell using the porous electrode. The basic structure diagram of Zuya, Figure 3 is the battery characteristic diagram of Example 1 and Comparative Example,
Figures 4 and 5 are explanatory diagrams showing examples of gas separators for supplying water and gas to gas diffusion electrodes, Figure 6
+~(c) is an explanatory diagram showing another example of gas diffusion single pole, 7th
The figure is a sectional view showing a gas diffusion electrode according to the prior art. In the drawing, 1 is a porous electrode, 2 is a reaction membrane, 3 is a gas diffusion membrane, 4.4A, 4B, and 4C are hydrophobic parts, 5.5A, 5B, and 5C are hydrophilic parts, 6 is a penetration part, and 7 is a A solid polymer electrolyte membrane, 8 a gas diffusion membrane, 9.10 a passage, and 11.15 a gas separator. Patent applicant Mitsubishi Heavy Industries, Ltd. Agent

Claims (3)

【特許請求の範囲】[Claims] (1)疎水性カーボン及び疎水性樹脂からなり通気性を
有するガス拡散膜に、触媒を担持させた親水性カーボン
微粒子若しくは触媒微粒子を含有する、疎水性カーボン
及び疎水性樹脂からなる反応膜を接合してなる電極であ
って、少なくとも上記ガス拡散膜をその厚さ方向 に貫通する貫通部を有し、該貫通部内には必要に応じて
親水部が存在することを特徴とする多孔質電極。
(1) A reaction membrane made of hydrophobic carbon and hydrophobic resin containing catalyst-supported hydrophilic carbon fine particles or catalyst fine particles is bonded to a gas diffusion membrane made of hydrophobic carbon and hydrophobic resin and having air permeability. What is claimed is: 1. A porous electrode comprising a through-hole that penetrates at least the gas diffusion membrane in the thickness direction thereof, and a hydrophilic section is present in the through-hole as necessary.
(2)請求項1記載の多孔質電極をガス燃料電池又は水
電解プロセスの陽極及び/又は陰極とし、反応膜を有し
ない側から反応膜側へ気液混相流を供給することを特徴
とする多孔質電極の使用方法。
(2) The porous electrode according to claim 1 is used as an anode and/or cathode of a gas fuel cell or a water electrolysis process, and a gas-liquid multiphase flow is supplied from the side without the reaction membrane to the reaction membrane side. How to use porous electrodes.
(3)請求項1記載の多孔質電極をガス燃料電池又は水
電解プロセスの陽極及び/又は陰極とし、上記貫通部に
は電解液若しくは水を、他の部分にはガスをそれぞれ反
応膜を有しない側から反応膜側へ供給することを特徴と
する多孔質電極の使用方法。
(3) The porous electrode according to claim 1 is used as an anode and/or cathode of a gas fuel cell or a water electrolysis process, and the penetration part is filled with an electrolytic solution or water, and the other parts are filled with a reaction membrane. A method of using a porous electrode characterized in that the porous electrode is supplied from the non-active side to the reaction membrane side.
JP1319009A 1989-12-11 1989-12-11 Porous electrode and method of using the same Expired - Fee Related JP2778767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1319009A JP2778767B2 (en) 1989-12-11 1989-12-11 Porous electrode and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1319009A JP2778767B2 (en) 1989-12-11 1989-12-11 Porous electrode and method of using the same

Publications (2)

Publication Number Publication Date
JPH03182052A true JPH03182052A (en) 1991-08-08
JP2778767B2 JP2778767B2 (en) 1998-07-23

Family

ID=18105483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1319009A Expired - Fee Related JP2778767B2 (en) 1989-12-11 1989-12-11 Porous electrode and method of using the same

Country Status (1)

Country Link
JP (1) JP2778767B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872907A1 (en) * 1997-04-11 1998-10-21 Sanyo Electric Co., Ltd. Fuel cell
JPH11135132A (en) * 1997-10-28 1999-05-21 Toshiba Corp Solid polymer electrolyte fuel cell
JP2002352827A (en) * 2001-05-22 2002-12-06 Denso Corp Fuel cell system
JP2003517186A (en) * 1999-12-17 2003-05-20 ユーティーシー フューエル セルズ,エルエルシー Fuel cells with interdigitated flow channels and water transfer plates
JP2003517187A (en) * 1999-12-17 2003-05-20 ユーティーシー フューエル セルズ,エルエルシー Fuel cell having hydrophilic substrate layer
JP2006049097A (en) * 2004-08-04 2006-02-16 Seiko Instruments Inc Electrode for fuel cell
JP2006134886A (en) * 2004-11-03 2006-05-25 Samsung Sdi Co Ltd Electrode for fuel cell, its manufacturing method, membrane-electrode assembly comprising the same and and fuel cell system comprising the same
US7132186B2 (en) 2000-09-12 2006-11-07 Nissan Motor Co., Ltd. Fuel cell with solid polymer membrane to be moisturized, fuel cell system, and moisturizing method for fuel cell
JP2007179870A (en) * 2005-12-28 2007-07-12 Tomoegawa Paper Co Ltd Gas diffusion electrode, membrane-electrolyte assembly, polymer electrolyte fuel cell and methods for producing them
JP2007273215A (en) * 2006-03-31 2007-10-18 Equos Research Co Ltd Manufacturing method of diffusion layer for fuel cell
JP2008010433A (en) * 2007-09-03 2008-01-17 Toyota Motor Corp Fuel cell and diffusion layer
JP2008509521A (en) * 2004-08-06 2008-03-27 ゼネラル・モーターズ・コーポレーション Hydrophobic and hydrophilic diffusion media
JP2011070991A (en) * 2009-09-28 2011-04-07 Toppan Printing Co Ltd Polymer electrolyte fuel cell single cell, production method thereof, and fuel cell stack having same
KR101233317B1 (en) * 2005-01-26 2013-02-14 삼성에스디아이 주식회사 Method of manufacturing electrode for fuel cell, and membrane-electrode assembly and fuel cell system comprising the electrode manufactured by the method
WO2014061280A1 (en) * 2012-10-19 2014-04-24 パナソニック株式会社 Fuel cell gas diffusion layer and method for manufacturing same
JP2020525653A (en) * 2017-07-03 2020-08-27 シンテフ・テーテーオー・アクシェセルスカプSintef Tto As PEM water electrolyser system, PEM water electrolyzer cell (or cell), stack and method for producing hydrogen in a system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101181852B1 (en) * 2005-01-26 2012-09-11 삼성에스디아이 주식회사 Membrane-electrode assembly and fuel cell system comprising the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872907A1 (en) * 1997-04-11 1998-10-21 Sanyo Electric Co., Ltd. Fuel cell
US6083638A (en) * 1997-04-11 2000-07-04 Sanyo Electric Co., Ltd. Fuel cell
KR100374281B1 (en) * 1997-04-11 2003-04-21 산요 덴키 가부시키가이샤 Fuel Cell
JPH11135132A (en) * 1997-10-28 1999-05-21 Toshiba Corp Solid polymer electrolyte fuel cell
JP2003517186A (en) * 1999-12-17 2003-05-20 ユーティーシー フューエル セルズ,エルエルシー Fuel cells with interdigitated flow channels and water transfer plates
JP2003517187A (en) * 1999-12-17 2003-05-20 ユーティーシー フューエル セルズ,エルエルシー Fuel cell having hydrophilic substrate layer
US7132186B2 (en) 2000-09-12 2006-11-07 Nissan Motor Co., Ltd. Fuel cell with solid polymer membrane to be moisturized, fuel cell system, and moisturizing method for fuel cell
JP2002352827A (en) * 2001-05-22 2002-12-06 Denso Corp Fuel cell system
JP2006049097A (en) * 2004-08-04 2006-02-16 Seiko Instruments Inc Electrode for fuel cell
JP4860616B2 (en) * 2004-08-06 2012-01-25 ゼネラル・モーターズ・コーポレーション Hydrophobic and hydrophilic diffusion media
JP2008509521A (en) * 2004-08-06 2008-03-27 ゼネラル・モーターズ・コーポレーション Hydrophobic and hydrophilic diffusion media
JP2006134886A (en) * 2004-11-03 2006-05-25 Samsung Sdi Co Ltd Electrode for fuel cell, its manufacturing method, membrane-electrode assembly comprising the same and and fuel cell system comprising the same
US7998638B2 (en) 2004-11-03 2011-08-16 Samsung Sdi Co., Ltd. Electrode for fuel cell, and membrane-electrode assembly and fuel cell system comprising the same
KR101233317B1 (en) * 2005-01-26 2013-02-14 삼성에스디아이 주식회사 Method of manufacturing electrode for fuel cell, and membrane-electrode assembly and fuel cell system comprising the electrode manufactured by the method
JP2007179870A (en) * 2005-12-28 2007-07-12 Tomoegawa Paper Co Ltd Gas diffusion electrode, membrane-electrolyte assembly, polymer electrolyte fuel cell and methods for producing them
JP2007273215A (en) * 2006-03-31 2007-10-18 Equos Research Co Ltd Manufacturing method of diffusion layer for fuel cell
JP2008010433A (en) * 2007-09-03 2008-01-17 Toyota Motor Corp Fuel cell and diffusion layer
JP2011070991A (en) * 2009-09-28 2011-04-07 Toppan Printing Co Ltd Polymer electrolyte fuel cell single cell, production method thereof, and fuel cell stack having same
WO2014061280A1 (en) * 2012-10-19 2014-04-24 パナソニック株式会社 Fuel cell gas diffusion layer and method for manufacturing same
JP5562509B1 (en) * 2012-10-19 2014-07-30 パナソニック株式会社 Gas diffusion layer for fuel cell and method for producing the same
US10326148B2 (en) 2012-10-19 2019-06-18 Panasonic Intellectual Property Management Co., Ltd. Fuel cell gas diffusion layer and method of manufacturing same
JP2020525653A (en) * 2017-07-03 2020-08-27 シンテフ・テーテーオー・アクシェセルスカプSintef Tto As PEM water electrolyser system, PEM water electrolyzer cell (or cell), stack and method for producing hydrogen in a system
US11408081B2 (en) 2017-07-03 2022-08-09 Hystar As Method for producing hydrogen in a PEM water electrolyser system, PEM water electrolyser cell, stack and system
US12024783B2 (en) 2017-07-03 2024-07-02 Hystar As Producing hydrogen in a PEM water electrolyser system, PEM water electrolyser cell, stack and system

Also Published As

Publication number Publication date
JP2778767B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
US6743541B2 (en) Monopolar cell pack of proton exchange membrane fuel cell and direct methanol fuel cell
EP0499593B1 (en) Structure of electrochemical cell for wetting diaphragm of solid polymer electrolyte
US3905832A (en) Novel fuel cell structure
US4175165A (en) Fuel cell system utilizing ion exchange membranes and bipolar plates
JPH03182052A (en) Porous electrode and its usage
JP2017084816A (en) Proton exchange membrane fuel cell
CN102162107A (en) High-differential-pressure water electrolysis cell and method of operation
JP4956870B2 (en) Fuel cell and fuel cell manufacturing method
US4467019A (en) Fuel cell with electrolyte feed system
US20180187319A1 (en) Electrochemical hydrogen pump
US3364071A (en) Fuel cell with capillary supply means
JP2010205723A (en) Mea for fuel cell and fuel cell stack containing this
KR20040048310A (en) Electrode for fuel cell and fuel cell
US5296110A (en) Apparatus and method for separating oxygen from air
JPH06196182A (en) Diaphragm humidifying structure for solid high polymer electrolyte electrochemical cell and manufacture thereof
JP2001015123A (en) Electrode substrate and electrode for fuel cell and fuel cell using the same
WO2014096793A1 (en) Fuel cells and method of operation
EP1724861A1 (en) Novel materials for alkaline electrolysers and alkaline fuel cells
JPH07176307A (en) Fuel cell
KR20140133301A (en) The membrane electrdoe assembly for an electrochemical cell
JPS6247968A (en) Molten carbonate fuel cell capable of internal reformation
CA1202070A (en) Fuel cell with multiple porosity electrolyte matrix assembly
JP2004103592A (en) Fuel cell
JP2004349013A (en) Fuel cell stack
CN212230540U (en) Membrane electrode for fuel cell and fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees