JPS6237507B2 - - Google Patents

Info

Publication number
JPS6237507B2
JPS6237507B2 JP55130987A JP13098780A JPS6237507B2 JP S6237507 B2 JPS6237507 B2 JP S6237507B2 JP 55130987 A JP55130987 A JP 55130987A JP 13098780 A JP13098780 A JP 13098780A JP S6237507 B2 JPS6237507 B2 JP S6237507B2
Authority
JP
Japan
Prior art keywords
electrolyte
fuel cell
cell stack
fuel
supply path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55130987A
Other languages
Japanese (ja)
Other versions
JPS5755071A (en
Inventor
Yasuyuki Dai
Shohei Uozumi
Takeo Yamagata
Saburo Yasukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP55130987A priority Critical patent/JPS5755071A/en
Publication of JPS5755071A publication Critical patent/JPS5755071A/en
Publication of JPS6237507B2 publication Critical patent/JPS6237507B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明は、燃料電池に係り、特に電気的に直列
に接続された複数個の燃料電池からなる燃料電池
積層体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to fuel cells, and more particularly to a fuel cell stack consisting of a plurality of fuel cells electrically connected in series.

第1図は従来用いられている水素一酸素燃料電
池積層体の燃料電池セル1の構造を示すもので、
2は空気極、3は燃料極、4は両電極2,3の間
に形成される隔室に挿設される電気液層で、各電
極はその電解液側に触媒層を含んでいる。空気極
2の非電解液側には空気を通すための反応ガス空
間を構成する空気通路5が設けられ、また、燃料
極3の非電解液側には燃料を通すための反応ガス
空間を構成する燃料ガス通路6が設けられてお
り、これら空気通路5および燃料ガス通路6は隔
離板7の両側に設けられている。
Figure 1 shows the structure of a fuel cell 1 of a conventionally used hydrogen-oxygen fuel cell stack.
2 is an air electrode, 3 is a fuel electrode, and 4 is an electrolyte layer inserted in a compartment formed between both electrodes 2 and 3, and each electrode includes a catalyst layer on its electrolyte side. An air passage 5 is provided on the non-electrolyte side of the air electrode 2 to form a reaction gas space for passing air, and an air passage 5 is provided on the non-electrolyte side of the fuel electrode 3 to form a reaction gas space for passing fuel. The air passage 5 and the fuel gas passage 6 are provided on both sides of the separator plate 7.

そして、燃料電池発電設備では、複数個の燃料
電池セル1に隔離板7を介して積み重ねられ、電
気的に直列に接続されて燃料電池積層体が形成さ
れている。
In the fuel cell power generation equipment, a plurality of fuel cells 1 are stacked with separators 7 in between and electrically connected in series to form a fuel cell stack.

このような燃料電池積層体において、電解液は
燃料電池の運転中に徐々に蒸発するので、補給し
ないと減少してくる。電解液がなくなると、電極
間をイオンが流れることができなくなり、発電し
なくなるので、電解液の補給が必要である。この
ため、従来の燃料電池積層体では、積層した燃料
電池セル1を貫通して共通電解液室8が設けられ
ていた。従つて、すべての隔離板7、電気極2、
電解液層4および燃料極3に共通電解液室用の穴
81,82,83,84と積層面に沿つた電解液
漏洩防止用のシール構造とが必要となり、パツキ
ング等の部品点数が多くなり、パツキング溝など
の加工も多くなり、構造が複雑で、組立ても容易
でなかつた。
In such a fuel cell stack, the electrolytic solution gradually evaporates during operation of the fuel cell, and therefore decreases unless replenished. When the electrolyte runs out, ions cannot flow between the electrodes and no power is generated, so it is necessary to replenish the electrolyte. For this reason, in the conventional fuel cell stack, a common electrolyte chamber 8 is provided passing through the stacked fuel cells 1 . Therefore, all separators 7, electric poles 2,
Holes 81, 82, 83, 84 for common electrolyte chambers and a seal structure for preventing electrolyte leakage along the laminated surface are required in the electrolyte layer 4 and fuel electrode 3, and the number of parts such as packing increases. This required a lot of machining, such as packing grooves, and the structure was complicated, making it difficult to assemble.

また、この従来の燃料電池積層体においては、
共通電解液室8が直接各電地の隔離板7に接して
いるため、積層した各燃料電池セル1を電解液に
よつて短絡する形になり、電解液を通る漏れ電流
が発生し、その分だけ発電効率を低下させるとい
う欠点があつた。
Furthermore, in this conventional fuel cell stack,
Since the common electrolyte chamber 8 is in direct contact with the separator plate 7 of each electric ground, each stacked fuel cell 1 is short-circuited by the electrolyte, and a leakage current is generated through the electrolyte. The drawback was that the power generation efficiency was reduced accordingly.

本発明は、このような欠点を除去した、簡単か
つ組立て容易な構造の燃料電池積層体を提供する
ことを目的とし、第一の電極および第二の電極と
両電極の間に挿設される電解液層とを有する燃料
電池セルを、ガス流路の設けられている隔離板を
介して複数個積層した積層体よりなる燃料電池積
層体において、前記積層体内に前記燃料電池セル
の面に平行に設けられ前記電解液層に連通し、か
つ前記積層体の側面部に開口部を有する電解液供
給路と、前記積層体の外側面に挿着されたマニフ
オールド内に設けられ、前記燃料電池セルのそれ
ぞれの前記電解液供給路が前記開口部を介して連
通する共通電解液室とを有していることを特徴と
するものである。
An object of the present invention is to provide a fuel cell stack that eliminates such drawbacks and has a simple and easy-to-assemble structure. In a fuel cell stack consisting of a stacked body in which a plurality of fuel cells each having an electrolytic solution layer are stacked via a separator plate provided with a gas flow path, the stacked body includes a layer parallel to the surface of the fuel cell. an electrolyte supply channel provided in the manifold, which is provided in the manifold and is inserted into the outer surface of the stack, and which communicates with the electrolyte layer and has an opening in the side surface of the stack; The electrolyte supply path of each of the cells has a common electrolyte chamber communicating through the opening.

以下、実施例について説明する。 Examples will be described below.

第2図は一実施例の水素一酸素燃料電池積層体
の横断面図、第3図は同じく第2図の要部の詳細
横断面図、第4図は同じく第2図のA−A線の要
部縦断面図、第5図は同じく第2図のB−B線の
要部縦断面図、すなわち、マニフオールドの部分
を垂直方向に切つた断面のうち燃料電池セル端部
近傍とマニフオールド部を拡大して示してあり、
第6図は同じく第2図のC−C線における要部断
面矢視図で、燃料電池積層体を側面から見た場合
の位置関係を示すため、ガス入口及び燃料電池セ
ルの一つのセルだけを示してある。これらの図
で、第1図の同一の部分には同一の符号が付して
ある。
FIG. 2 is a cross-sectional view of a hydrogen-oxygen fuel cell stack according to an embodiment, FIG. 3 is a detailed cross-sectional view of the main part of FIG. 2, and FIG. 4 is a line A-A in FIG. 2. FIG. 5 is a vertical cross-sectional view of the main part taken along the line B-B in FIG. The old part is shown enlarged.
Figure 6 is a cross-sectional view of the main part taken along line C-C in Figure 2, showing the positional relationship when the fuel cell stack is viewed from the side. is shown. In these figures, the same parts as in FIG. 1 are given the same reference numerals.

この燃料電池積層体は、第4図に示すように、
燃料ガス通路6、燃料極3、電解液層4、空気極
2、空気通路5および隔離板7からなる燃料電池
セル1が複数個積層して構成されているが、各隔
離板7はその端部にパツキング11を設け、さら
に燃料極3の端部の一部分に重なり、かつ、パツ
キング11に重なる別のパツキング12を設ける
ことにより、空気極2、電解液層4、燃料極3、
パツキング11、パツキング12及び隔離板7の
間に電解液供給路13a(隔離板7上の空気通路
5と同一面上に設けられている電解液供給路、燃
料通路6と同一面上に設けられている電解液供給
路並びにこれらの電解液供給路に関連した構造
で、両者を区別する必要のある部分には、それぞ
れ符号にa及びbが付してある)が形成され、こ
のような構造とすることによつて、電解液供給路
13aは電解液層4と連絡している。ここで、こ
の燃料電池セル1の構成材料の1例をあげる。空
気極2、燃料極3は、白金系の触媒を用いた多孔
質カーボンペーパーよりなり、電解液層4は、フ
エノールの布または無機の繊維にリン酸を主体と
する電解液が含浸させてあり、隔離板7は緻密な
黒鉛板を使用し、パツキング11,12にはフツ
素ゴムが使用されている。なお、電解液供給路1
4は隔離板7の端部近傍に設けられた電解液供給
路13の断面を広くするための溝で、この溝は場
合によつては設けなくてもよい。この電解液供給
路13は燃料電池積層体の端部側面までつながつ
ており、燃料電池積層体の側面に開口部15を構
成する。
This fuel cell stack, as shown in FIG.
The fuel cell 1 is constructed by stacking a plurality of fuel gas passages 6, fuel electrodes 3, electrolyte layer 4, air electrodes 2, air passages 5, and separators 7, and each separator 7 is connected to its end. By providing a packing 11 at the end of the fuel electrode 3 and another packing 12 overlapping a part of the end of the fuel electrode 3 and overlapping the packing 11, the air electrode 2, the electrolyte layer 4, the fuel electrode 3,
An electrolyte supply channel 13a (an electrolyte supply channel provided on the same plane as the air passage 5 on the separator 7, and an electrolyte supply passage provided on the same plane as the fuel passage 6 on the separator 7) is provided between the packing 11, the packing 12 and the separator 7. In the electrolyte supply channels and structures related to these electrolyte supply channels, parts where it is necessary to distinguish between the two are marked with a and b, respectively), and such structures By doing so, the electrolyte supply path 13a communicates with the electrolyte layer 4. Here, one example of the constituent materials of this fuel cell 1 will be given. The air electrode 2 and the fuel electrode 3 are made of porous carbon paper using a platinum-based catalyst, and the electrolyte layer 4 is made of phenol cloth or inorganic fibers impregnated with an electrolyte mainly containing phosphoric acid. The separator 7 is made of dense graphite, and the packings 11 and 12 are made of fluorocarbon rubber. In addition, electrolyte supply path 1
Reference numeral 4 denotes a groove for widening the cross section of the electrolyte supply path 13 provided near the end of the separator 7, and this groove may not be provided depending on the case. This electrolyte supply path 13 is connected to the end side surface of the fuel cell stack, and forms an opening 15 in the side surface of the fuel cell stack.

第2図は、燃料電池積層体と空気用マニフオー
ルド9、燃料ガス用マニフオールド10及び電解
液用マニフオールド17との関係を示しており、
それぞれの開口部15と対向してそれぞれ共通電
解質室16a,16bの設けられている電解液用
マニフオールド17a,17bが配置され、これ
らの電解液用マニフオールド17a,17bは空
気用マニフオールド9,9および燃料ガス用マニ
フオールド10,10の中に設けられている。な
お、電解液用マニフオールドは空気または燃料ガ
ス用マニフオールドの外に併置する構造としても
良い。
FIG. 2 shows the relationship between the fuel cell stack and the air manifold 9, fuel gas manifold 10, and electrolyte manifold 17.
Electrolyte manifolds 17a and 17b each having a common electrolyte chamber 16a and 16b are disposed facing each opening 15, and these electrolyte manifolds 17a and 17b are similar to air manifolds 9 and 17b, respectively. 9 and the fuel gas manifolds 10, 10. Note that the electrolyte manifold may be placed outside the air or fuel gas manifold.

この燃料電池積層体においては、電解液は、外
部から電解液供給口18または19を経由して電
解液用マニフオールド17の中に設けられた共通
電解液室16に導入され、次いで、連絡口20を
経由して開口部15から各燃料電池セル1の電解
液供給路13に供給される。なお、21はガス入
口、22,23はパツキングである。
In this fuel cell stack, the electrolyte is introduced from the outside via an electrolyte supply port 18 or 19 into a common electrolyte chamber 16 provided in an electrolyte manifold 17, and then The electrolyte is supplied to the electrolyte supply path 13 of each fuel cell 1 from the opening 15 via the electrolyte 20 . Note that 21 is a gas inlet, and 22 and 23 are packings.

このように構成されているので、従来技術にお
けるように、各隔離板毎に電解液シール構造を必
要とせず、燃料電池セルを積層した後一括して共
通電解液室を設置できるので、構造が簡単となる
とともに組立が容易になる。
With this structure, there is no need for an electrolyte sealing structure for each separator as in the prior art, and a common electrolyte chamber can be installed all at once after stacking the fuel cells, resulting in a simpler structure. It is simple and easy to assemble.

また、共通電解液室を電池積層体の外部に設け
ているので、共通電解液室を経由して各燃料電池
セルを短絡する電解液による短絡路の長さを長く
したり、短絡路の断面積を小さくすることによ
り、短絡抵抗を大きくし、漏洩電流を小さくする
ことができる。
In addition, since the common electrolyte chamber is provided outside the battery stack, it is possible to increase the length of the electrolyte short-circuit path that short-circuits each fuel cell via the common electrolyte chamber, or to disconnect the short-circuit path. By reducing the area, short circuit resistance can be increased and leakage current can be reduced.

第7図は、他の実施例の要部の断面を示すもの
で、この実施例が前述の実施例と異なるところ
は、電解液供給路13と共通電解液室16との連
絡口20の一部にせき24が設けられ、このせき
24の高さが対応する燃料電池セルの電解液供給
路13の上面よりも高くなつている点である。こ
のように構成された燃料電池積層体においては、
共通電解液室16に電解液を充満させて、電解液
供給路13に電解液を供給した後、共通電解液室
16内の電解液を排出させて、燃料電池の運転が
行なわれる。このようにすることによつて、燃料
電池の運転中は、各燃料電池セルを短絡する電解
液の通路がなくなり、かつ、せきが設けてあるの
で電解液供給路内に電解液を保持することができ
る。
FIG. 7 shows a cross section of a main part of another embodiment, and the difference between this embodiment and the previous embodiment is that one of the communication ports 20 between the electrolyte supply path 13 and the common electrolyte chamber 16 is A weir 24 is provided in the section, and the height of this weir 24 is higher than the upper surface of the electrolyte supply channel 13 of the corresponding fuel cell. In the fuel cell stack constructed in this way,
After the common electrolyte chamber 16 is filled with electrolyte and the electrolyte is supplied to the electrolyte supply path 13, the electrolyte in the common electrolyte chamber 16 is discharged, and the fuel cell is operated. By doing this, during operation of the fuel cell, there is no electrolyte passage that short-circuits each fuel cell, and since the weir is provided, the electrolyte can be retained in the electrolyte supply path. I can do it.

すなわち、この実施例の燃料電池積層体におい
ては、構造の簡単化、組立てを容易にすることの
できる点は前述の実施例と同様であるのみなら
ず、さらに、積層した燃料電池セル間の電解液を
通る漏れ電流を減少させることができる。
In other words, the fuel cell stack of this embodiment not only simplifies the structure and facilitates assembly as in the previous embodiment, but also improves electrolysis between the stacked fuel cells. Leakage current through the liquid can be reduced.

以上の如く、本発明の燃料電池積層体は、簡単
かつ組立て容易な構造の燃料電池積層体の提供を
可能とするもので、産業上の効果の大なるもので
ある。
As described above, the fuel cell stack of the present invention makes it possible to provide a fuel cell stack with a simple and easy-to-assemble structure, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の燃料電池セルの構造を説明す
るための分解斜視図、第2図は、本発明の燃料電
池積層体の一実施例の横断面図、第3図は同じく
第2図の要部詳細横断面図、第4図は同じく第2
図のA−A線の要部縦断面図、第5図は同じく第
2図のB−B線の要部縦断面図、第6図は同じく
第2図のC−C線における要部断面矢視図、第7
図は他の実施例の第5図と同一位置における要部
縦断面図である。 1……燃料電池セル、2……空気極、3……燃
料極、4……電解液層、5……空気通路、6……
燃料ガス通路、7……隔離板、11,12……パ
ツキング、13,14……電解液供給路、15…
…開口部、16……共通電解液室、17……電解
液用マニフオールド、18,19……電解液供給
口、20……連絡口、24……せき。
FIG. 1 is an exploded perspective view for explaining the structure of a conventional fuel cell, FIG. 2 is a cross-sectional view of an embodiment of the fuel cell stack of the present invention, and FIG. Detailed cross-sectional view of the main part, Figure 4 is also the same as Figure 2.
Figure 5 is a vertical cross-sectional view of the main part taken along line A-A in Figure 2, Figure 6 is a cross-sectional view of the main part taken along line B-B in Figure 2, and Figure 6 is a cross-sectional view of the main part taken along line C-C in Figure 2. Arrow view, 7th
The figure is a longitudinal sectional view of the main part at the same position as FIG. 5 of another embodiment. DESCRIPTION OF SYMBOLS 1... Fuel cell, 2... Air electrode, 3... Fuel electrode, 4... Electrolyte layer, 5... Air passage, 6...
Fuel gas passage, 7... Separation plate, 11, 12... Packing, 13, 14... Electrolyte supply path, 15...
...opening, 16...common electrolyte chamber, 17...electrolyte manifold, 18, 19...electrolyte supply port, 20...communication port, 24...weir.

Claims (1)

【特許請求の範囲】 1 第一の電極および第二の電極と両電極の間に
挿設される電解液層とを有する燃料電池セルを、
ガス流路の設けられている隔離板を介して複数個
積層した積層体よりなる燃料電池積層体におい
て、前記積層体内に、前記燃料電池セルの面に平
行に設けられ前記電解液層に連通し、かつ前記積
層体の側面部に開口部を有する電解液供給路と、
前記積層体の外側面に挿着されたマニフオールド
内に設けられ、前記燃料電池セルのそれぞれの前
記電解液供給路が前記開口部を介して連通する共
通電解液室とを有していることを特徴とする燃料
電池積層体。 2 前記隔離板が、該隔離板に設けられているガ
ス流路に平行に設けられた前記電解液供給路の一
部を構成する溝を有する特許請求の範囲第1項記
載の燃料電池積層体。 3 前記電解液供給路と前記共通電解液室との間
に、前記電解液供給路の上面より高い上面を有す
るせきが設けられている特許請求の範囲第1項記
載の燃料電池積層体。
[Claims] 1. A fuel cell having a first electrode, a second electrode, and an electrolyte layer interposed between the two electrodes,
In a fuel cell stack consisting of a plurality of stacked bodies stacked together with a separator plate provided with a gas flow path, a fuel cell stack is provided in the stacked body parallel to the surface of the fuel cell and communicates with the electrolyte layer. , and an electrolyte supply path having an opening in a side surface of the laminate;
A common electrolyte chamber is provided in a manifold inserted into the outer surface of the laminate, and the electrolyte supply path of each of the fuel cells communicates through the opening. A fuel cell stack featuring: 2. The fuel cell stack according to claim 1, wherein the separator has a groove forming a part of the electrolyte supply path provided in parallel to the gas flow path provided in the separator. . 3. The fuel cell stack according to claim 1, wherein a weir is provided between the electrolyte supply path and the common electrolyte chamber, the weir having an upper surface higher than the upper surface of the electrolyte supply path.
JP55130987A 1980-09-20 1980-09-20 Fuel cell laminate Granted JPS5755071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55130987A JPS5755071A (en) 1980-09-20 1980-09-20 Fuel cell laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55130987A JPS5755071A (en) 1980-09-20 1980-09-20 Fuel cell laminate

Publications (2)

Publication Number Publication Date
JPS5755071A JPS5755071A (en) 1982-04-01
JPS6237507B2 true JPS6237507B2 (en) 1987-08-12

Family

ID=15047262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55130987A Granted JPS5755071A (en) 1980-09-20 1980-09-20 Fuel cell laminate

Country Status (1)

Country Link
JP (1) JPS5755071A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973853A (en) * 1982-10-19 1984-04-26 Mitsubishi Electric Corp Seal apparatus of stacked structure
JPS634962A (en) * 1986-06-25 1988-01-09 Kyocera Corp Wire guide
US4732822A (en) * 1986-12-10 1988-03-22 The United States Of America As Represented By The United States Department Of Energy Internal electrolyte supply system for reliable transport throughout fuel cell stacks

Also Published As

Publication number Publication date
JPS5755071A (en) 1982-04-01

Similar Documents

Publication Publication Date Title
CA2284968C (en) Fuel cell
JP4344484B2 (en) Solid polymer cell assembly
JP3673243B2 (en) Fuel cell stack
US4753857A (en) Laminated fuel cell
JP4630529B2 (en) Fuel cell system
US20060024561A1 (en) Fuel cell stack
JP2002260710A (en) Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
JPH08273696A (en) Fuel cell stack structure
US20060003220A1 (en) Fuel cell
US6841282B2 (en) Fuel cell
JP2003068349A (en) Fuel cell stack and reactant gas supply method
KR101659950B1 (en) Combined complex electrode cell and redox flow battery comprising thereof
JP2003229144A (en) Fuel cell
US6866956B2 (en) Fuel cell
KR20150017402A (en) Fuel cell stack with excellent circulating performance
JP2004014446A (en) Fuel cell
US6723463B2 (en) Fuel cell stack having terminal element located at specified location
JP5021110B2 (en) Fuel cell system
JP2000164227A (en) Gas manifold integrated separator and fuel cell
JP2003092129A (en) Fuel cell stack and method of supplying reaction gas
JPS6237507B2 (en)
US6811909B2 (en) Fuel cell
JP4886128B2 (en) Fuel cell stack
JP4336855B2 (en) Separator for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
JP2004111118A (en) Fuel cell stack