JPH08123662A - Adding method and adder - Google Patents

Adding method and adder

Info

Publication number
JPH08123662A
JPH08123662A JP26374994A JP26374994A JPH08123662A JP H08123662 A JPH08123662 A JP H08123662A JP 26374994 A JP26374994 A JP 26374994A JP 26374994 A JP26374994 A JP 26374994A JP H08123662 A JPH08123662 A JP H08123662A
Authority
JP
Japan
Prior art keywords
carry
signal
digit
propagation
generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26374994A
Other languages
Japanese (ja)
Inventor
Toshiaki Inoue
俊明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26374994A priority Critical patent/JPH08123662A/en
Publication of JPH08123662A publication Critical patent/JPH08123662A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To decrease the number of necessary gates and speed up the addition of the adder by generating a carry signal for every three digits by 1st-4th NAND gates. CONSTITUTION: A NAND gate 101 NANDs a carry propagation signal pi (3>=i>=n) and a carry generation signal gi-1 to generate a signal I(pi gi-1 ). A NAND gate 102 NANDs carry propagation signals pi and pi-1 and a carry generation signal gi-2 to generate a signal I (pi , Pii-1 , pi-2 ). A NAND gate 103 NANDs carry propagation signals pi , pi-1 , and pi-2 to generate a signal I (pi , pi-1 , pi-2 ), which is outputted as a carry propagation signal pi ". A NAND gate 104 NANDs an inverted carry generation signal Igi , the signal I (pi pi-1 ), and the signal I (pi , pi-1 , pi-2 ) to generate a carry generation signal gi ". Consequently, the number of necessary gates can be decreased and the addition of the adder is speeded up.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加算方法および加算器に
関し、特に桁上げ先見方式を用いる2進数の加算方法お
よび加算器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an addition method and an adder, and more particularly to a binary addition method and an adder using a carry look ahead method.

【0002】[0002]

【従来の技術】従来の一般的な多ビットの加算器では、
情報処理学会編,情報処理ハンドブック,第354頁,
オーム社(1989年)等に記載されているCLA(C
arry Look−ahead:桁上げ先見)方式の
加算器が広く採用されている。この方式は、下位の演算
によりキャリー信号が決定されるのではなく、基本的に
は演算すべきn桁のそれぞれ毎に、その桁より下位の桁
から直接求めたキャリー信号を用いて演算する加算方法
である。
2. Description of the Related Art In a conventional general multi-bit adder,
IPSJ, Information Processing Handbook, 354 pages,
CLA (C described in Ohmsha (1989), etc.
An adder of an early look-ahead (carry look ahead) method is widely adopted. In this method, the carry signal is not determined by the lower order operation, but basically, for each n digits to be operated, the addition is performed by using the carry signal directly obtained from the lower order digit. Is the way.

【0003】演算対象の任意の桁、第i桁のキャリー信
号ci は、第i桁の加数,被加数をそれぞれxi
i 、および第i桁のキャリー伝搬信号,およびキャリ
ー生成信号をそれぞれpi ,gi とすると、次式で表さ
れる。
The carry signal c i at the arbitrary digit, i-th digit, to be operated is the addend and augend of the i-th digit x i ,
When y i , the carry propagation signal of the i-th digit, and the carry generation signal are p i and g i , respectively, they are expressed by the following equation.

【0004】 pi =xi ○+yi i =xi i i =(xi i )+(xi ○+yi )ci-1 =gi +pi i-1 ………………………………………………………(1) ここで記号○+は排他的論理和を示す。P i = x i o + y i g i = x i y i c i = (x i y i ) + (x i o + y i ) c i-1 = g i + p i c i-1 ………………………………………………… (1) Here, the symbol ○ + indicates exclusive OR.

【0005】さらに、多ビットの高速加算器では、キャ
リー信号の伝搬部分にキャリー信号の伝搬を2桁毎に行
うBLC(Binary Look−ahead Ca
rry:2進先見桁上げ)方式の加算器が採用されてい
る。
Further, in a multi-bit high-speed adder, a carry signal is propagated to a carry signal propagating every two digits in a BLC (Binary Look-ahead Ca).
rry: Binary look-ahead carry) type adder is used.

【0006】この方法では、演算対象の任意の桁、第i
桁のキャリー信号ci は、第(i−2)桁のキャリー信
号ci-2 を用いて、次式で表される。
According to this method, an arbitrary digit to be operated, i-th
The carry signal c i of the digit is represented by the following equation using the carry signal c i-2 of the (i−2) th digit.

【0007】 ci =gi +pi i-1 +pi i-1 i-2 =gi ’+pi ’ci-2 …(2) すなわち、第1および第2項(=gi +pi i-1 )を
新たにキャリー生成信号gi ’、第3項のci-2 を除く
部分(=pi i-1 )を新たにキャリー伝搬信号pi
と定義しなおすことによって、キャリー信号を2桁毎に
同時に伝搬させている。
C i = g i + p i g i-1 + p i p i-1 c i-2 = g i '+ p i ' c i-2 (2) That is, the first and second terms (= g i + p i g i-1 ) is a new carry generation signal g i ', and the part (= p i p i-1 ) excluding c i-2 of the third term is a new carry propagation signal p i '
By redefining the following, the carry signal is propagated simultaneously every two digits.

【0008】この方法によると、n桁の加算において
は、最上位のキャリー信号cn を生成する場合の遅延時
間はlog2 nの程度に抑えられ、上述のCLA方式に
比べて長い桁数の加算を高速に行うことができる。
According to this method, in the addition of n digits, the delay time when the highest carry signal c n is generated is suppressed to the order of log 2 n, and the number of digits is longer than that of the CLA method. The addition can be performed at high speed.

【0009】従来のBLC方式の加算器のキャリー生成
信号gi ’およびキャリー伝搬信号pi ’の生成回路の
回路図を示す図2を参照すると、この従来の加算器はO
R−NANDゲート301と、NORゲート302とを
備える。
Referring to FIG. 2 which is a circuit diagram of a circuit for generating a carry generation signal g i 'and a carry propagation signal p i ' of a conventional BLC type adder, this conventional adder is O
An R-NAND gate 301 and a NOR gate 302 are provided.

【0010】次に、図2を参照して、従来の加算方法お
よび加算器の動作について説明すると、OR−NAND
ゲート301は、供給を受けた反転キャリー生成信号I
(反転)gi-1 および反転キャリー伝搬信号Ipi のO
R演算を行い、さらにこのOR演算値と反転キャリー生
成信号Igi とのNAND演算を行ってキャリー生成信
号gi ’を生成する。NORゲート302は、反転キャ
リー伝搬信号Ipi と反転キャリー伝搬信号Ipi-1
のNOA演算を行いキャリー伝搬信号pi ’を生成す
る。
The operation of the conventional addition method and adder will be described below with reference to FIG.
The gate 301 receives the supplied inverted carry generation signal I
(Inverted) g i−1 and O of the inverted carry propagation signal Ip i
An R operation is performed, and a NAND operation is performed on the OR operation value and the inverted carry generation signal Ig i to generate a carry generation signal g i ′. NOR gate 302 performs a NOA operation on inverted carry propagation signal Ip i and inverted carry propagation signal Ip i−1 to generate carry propagation signal p i ′.

【0011】[0011]

【発明が解決しようとする課題】上述した従来の加算方
法および加算器は、キャリー信号の伝搬を2桁毎に行う
ので、n桁の加算において最上位のキャリー信号を得る
ための所要時間がlog2 nの程度以下にはできないと
いう欠点がある。
Since the above-described conventional addition method and adder carry the carry signal every two digits, the time required to obtain the highest carry signal in n-digit addition is log. There is a drawback that it cannot be less than 2 n.

【0012】[0012]

【課題を解決するための手段】本発明の加算方法は、2
つのn桁(n≧3)の2進数の各々の第i桁(3≧i≧
n)の値の論理積で生成されるキャリー生成信号および
前記第i桁の値の排他的論理和で生成されるキャリー伝
搬信号を用いた加算方法において、第i桁のキャリー伝
搬信号と第(i−1)桁のキャリー生成信号との第1の
論理積を算出し、前記第i桁のキャリー伝搬信号と第
(i−1)桁のキャリー伝搬信号と第(i−2)桁のキ
ャリー生成信号との第2の論理積を算出し、前記第i桁
のキャリー伝搬信号と前記第(i−1)桁のキャリー伝
搬信号と第(i−2)桁のキャリー伝搬信号と第(i−
3)桁のキャリー信号との第3の論理積を算出し、第i
桁のキャリー生成信号と前記第1,第2および第3の論
理積との論理和を算出することにより第i桁のキャリー
信号が生成されることを特徴とするものである。
The addition method according to the present invention uses two methods.
I-th digit (3 ≧ i ≧ 3) of each of the n n-digit (n ≧ 3) binary numbers
In the addition method using the carry generation signal generated by the logical product of the values of n) and the carry propagation signal generated by the exclusive OR of the values of the i-th digit, the carry propagation signal of the i-th digit and the ( A first AND is calculated with the (i-1) -digit carry generation signal, and the i-th carry carry signal, the (i-1) -th carry carry signal, and the (i-2) -th carry carry are calculated. A second logical product of the generated signal and the carry propagation signal of the i-th digit, the carry propagation signal of the (i-1) th digit, the carry propagation signal of the (i-2) th digit, and the (i) th digit are calculated. −
3) Calculate the third logical product with the carry signal of the digit,
It is characterized in that the carry signal of the i-th digit is generated by calculating the logical sum of the carry generation signal of the digit and the first, second and third logical products.

【0013】本発明の加算器は、2つのn桁(n≧3)
の2進数の各々の第i桁(3≧i≧n)の値の論理積で
生成されるキャリー生成信号および前記第i桁の値の排
他的論理和で生成されるキャリー伝搬信号を用い第(i
−3)桁のキャリー信号から第i桁のキャリー信号を直
接生成する桁上げ先見回路を備える加算器において、前
記桁上げ先見回路が、第i桁のキャリー伝搬信号と第
(i−1)桁のキャリー生成信号との供給に応答して第
1の否定論理積を生成する2入力NANDゲートと、前
記第i桁のキャリー伝搬信号と第(i−1)桁のキャリ
ー伝播信号と第(i−1)桁のキャリー生成信号との供
給に応答して第2の否定論理積を生成する第1の3入力
NANDゲートと、前記第i桁のキャリー伝搬信号と前
記第(i−1)桁のキャリー伝搬信号と第(i−2)桁
のキャリー伝搬信号との供給に応答して次桁の第i桁の
キャリー伝搬信号である第3の否定論理和を生成する第
2の3入力NANDゲートと、第i桁のキャリー生成信
号の否定論理と前記第1および第2の否定論理積との供
給に応答してキャリー生成信号である第4の否定論理積
を生成する第3の3入力NANDゲートを備えて構成さ
れている。
The adder of the present invention has two n digits (n ≧ 3).
A carry generation signal generated by the logical product of the values of the i-th digit (3 ≧ i ≧ n) of each of the binary numbers and a carry propagation signal generated by the exclusive OR of the values of the i-th digit. (I
-3) In an adder including a carry look-ahead circuit for directly generating a carry signal of an i-th digit from a carry signal of a carry, the carry look-ahead circuit includes a carry propagation signal of the i-th digit and a (i-1) -th digit. A 2-input NAND gate for generating a first NAND circuit in response to the supply of the carry generation signal of the above, the carry propagation signal of the i-th digit, the carry propagation signal of the (i-1) th digit, and the carry propagation signal of the (i) th digit. -1) a first 3-input NAND gate for generating a second NAND circuit in response to the supply of the carry generation signal of -1 digit, the carry propagation signal of the i-th digit, and the (i-1) -th digit Second three-input NAND for generating a third NOR as the i-th digit carry-propagation signal of the next digit in response to the supply of the carry-propagation signal and the (i-2) -th digit carry-propagation signal. The gate, the negative logic of the carry generation signal of the i-th digit, and It is configured to include a third three-input NAND gate to generate a fourth NAND is carry generation signal in response to the supply of the first and second NAND.

【0014】[0014]

【実施例】次に、本発明の実施例の1ビット分の桁上げ
先見回路を回路図で示す図1を参照すると、この図に示
す本実施例の加算器は、キャリー伝搬信号pi とキャリ
ー生成信号gi-1 とのNAND演算を行い信号I(pi
i-1 )を生成するNANDゲート101と、キャリー
伝搬信号pi ,pi-1 とキャリー生成信号gi-2 とのN
AND演算を行い信号I(pi ,pi-1 i-2 )を生成
するNANDゲート102と、キャリー伝搬信号pi
i-1 およびPi-2 のNAND演算を行い信号I
(pi ,pi-1 i-2 )を生成しキャリー伝搬信号
i ”として出力するNANDゲート103と、反転キ
ャリー生成信号Igi と信号I(pi i-1 )および信
号I(pi ,pi-1 i-2 )とのNAND演算を行いキ
ャリー生成信号gi ”を生成するNANDゲート104
とを備える。
EXAMPLES Referring now to Figure 1 showing a carry look ahead circuit for one bit embodiment of the present invention in the circuit diagram, the adder of the present embodiment shown in this drawing, the carry propagation signal p i A NAND operation with the carry generation signal g i-1 is performed to obtain the signal I (p i
g i-1 ), and N of the carry propagation signals p i and p i-1 and the carry generation signal g i-2.
A NAND gate 102 that performs an AND operation to generate a signal I (p i , p i-1 g i-2 ) and a carry propagation signal p i ,
The NAND operation of p i-1 and p i-2 is performed and the signal I
NAND gate 103 that generates (p i , p i-1 p i-2 ) and outputs it as carry propagation signal p i ″, inverted carry generation signal Ig i , signal I (p i g i-1 ) and signal I NAND gate 104 that performs a NAND operation with (p i , p i-1 g i-2 ) to generate carry generation signal g i
With.

【0015】次に、図1を参照して本実施例の動作につ
いて説明すると、NANDゲート101は、第i桁のキ
ャリー伝搬信号pi と前桁の第i−1桁のキャリー生成
信号gi-1 との供給に応答してNAND演算を行い信号
I(pi i-1 )を生成する。また、NANDゲート1
02は、第i桁および第i−1桁のキャリー伝搬信号p
i ,pi-1 と第i−2桁のキャリー生成信号gi-2 との
供給に応答してNAND演算を行い信号I(pi ,p
i-1 i-2 )を生成する。NANDゲート103は、供
給を受けた第i桁,第i−1桁および第i−2桁のキャ
リー伝搬信号pi,pi-1 およびPi-2 のNAND演算
を行い生成された信号I(pi i-1 i-2 )をキャリ
ー伝搬信号pi ”として出力する。さらに、NANDゲ
ート104は、供給を受けた第i桁の反転キャリー生成
信号Igi と信号I(pi i-1 )および信号I
(pi ,pi-1 i-2 )とのNAND演算を行いキャリ
ー生成信号gi ”を生成する。
Next, the operation of the present embodiment will be described with reference to FIG. 1. The NAND gate 101 has the carry propagation signal p i of the i-th digit and the carry generation signal g i of the i−1 th digit of the previous digit. -1 and -1 to perform a NAND operation to generate a signal I (p i g i-1 ). In addition, NAND gate 1
02 is the carry propagation signal p of the i-th digit and the (i-1) th digit.
NAND operation is performed in response to the supply of i , p i-1 and carry generation signal g i-2 of the (i-2) th digit and signal I (p i , p
i-1 g i-2 ) is generated. The NAND gate 103 performs the NAND operation of the supplied carry propagation signals p i , p i-1 and p i-2 of the i-th digit, the i-1 th digit and the i-2 th digit to generate a signal I. (P i p i-1 p i-2 ) is output as a carry propagation signal p i ″. Further, the NAND gate 104 receives the inverted carry generation signal Ig i of the i-th digit and the signal I (p i). g i-1 ) and the signal I
A NAND operation with (p i , p i-1 g i-2 ) is performed to generate a carry generation signal g i ″.

【0016】このように、本実施例の加算器の桁上げ先
見回路は、(2)式をさらに展開することにより得られ
る第i桁のキャリー信号ci と第i−3桁のキャリー信
号ci-3 との関係式に対応するものである。
As described above, the carry look-ahead circuit of the adder according to the present embodiment has the carry signal c i of the i-th digit and the carry signal c of the i-3 th digit obtained by further expanding the equation (2). It corresponds to the relational expression with i-3 .

【0017】 ci =gi +pi i-1 +pi i-1 i-2 +pi i-1 i-2 i-3 =gi ”+pi ”ci-3 …………………………………………………(2) ここで、 gi ”=gi +pi i-1 +pi i-1 i-2 ,pi ”=pi i-1 i-2 したがって、本実施例の回路を用いることにより、第i
桁のキャリー信号が第(i−3)桁のキャリー信号から
直接得られる。このように3桁ごとに桁上げ信号を先見
することにより所要のゲート段数を削減できるので、加
算を高速化できる。具体的には、n桁の加算に対してキ
ャリー伝搬遅延はlog3 nの程度にまで削減できる。
C i = g i + p i g i-1 + p i p i-1 g i-2 + p i p i-1 p i-2 c i-3 = g i ″ + p i ″ c i-3 ... ...................................................... (2) where, g i "= g i + p i g i-1 + p i p i-1 g i-2, p i" = P i p i-1 p i-2 Therefore, by using the circuit of the present embodiment,
The carry signal of the digit is obtained directly from the carry signal of the (i-3) th digit. By foreseeing the carry signal every three digits in this way, the required number of gate stages can be reduced, so that the addition can be speeded up. Specifically, the carry propagation delay can be reduced to about log 3 n with respect to the addition of n digits.

【0018】従来のBLC加算器における、図3のOR
−NAND複合ゲート301のある基準の遅延時間(例
えば同一のプロセス条件で形成した一定の負荷容量を持
つ一定サイズのインバータの遅延時間)に対する比をa
とし、本実施例の加算器の3入力NANDゲート10
2,103および104における上記比をbとすると、
本実施例の加算器の従来のBLC加算器の桁上げ伝搬遅
延に対する遅延時間削減の効果は、次式で表される。
The OR of FIG. 3 in the conventional BLC adder.
A ratio of a NAND composite gate 301 to a certain reference delay time (for example, a delay time of a constant size inverter having a constant load capacitance formed under the same process condition) is a
And the 3-input NAND gate 10 of the adder of the present embodiment.
If the above ratio at 2, 103 and 104 is b,
The effect of delay time reduction on the carry propagation delay of the conventional BLC adder of the adder of the present embodiment is expressed by the following equation.

【0019】 (alog2 n)/(2blog3 n)……………………………………(3) したがって、従来のBLC加算器に比較して本実施例の
加算器は、a/b>1.26の条件のもとでnが大きい
ほど高速となる。
(Alog 2 n) / (2blog 3 n) (3) Therefore, the adder according to the present embodiment is different from the conventional BLC adder in that Under the condition of a / b> 1.26, the larger n is, the higher the speed becomes.

【0020】次に、本発明の第2の実施例をブロックで
示す図2を参照すると、この図に示す本実施例の加算器
は8桁の加算器であり、入力端子1,2に供給された2
個の8桁の2進数(以下2数)からキャリー伝播信号p
およびキャリー生成信号gの各々を生成するpg信号生
成回路201と、2数の和を生成し出力端子に出力する
和生成回路202と、図1の桁上げ先見回路213〜2
18と、それぞれ図1の桁上げ先見回路の機能のうち入
力の値に応じて不要機能を省く最適化により得られた回
路であるバッファ203〜206,AND−ORゲート
207〜210およびキャリー生成信号gi ”を生成す
る部分回路であるキャリー生成信号生成回路211,2
12とを備える。
Next, referring to FIG. 2 which is a block diagram showing a second embodiment of the present invention, the adder of the present embodiment shown in this figure is an 8-digit adder and is supplied to the input terminals 1 and 2. Was done 2
Carry propagation signal p from eight 8-digit binary numbers (the following two numbers)
1 and a carry generation signal g, a pg signal generation circuit 201, a sum generation circuit 202 that generates the sum of two numbers and outputs the sum to the output terminal, and the carry look-ahead circuits 213 to 2 in FIG.
18, buffers 203 to 206, AND-OR gates 207 to 210, and carry generation signals which are circuits obtained by optimizing unnecessary functions among the functions of the carry look-ahead circuit of FIG. 1 according to the input value. carry generation signal generation circuits 211 and 2, which are partial circuits that generate g i ″.
12 and.

【0021】図2を参照して本実施例の動作について説
明すると、入力端子1,2に与えられた2個の8桁の2
進数の供給に応答してpg信号生成回路201は8個の
キャリー伝搬信号pおよびキャリー生成信号gの組を生
成する。これら各桁のキャリー伝搬信号pおよびキャリ
ー生成信号gの組は、桁上げ先見回路213〜218、
およびバッファ203〜206,AND−ORゲート2
07〜210,キャリー生成信号生成回路211,21
2に供給され、全てのキャリー信号が生成される。この
ようにして得られた全てのキャリー信号は和生成回路2
02に供給され、和生成回路202はこれらキャリー信
号の供給に応答して2数の和を生成し出力端子に出力す
る。
The operation of the present embodiment will be described with reference to FIG. 2. Two 8-digit 2's provided to the input terminals 1 and 2 are used.
In response to the supply of the base number, the pg signal generation circuit 201 generates a set of eight carry propagation signals p and carry generation signals g. The set of the carry propagation signal p and the carry generation signal g for each digit is carried by the carry look-ahead circuits 213 to 218.
And buffers 203 to 206, AND-OR gate 2
07-210, carry generation signal generation circuits 211, 21
2 and all carry signals are generated. All the carry signals thus obtained are added to the sum generation circuit 2
02, the sum generation circuit 202 generates the sum of two numbers in response to the supply of these carry signals, and outputs the sum to the output terminal.

【0022】以上実施例をもって本発明を説明したが、
本発明はこの実施例のみに限定されるものではない。例
えば、本実施例の桁上げ先見回路の代りに、図1に示し
たものと等価な論理動作をする異なる回路構成の全てに
ついて、桁上げの先見を目的とする回路であるかぎり、
本発明が適用されることは明らかである。
Although the present invention has been described with reference to the embodiments,
The invention is not limited to this embodiment only. For example, instead of the carry look-ahead circuit of the present embodiment, as long as the circuit is intended for carry look-ahead, all the different circuit configurations that perform logical operations equivalent to those shown in FIG.
It is clear that the invention applies.

【0023】また、本実施例の加算器の桁上げ先見回路
は、正論理入力正論理出力の論理回路であるが、入力ま
たは出力を負論理に変更して加算器に用いた場合も、本
発明は支障なく適用可能である。
Further, the carry look-ahead circuit of the adder of the present embodiment is a logic circuit of positive logic input and positive logic output. However, even when the input or output is changed to negative logic and used in the adder, The invention can be applied without any trouble.

【0024】また本発明を桁上げ伝搬の全ての部分に適
用する代りに、一部の桁上げ先見部分にのみ適用するこ
とも、本発明の主旨を逸脱しない限り適用できることは
勿論である。
It is needless to say that the present invention can be applied only to a part of the carry look-ahead portion instead of being applied to all the portions of the carry propagation without departing from the gist of the present invention.

【0025】[0025]

【発明の効果】以上説明したように、本発明の加算方法
および加算器は、従来のBLC加算器と比較して加算対
象2進数の桁数が大きいほど高速であるので、大きな桁
数の加算を必要とする高精度な演算器を高速化すること
ができるという効果がある。
As described above, the addition method and adder of the present invention are faster as the number of digits of the binary number to be added is larger than that of the conventional BLC adder. There is an effect that it is possible to speed up a high-precision arithmetic unit that requires.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加算方法および加算器の第1の実施例
を示す桁上げ先見回路の回路図である。
FIG. 1 is a circuit diagram of a carry look-ahead circuit showing a first embodiment of an addition method and an adder of the present invention.

【図2】本発明の加算方法および加算器の第2の実施例
を示すブロック図である。
FIG. 2 is a block diagram showing a second embodiment of the addition method and adder of the present invention.

【図3】従来の加算器の桁上げ先見回路の一例を示す回
路図である。
FIG. 3 is a circuit diagram showing an example of a carry look-ahead circuit of a conventional adder.

【符号の説明】[Explanation of symbols]

101〜104 NANDゲート 201 pg信号生成回路 202 和生成回路 203〜206 バッファ 207〜210 AND−ORゲート 211,212 キャリー生成信号生成回路 213〜218 桁上げ先見回路 301 OR−NANDゲート 302 NORゲート 101-104 NAND gate 201 pg signal generation circuit 202 sum generation circuit 203-206 buffer 207-210 AND-OR gate 211,212 carry generation signal generation circuit 213-218 carry look-ahead circuit 301 OR-NAND gate 302 NOR gate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2つのn桁(n≧3)の2進数の各々の
第i桁(3≧i≧n)の値の論理積で生成されるキャリ
ー生成信号および前記第i桁の値の排他的論理和で生成
されるキャリー伝搬信号を用いた加算方法において、 第i桁のキャリー伝搬信号と第(i−1)桁のキャリー
生成信号との第1の論理積を算出し、 前記第i桁のキャリー伝搬信号と第(i−1)桁のキャ
リー伝搬信号と第(i−2)桁のキャリー生成信号との
第2の論理積を算出し、 前記第i桁のキャリー伝搬信号と前記第(i−1)桁の
キャリー伝搬信号と第(i−2)桁のキャリー伝搬信号
と第(i−3)桁のキャリー信号との第3の論理積を算
出し、 第i桁のキャリー生成信号と前記第1,第2および第3
の論理積との論理和を算出することにより第i桁のキャ
リー信号が生成されることを特徴とする加算方法。
1. A carry generation signal generated by the logical product of the values of the i-th digit (3 ≧ i ≧ n) of two n-digit (n ≧ 3) binary numbers and the value of the i-th digit. In an addition method using a carry propagation signal generated by exclusive OR, a first logical product of the carry propagation signal of the i-th digit and the carry generation signal of the (i-1) th digit is calculated, A second logical product of the i-th digit carry propagation signal, the (i-1) -th digit carry propagation signal, and the (i-2) -th digit carry generation signal is calculated to obtain the i-th digit carry propagation signal. A third logical product of the carry propagation signal of the (i-1) th digit, the carry propagation signal of the (i-2) th digit, and the carry signal of the (i-3) th digit is calculated, Carry generation signal and the first, second and third
An addition method characterized in that a carry signal of the i-th digit is generated by calculating a logical sum with the logical product of.
【請求項2】 2つのn桁(n≧3)の2進数の各々の
第i桁(3≧i≧n)の値の論理積で生成されるキャリ
ー生成信号および前記第i桁の値の排他的論理和で生成
されるキャリー伝搬信号を用い第(i−3)桁のキャリ
ー信号から第i桁のキャリー信号を直接生成する加算方
法において、 前記第i桁のキャリー信号を生成するキャリー生成信号
が、 第i桁のキャリー伝搬信号と第(i−1)桁のキャリー
生成信号との第1の論理積を算出し、 前記第i桁のキャリー伝搬信号と第(i−1)桁のキャ
リー伝搬信号と第(i−2)桁のキャリー生成信号との
第2の論理積を算出し、 第i桁のキャリー生成信号と前記第1および第2の論理
積との論理和を算出することにより生成され、 前記第i桁のキャリー信号を直接生成するキャリー伝播
信号が、 前記第i桁のキャリー伝搬信号と前記第(i−1)桁の
キャリー伝搬信号と第(i−2)桁のキャリー伝搬信号
との第3の論理積を算出することにより生成されること
を特徴とする桁上げ先見型の加算方法。
2. A carry generation signal generated by a logical product of the values of the i-th digit (3 ≧ i ≧ n) of each of two n-digit (n ≧ 3) binary numbers and the value of the i-th digit. In the addition method of directly generating the carry signal of the i-th digit from the carry signal of the (i-3) th digit using a carry propagation signal generated by exclusive OR, carry generation for generating the carry signal of the i-th digit A signal calculates a first logical product of the carry propagation signal of the i-th digit and the carry generation signal of the (i-1) th digit, and the carry propagation signal of the i-th digit and the (i-1) th digit of the carry propagation signal. A second logical product of the carry propagation signal and the carry generation signal of the (i-2) th digit is calculated, and a logical sum of the carry generation signal of the i-th digit and the first and second logical products is calculated. Carry propagation for directly generating the i-th digit carry signal Signal is generated by calculating a third logical product of the i-th carry carry signal, the (i-1) -th carry carry signal, and the (i-2) -th carry carry signal. A carry-look-ahead addition method characterized in that
【請求項3】 2つのn桁(n≧3)の2進数の各々の
第i桁(3≧i≧n)の値の論理積で生成されるキャリ
ー生成信号および前記第i桁の値の排他的論理和で生成
されるキャリー伝搬信号を用い第(i−3)桁のキャリ
ー信号から第i桁のキャリー信号を直接生成する桁上げ
先見回路を備える加算器において、 前記桁上げ先見回路が、 第i桁のキャリー伝搬信号と第(i−1)桁のキャリー
生成信号との供給に応答して第1の否定論理積を生成す
る2入力NANDゲートと、 前記第i桁のキャリー伝搬信号と第(i−1)桁のキャ
リー伝播信号と第(i−1)桁のキャリー生成信号との
供給に応答して第2の否定論理積を生成する第1の3入
力NANDゲートと、 前記第i桁のキャリー伝搬信号と前記第(i−1)桁の
キャリー伝搬信号と第(i−2)桁のキャリー伝搬信号
との供給に応答して次桁の第i桁のキャリー伝搬信号で
ある第3の否定論理和を生成する第2の3入力NAND
ゲートと、 第i桁のキャリー生成信号の否定論理と前記第1および
第2の否定論理積との供給に応答してキャリー生成信号
である第4の否定論理積を生成する第3の3入力NAN
Dゲートとを備えることを特徴とする加算器。
3. A carry generation signal generated by a logical product of the values of the i-th digit (3 ≧ i ≧ n) of two n-digit (n ≧ 3) binary numbers and the value of the i-th digit. An adder having a carry look-ahead circuit that directly generates a carry signal of the i-th digit from a carry signal of the (i-3) th digit using a carry propagation signal generated by exclusive OR, in which the carry look-ahead circuit is A two-input NAND gate for generating a first NAND circuit in response to the supply of the carry propagation signal of the i-th digit and the carry generation signal of the (i-1) -th digit, and the carry propagation signal of the i-th digit And a first three-input NAND gate that generates a second NAND circuit in response to the supply of the carry propagation signal of the (i-1) th digit and the carry generation signal of the (i-1) th digit, The i-th digit carry propagation signal and the (i-1) -th carry carry signal When the (i-2) in response to the supply of the digit carry propagate signal second 3-input NAND to generate a third NOR a carry propagation signal of the i digit follows digit
A gate and a third three-input for generating a fourth NAND operation which is a carry generation signal in response to the supply of the negative logic of the i-th digit carry generation signal and the first and second NAND products. NAN
An adder comprising a D gate.
JP26374994A 1994-10-27 1994-10-27 Adding method and adder Pending JPH08123662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26374994A JPH08123662A (en) 1994-10-27 1994-10-27 Adding method and adder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26374994A JPH08123662A (en) 1994-10-27 1994-10-27 Adding method and adder

Publications (1)

Publication Number Publication Date
JPH08123662A true JPH08123662A (en) 1996-05-17

Family

ID=17393759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26374994A Pending JPH08123662A (en) 1994-10-27 1994-10-27 Adding method and adder

Country Status (1)

Country Link
JP (1) JPH08123662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6438571B1 (en) 1998-10-28 2002-08-20 Nec Corporation Adder circuit
WO2008038387A1 (en) * 2006-09-28 2008-04-03 Fujitsu Limited Carry look-ahead circuit, carry generating circuit, carry look-ahead method and carry generating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6438571B1 (en) 1998-10-28 2002-08-20 Nec Corporation Adder circuit
WO2008038387A1 (en) * 2006-09-28 2008-04-03 Fujitsu Limited Carry look-ahead circuit, carry generating circuit, carry look-ahead method and carry generating method
US8516030B2 (en) 2006-09-28 2013-08-20 Fujitsu Limited Carry look-ahead circuit and carry look-ahead method

Similar Documents

Publication Publication Date Title
JP2002108606A (en) Sticky bit generating circuit and multiplier
JPH0479013B2 (en)
JPH04332036A (en) Floating decimal point multiplier and its multiplying system
WO2005086675A2 (en) Arithmetic circuit with balanced logic levels for low-power operation
JP3356613B2 (en) Addition method and adder
JPH09501528A (en) Structure and method for reducing the number of carry lookahead adder stages in a high speed arithmetic unit
JPH07234778A (en) Arithmetic circuit
JPH08123662A (en) Adding method and adder
JP2001501341A (en) Digital adder circuit
JPH0651950A (en) Adder circuit
US6631393B1 (en) Method and apparatus for speculative addition using a limited carry
JP3106525B2 (en) Addition method and its circuit
JP3286793B2 (en) Circuit and method for determining carry-out
JP2681968B2 (en) Arithmetic processing unit
JPH113210A (en) 3-input comparator, saturation arithmetic unit using the same and arithmetic method therefor
JP2907276B2 (en) Arithmetic processing unit
KR950015180B1 (en) High speed adder
JPH0319568B2 (en)
JPH083788B2 (en) Processor
JPH0535447A (en) High-speed one-adding circuit
JP3370688B2 (en) Flag generation circuit of adder
JPH06309153A (en) Multiplying circuit
EP1769335A2 (en) Arithmetic circuit with balanced logic levels for low-power operation
JPH06168101A (en) Method and device for addition
JPH02238522A (en) Arithmetic circuit for absolute value

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970422