JPH08118050A - Manufacture of welded steel tube for line pipe excellent in hydrogen induced crack resistance and sulfide stress crack resistance - Google Patents

Manufacture of welded steel tube for line pipe excellent in hydrogen induced crack resistance and sulfide stress crack resistance

Info

Publication number
JPH08118050A
JPH08118050A JP6260091A JP26009194A JPH08118050A JP H08118050 A JPH08118050 A JP H08118050A JP 6260091 A JP6260091 A JP 6260091A JP 26009194 A JP26009194 A JP 26009194A JP H08118050 A JPH08118050 A JP H08118050A
Authority
JP
Japan
Prior art keywords
welding
welded
resistance
pipe
cracking resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6260091A
Other languages
Japanese (ja)
Other versions
JP3146886B2 (en
Inventor
Takahiro Kushida
隆弘 櫛田
Hirotsugu Inaba
洋次 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26009194A priority Critical patent/JP3146886B2/en
Publication of JPH08118050A publication Critical patent/JPH08118050A/en
Application granted granted Critical
Publication of JP3146886B2 publication Critical patent/JP3146886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Abstract

PURPOSE: To provide the method for manufacturing a welded steel pipe capable of executing a laser welding at a welding speed equal to ERW method and excellent in the strength of a welded zone, HIC resistance and SSC resistance. CONSTITUTION: When a steel strip having a prescribed composition is formed continuously into the state of an open pipe through a group of forming rolls, the open pipes are pressurized by a squeezing roll and both edges are butted to each other, and the butting part is irradiated with a laser beam for butt welding to form a welded tube, the welding is performed by the irradiation of laser beam in the condition where the following formula I, II are satisfied. Furthermore, in this method, it is preferable that the welded zone after welding is heated to Ac3 transformation point or above, then is left standing for cooling is subjected to a post heat treatment being acceleratedly cooled and further a tempering treatment suceedingly to the accelerated cooling. V>=2...I. P>=0.4Vt/e<a(> T<-> T<0)> ...II. Wherein, a=0.0006, P: laser output (kW), V: welding speed (m/min), t: strip thickness (mm), T: preheating temperature ( deg.C) in both edges of strip, and T0: room temperature ( deg.C).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫化水素を含んだ原油
や天然ガスを輸送するラインパイプ用鋼管、より詳しく
はAPI規格(アメリカ石油協会規格)に規定されるX
42級以上の高強度ラインパイプ用に使用して好適な溶
接部の強度、耐水素誘起割れ性および耐硫化物応力割れ
性に優れたラインパイプ用溶接鋼管の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel pipe for a line pipe for transporting crude oil or natural gas containing hydrogen sulfide, and more specifically to X prescribed in API standard (American Petroleum Institute standard).
The present invention relates to a method for producing a welded steel pipe for a line pipe, which has excellent weld strength, hydrogen-induced cracking resistance, and sulfide stress cracking resistance suitable for high-strength line pipes of 42 grade or higher.

【0002】[0002]

【従来の技術】溶接鋼管の利用分野において大きなウェ
ートを占めるラインパイプの製法をその溶接方法で分類
すると、通常、外径が508mm以上、肉厚が6.35
mm以上の中大径の厚肉管はサブマージアーク溶接法
(以下、SAW法という)が適用され、この大径厚肉管
はUOEプレス法で鋼板を管状に成形するのであるが薄
肉材の成形が困難なため、外径が610mm以下、肉厚
が19mm以下の中小径の薄肉管は電縫溶接法(以下、
ERW法という)が適用されている。
2. Description of the Related Art When a method of manufacturing a line pipe, which occupies a large weight in the field of use of welded steel pipe, is classified according to the welding method, the outer diameter is usually 508 mm or more and the wall thickness is 6.35.
The submerged arc welding method (hereinafter referred to as SAW method) is applied to medium- and large-diameter thick-walled pipes of mm or more, and this large-diameter thick-walled pipe is formed into a tubular shape by the UOE press method. Because it is difficult to use the ERW method (hereinafter,
The ERW method) is applied.

【0003】ところが、上記中小径の薄肉管の製造に適
用されるERW法は、溶接速度が速いことから高能率で
製品を得ることが可能である反面、次のような問題があ
る。
However, the ERW method applied to the production of the small- and medium-sized thin-walled pipes has a high welding speed and thus can obtain a product with high efficiency, but has the following problems.

【0004】すなわち、ERW法は、大気中での溶接あ
るいは不活性ガスシールド中での溶接であってもシール
ドが不完全で酸素分圧が比較的高いため、スケール等の
欠陥誘起物質が衝合溶接面間に混入して溶接欠陥が多発
し易い。また、高周波投入電力が低いと溶融不足による
冷接欠陥が多発し、逆に、高周波投入電力が高いと強い
電磁力による溶鋼の不安定現象が生じてペネトレーター
欠陥が多発するが、これら冷接欠陥およびペネトレータ
欠陥の発生防止を図るための高周波投入電力の微調整は
極めて困難である。
That is, in the ERW method, even if welding is performed in the atmosphere or in an inert gas shield, the shield is incomplete and the oxygen partial pressure is relatively high. Mixing between the welding surfaces is likely to cause many welding defects. In addition, when the high frequency input power is low, cold welding defects frequently occur due to insufficient melting, and conversely, when the high frequency input power is high, the instability phenomenon of molten steel due to strong electromagnetic force occurs and penetrator defects frequently occur. Also, it is extremely difficult to finely adjust the high-frequency input power to prevent the occurrence of penetrator defects.

【0005】このようなERW法で製造された溶接鋼管
をラインパイプとして使用した場合、その管内面が湿潤
2 S環境に曝されると、腐食によって発生した水素が
鋼中に侵入して溶接欠陥部に水素ガスとして溜ることに
起因して衝合溶接面に水素誘起割れ(以下、HICとい
う)が発生し、これが衝合溶接時のアプセットによって
形成されたメタルフローに沿って肉厚方向に伝播する場
合があり、耐水素誘起割れ性(以下、耐HIC性とい
う)に劣る。また、ラインパイプでは、内圧によるフー
プストレスが前記メタルフローに対して垂直にかかるの
で、溶接部に硫化物応力割れ(以下、SSCという)が
発生し易く、耐硫化物応力割れ性(以下、耐SSC性と
いう)についても必ずしも満足できるものでない。
When a welded steel pipe manufactured by such an ERW method is used as a line pipe, when the inner surface of the pipe is exposed to a wet H 2 S environment, hydrogen generated by corrosion penetrates into the steel and welds. Hydrogen-induced cracking (hereinafter referred to as HIC) occurs on the abutting weld surface due to the accumulation of hydrogen gas in the defect portion, and this occurs in the thickness direction along the metal flow formed by the upset during the abutting welding. It may propagate, and is inferior in hydrogen-induced cracking resistance (hereinafter referred to as HIC resistance). Further, in the line pipe, since the hoop stress due to the internal pressure is applied perpendicularly to the metal flow, sulfide stress cracking (hereinafter referred to as SSC) is likely to occur in the welded portion, and sulfide stress cracking resistance (hereinafter referred to as resistance to sulfide stress cracking). SSC property) is not always satisfactory.

【0006】これに対し、SAW法では溶接欠陥が発生
しにくいうえ、たとえ欠陥が発生したとしても非破壊検
査でこれを見つけ出して補修することが可能であり、そ
のため得られる溶接鋼管の信頼性が非常に高く、溶接部
にHICやSSCの発生はほとんど見られない。
On the other hand, in the SAW method, welding defects are less likely to occur, and even if defects occur, they can be found and repaired by non-destructive inspection, and therefore the reliability of the welded steel pipe obtained is high. It is very high and almost no HIC or SSC is found in the weld.

【0007】しかし、前述したように、SAW法を適用
することができない外径が508mm以下、肉厚が6.
35mm以下の中小径の薄肉管はERW法によって製造
するしか方法がないため、高速製管が可能であるという
ERW法の長所を生かしつつ、その溶接部にラインパイ
プとして求められる性能を与えことが必要である。
However, as described above, the outer diameter to which the SAW method cannot be applied is 508 mm or less and the wall thickness is 6.
Since the only method for producing small- and medium-diameter thin-walled pipes of 35 mm or less is by the ERW method, it is possible to give the performance required as a line pipe to the welded portion while taking advantage of the ERW method that high-speed pipe production is possible. is necessary.

【0008】ところで、HICおよびSSCの原因は大
きく分けて介在物と硬化組織であるが、ERW法におけ
る溶接欠陥は酸化物系介在物が主であり、これがHIC
やSSCの起点となるため、溶接衝合面における欠陥誘
起物質の混入、ペネトレーター欠陥や冷接欠陥の発生を
防ぐ方法が必要である。
By the way, the causes of HIC and SSC are roughly classified into inclusions and hardened structure. However, the welding defects in the ERW method are mainly oxide inclusions, which is HIC.
Since it becomes the starting point of SSC and SSC, it is necessary to prevent the mixing of defect-inducing substances on the weld abutting surface and the generation of penetrator defects and cold welding defects.

【0009】このため、特開平3−810972号公報
には、逆極性消耗電極ワイヤーを用いて母材表面にイオ
ンを衝突させ、両エッジ近傍の表面酸化物を除去クリー
ニングするとともに、アプセット量をオープンパイプ肉
厚の1/5以上にして溶接接合面間から欠陥誘起物質を
押し出し溶接することで、溶接欠陥をほぼゼロに減少さ
せて耐SSC性を改善した溶接鋼管の製造方法が提案さ
れている。しかし、この方法は溶接欠陥を減少させるこ
とはできるが、アプッセトによってメタルフローが形成
され、このメタルフローに沿ってSSCが発生し易いと
いう欠点を有している。
For this reason, in Japanese Unexamined Patent Publication No. 3-810972, a reverse polarity consumable electrode wire is used to collide ions with the surface of the base material to remove and clean the surface oxide near both edges, and the upset amount is opened. A method for manufacturing a welded steel pipe has been proposed in which a defect-inducing substance is extruded from between welded surfaces to a thickness of ⅕ or more of the pipe wall thickness, and welding defects are reduced to almost zero to improve SSC resistance. . However, although this method can reduce welding defects, it has a drawback in that a metal flow is formed by the upset and SSC easily occurs along the metal flow.

【0010】また、特開平2−70379号公報には、
帯鋼両エッジ部の高周波加熱に引き続いて溶接速度がE
RW法の1/5〜1/10であるレーザービームを溶接
部に照射することで、SAW法等のアーク溶接と同等の
溶接部性能を有する溶接鋼管を得ることを目的とした方
法が提案されている。しかし、この方法では、ERW法
とは本質的に異なる溶融溶接であるレーザー溶接を併用
するため、溶接部欠陥の発生をなくすることはできるも
のの、その溶接速度はレーザー単独溶接製管法の高々2
倍程度でしかないという欠点を有している。
Further, Japanese Patent Laid-Open No. 2-70379 discloses that
Following high frequency heating of both edges of the steel strip, the welding speed is E
By irradiating the welded portion with a laser beam that is 1/5 to 1/10 of that of the RW method, a method aimed at obtaining a welded steel pipe having a welded portion performance equivalent to arc welding such as the SAW method has been proposed. ing. However, in this method, since laser welding, which is fusion welding that is essentially different from the ERW method, is used together, the occurrence of weld defects can be eliminated, but the welding speed is at most as high as that of the laser-only welding pipe manufacturing method. Two
It has a drawback that it is only about double.

【0011】さらに、特開平5−228660号公報に
は、図1に示すように、帯鋼1の両エッジの溶接直前の
突き合わせ横断面形状をオープンパイプの外面側に所定
寸法の幅a、深さbを有するV溝2を形成したY形状と
し、前記V溝2の底部に焦点を合わせてレーザービーム
を照射することによって、耐HIC性と耐SSC性に優
れるERW法での製造サイズ(外径19〜610mm、
肉厚1〜19mm)のラインパイプ用溶接鋼管を、レー
ザー溶接法単独でERW法にほぼ匹敵する溶接速度で製
造する方法が提案されている。しかし、この方法では、
6〜8mm程度までの薄肉管に適用できるに留まり、よ
り一層の高速化または8〜13mmを超える厚肉管に適
用するには前記のV溝2の深さbを深くする必要がある
が、この場合にはV溝2が溶融金属で埋められるよりも
速く溶接が進行するため、図2に示すように、アンダー
カット6やその表面が母材帯鋼表面よりも窪んだアンダ
ービードなどのビード形状不良の欠陥が多発する。この
ビード形状不良の発生を避けるために溶接速度を遅くす
ると、溶融金属部の溶接後の冷却速度が低下して溶接部
の溶け込み形状が、図3に示すように、ワインカップ状
となる結果、溶接部の結晶粒が粗大化して肉厚方向の柱
状晶となって、耐HIC性および耐SSC性が劣化する
のみならず、溶接熱影響部(HAZ)が広くなってHA
Z軟化が顕著になり、強度が低下するという欠点を有し
ている。
Further, in JP-A-5-228660, as shown in FIG. 1, a butt cross-sectional shape of both edges of the strip steel 1 immediately before welding is formed on the outer surface side of the open pipe with a predetermined width a and depth. The V-groove 2 having a thickness b is formed into a Y shape, and the bottom of the V-groove 2 is focused and irradiated with a laser beam to obtain a manufacturing size (external size) by the ERW method excellent in HIC resistance and SSC resistance. Diameter 19-610 mm,
A method of manufacturing a welded steel pipe for a line pipe having a wall thickness of 1 to 19 mm) by a laser welding method alone at a welding speed almost equal to that of the ERW method has been proposed. But with this method,
It is necessary to make the depth b of the V-groove 2 deeper in order to apply it to a thin-walled tube up to about 6 to 8 mm, and to apply it to a higher-speed tube or a thick-walled tube exceeding 8 to 13 mm. In this case, the welding progresses faster than the V groove 2 is filled with the molten metal. Therefore, as shown in FIG. 2, the undercut 6 and a bead such as an underbead whose surface is recessed from the surface of the base metal strip. Defects with poor shape frequently occur. When the welding speed is slowed to avoid the occurrence of this bead shape defect, the cooling rate of the molten metal portion after welding is reduced and the welded shape of the welded portion becomes a wine cup shape as shown in FIG. Not only does HIC resistance and SSC resistance deteriorate as the crystal grains in the weld become coarser to form columnar crystals in the thickness direction, but the weld heat affected zone (HAZ) becomes wider and HA
It has a drawback that the Z softening becomes remarkable and the strength decreases.

【0012】そして、上記ワインカップ状の溶け込み組
織は、通常、ラインパイプ用の溶接鋼管の製造に際して
経済性の面から溶接後の溶接部に後熱処理を施すのに用
いられる局部加熱可能な高周波誘導加熱手段を用いて熱
処理を施してもこれを解消することが不可能である。す
なわち、局部加熱が可能な誘導加熱手段で溶接部に発生
した上記ワインカップ状の溶け込み組織を解消するため
には、ワインカップ状の溶け込み幅に対応した幅広い加
熱を行う必要があるが、この場合には中心部の温度が上
がり過ぎるため組織が粗粒化して耐SSC性が低下し、
これを防止すべく温度制御を行うとHAZの加熱不足を
招いてHAZ軟化の解消ができず強度が低下するからで
ある。なお、管全体を後熱処理すれば上記の問題は解消
できるが、生産性が著しく低下して経済性を損なうので
採用し難い。
The above-mentioned wine cup-shaped melted structure is usually a locally heatable high frequency induction used for post heat treatment of the welded part after welding from the viewpoint of economy in manufacturing a welded steel pipe for a line pipe. Even if heat treatment is performed using a heating means, it is impossible to eliminate this. That is, in order to eliminate the wine cup-shaped melted structure generated in the welded portion by the induction heating means capable of local heating, it is necessary to perform wide heating corresponding to the wine cup-shaped melted width. Since the temperature of the central part is too high, the structure becomes coarse and the SSC resistance decreases,
This is because if the temperature control is performed to prevent this, the HAZ is insufficiently heated, the HAZ softening cannot be eliminated, and the strength decreases. The above problem can be solved by subjecting the entire tube to a post heat treatment, but it is difficult to adopt because the productivity is remarkably reduced and the economical efficiency is impaired.

【0013】[0013]

【発明が解決しようとする課題】本発明の目的は、上記
の実状に鑑みなされたもので、上記ERW法での製造サ
イズで、且つ6〜8mmを超える肉厚管であってもER
Wにほぼ匹敵する能率で、しかも上記特開平5−228
660号公報に開示のV溝を設ける単独レーザー溶接法
以上の溶接速度での溶接が可能であり、溶接部の強度、
耐HIC性および耐SSC性に優れるレーザー溶接法を
用いたラインパイプ用溶接鋼管の製造方法を提供するこ
とにある。
The object of the present invention has been made in view of the above-mentioned circumstances, and it is possible to obtain ER even in a thick tube having a manufacturing size of the above-mentioned ERW method and exceeding 6 to 8 mm.
The efficiency is almost equal to W, and the above-mentioned JP-A-5-228
It is possible to perform welding at a welding speed higher than that of the single laser welding method in which the V groove disclosed in Japanese Patent No. 660 is provided, the strength of the welded portion,
It is an object of the present invention to provide a method for producing a welded steel pipe for a line pipe using a laser welding method which is excellent in HIC resistance and SSC resistance.

【0014】[0014]

【課題を解決するための手段】本発明の要旨は、次の
〜に記載の耐水素誘起割れ性および耐硫化物応力割れ
性に優れるラインパイプ用溶接鋼管の製造方法にある。
The gist of the present invention is a method for producing a welded steel pipe for a line pipe, which is excellent in hydrogen-induced cracking resistance and sulfide stress cracking resistance as described in the following items.

【0015】 重量%で、C:0.01〜0.20
%、Si:0.03〜0.80%、Mn:0.40〜
2.00%、P:0.025%以下、S:0.002%
以下、sol−Al:0.01〜0.10%を含み、さ
らにCu:0〜0.50%、Ni:0〜0.50%、C
r:0〜1.20%、Mo:0〜1.00%、Nb:0
〜0.15%、V:0〜0.15%、Ti:0〜0.1
5%、Zr:0〜0.15%およびB:0〜0.005
0%のうちの1種または2種以上、並びにCa:0〜
0.0050%およびREM:0〜0.01%の1種ま
たは2種を含み、残部がFeおよび不可避不純物からな
る帯鋼を、成形ロール群に通して連続的にオープンパイ
プ状に成形し、このオープンパイプをスクイズロールで
加圧して帯鋼両エッジを突合せ、その突合せ部にレーザ
ービームを照射して衝合溶接して溶接鋼管となすに際
し、下記の(1)および(2)式を満たす条件でレーザ
ービームを照射して溶接することを特徴とする耐水素誘
起割れ性および耐硫化物応力割れ性に優れるラインパイ
プ用溶接鋼管の製造方法。
% By weight, C: 0.01 to 0.20
%, Si: 0.03 to 0.80%, Mn: 0.40
2.00%, P: 0.025% or less, S: 0.002%
Hereinafter, sol-Al: 0.01 to 0.10% is included, further Cu: 0 to 0.50%, Ni: 0 to 0.50%, C
r: 0 to 1.20%, Mo: 0 to 1.00%, Nb: 0
~ 0.15%, V: 0 ~ 0.15%, Ti: 0 ~ 0.1
5%, Zr: 0 to 0.15% and B: 0 to 0.005
One or more of 0%, and Ca: 0
A strip steel containing 0.0050% and REM: 0 to 0.01% of 1 or 2 and the balance of Fe and unavoidable impurities is continuously formed into an open pipe shape through a forming roll group, When this open pipe is pressed by a squeeze roll, both edges of the steel strip are butted against each other, and the butted portion is irradiated with a laser beam to be abutted and welded to form a welded steel pipe, the following formulas (1) and (2) are satisfied. A method for producing a welded steel pipe for a line pipe, which is excellent in hydrogen-induced cracking resistance and sulfide stress cracking resistance, characterized by irradiating a laser beam for welding under the conditions.

【0016】V≧2 ・・・・・・(1) P≧0.4Vt/ea(T-T0) ・・・・・・(2) ただし、a=0.0006 P :レーザ出力(kW) V :溶接速度(m/min) t :帯鋼肉厚(mm) T :帯鋼両エッジ部の予熱温度(℃) T0 :室温(℃) 溶接後、少なくとも溶接部をAc3変態点以上に加熱
した後、放冷することを特徴とする請求項1に記載の耐
水素誘起割れ性および耐硫化物応力割れ性に優れるライ
ンパイプ用溶接鋼管の製造方法。
V ≧ 2 (1) P ≧ 0.4 Vt / e a (T-T0) (2) where a = 0.006 P: laser output (kW) ) V: Welding speed (m / min) t: Strip steel wall thickness (mm) T: Preheating temperature (° C) of both edges of the strip T0: Room temperature (° C) After welding, at least the weld point is Ac 3 transformation point or higher The method for producing a welded steel pipe for a line pipe, which is excellent in hydrogen-induced cracking resistance and sulfide stress cracking resistance, according to claim 1, wherein the method is allowed to cool after heating.

【0017】 溶接後、少なくとも溶接部をAc3変態
点以上に加熱した後、(Ar3変態点−30℃)以上、1
000℃以下の温度域から加速冷却することを特徴とす
る請求項1に記載の耐水素誘起割れ性および耐硫化物応
力割れ性に優れるラインパイプ用溶接鋼管の製造方法。
After welding, after heating at least the welded portion to the Ac 3 transformation point or higher, (Ar 3 transformation point −30 ° C.) or higher, 1
The method for producing a welded steel pipe for a line pipe having excellent hydrogen-induced cracking resistance and sulfide stress cracking resistance according to claim 1, wherein accelerated cooling is performed from a temperature range of 000 ° C. or less.

【0018】 加速冷却に引き続き、500〜750
℃の温度域で焼き戻すことを特徴とする請求項3に記載
の耐水素誘起割れ性および耐硫化物応力割れ性に優れる
ラインパイプ用溶接鋼管の製造方法。
Following the accelerated cooling, 500-750
The method for producing a welded steel pipe for a line pipe excellent in hydrogen-induced cracking resistance and sulfide stress cracking resistance according to claim 3, wherein the tempering is performed in a temperature range of ° C.

【0019】上記〜の本発明方法において、素材帯
鋼のCu、Ni、Cr、Mo、Nb、V、Ti、Zrお
よびB、並びにCaおよびREMは無添加でもよい。こ
れらを積極的に添加する場合、Cu、Ni、Crおよび
Moについては0.05%以上、Nb、V、Tiおよび
Zrについては0.01%以上、B、CaおよびREM
については0.0005%以上を含有させるのが望まし
い。
In the above-mentioned methods of the present invention, Cu, Ni, Cr, Mo, Nb, V, Ti, Zr and B, and Ca and REM of the material strip steel may be added without addition. When these are positively added, 0.05% or more for Cu, Ni, Cr and Mo, 0.01% or more for Nb, V, Ti and Zr, B, Ca and REM.
It is desirable to contain 0.0005% or more.

【0020】本発明者らは、種々実験研究の結果、次の
(a) 〜 (d)の知見を得て本発明をなした。
As a result of various experimental studies, the present inventors have found that
The present invention was made based on the findings of (a) to (d).

【0021】(a) レーザー溶接法を用いる場合、溶接速
度を2m/min以上、すなわち上記(1)式を満足さ
せると、前記特開平5−228660号公報に開示され
る方法が採用するV溝の有無、レーザー出力および材料
肉厚等とは無関係に、溶接部の溶け込み形状がワインカ
ップ状になって溶接部の結晶粒が粗大化して肉厚方向の
柱状晶となるのを防止できること。
(A) When the laser welding method is used, if the welding speed is 2 m / min or more, that is, if the above expression (1) is satisfied, the V groove adopted by the method disclosed in the above-mentioned JP-A-5-228660 is adopted. Irrespective of the presence / absence of the laser beam, the laser output, the material thickness, etc., it is possible to prevent the melted shape of the welded portion from becoming a wine cup shape and coarsening of the crystal grains of the welded portion to form columnar crystals in the thickness direction.

【0022】(b) 単独レーザー溶接法において、特開平
5−228660号公報に開示の如くにV溝を設けるの
は、低出力レーザービームでも肉厚方向への貫通ビード
を形成し得て高速溶接を可能とするためである。従っ
て、V溝を設けないと低出力のレーザービームでは貫通
ビードを得ることが不可能であり、この場合には高周波
加熱手段等によって帯鋼両エッジ部を予め予熱して後レ
ーザービームを照射して溶接することが有効となるが、
その予熱効果はレーザービームに比べてエネルギー密度
が低いという理由からほぼ上限温度である 1250℃
に予熱したとしても、予熱しない場合に比べてレーザ出
力比換算で高々2倍の効果、すなわち上記(2)式の右
項中の分母の効果しかなく、予熱を併用するとしてもそ
れだけでは効果が不十分であり、大出力のレーザー発振
機、例えば従来5kWが一般的であったものを25kW
というような大出力のレーザー発振機を用いる必要のあ
ること。
(B) In the single laser welding method, the V groove is provided as disclosed in Japanese Unexamined Patent Publication No. 5-228660, so that a through bead in the thickness direction can be formed even with a low power laser beam and high speed welding is possible. This is to enable Therefore, it is impossible to obtain a penetrating bead with a low-power laser beam unless the V groove is provided. In this case, both edge portions of the steel strip are preheated in advance by a high-frequency heating means or the like and a post-laser beam is irradiated. Welding is effective, but
The preheating effect is almost the upper limit temperature because the energy density is lower than that of the laser beam.
Even if preheating is performed, there is at most a double effect in terms of laser output ratio compared to the case without preheating, that is, there is only the effect of the denominator in the right term of the above equation (2). Insufficient, high-power laser oscillator, for example, the conventional 5kW was 25kW
It is necessary to use a high-power laser oscillator.

【0023】(c) また、単に大出力のレーザーを用いる
のみでは不十分で、レーザー出力をP(Kw)、帯鋼肉
厚をt(mm)、溶接速度をV(m/min)および帯
鋼両エッジ部の予熱温度をT(℃)したとき、帯鋼肉厚
tに応じて上記(2)式の関係を満足させて溶接する
と、酸化物等が存在しない無欠陥溶接部が得られるこ
と。
(C) Further, it is not enough to simply use a high-power laser. The laser output is P (Kw), the strip steel wall thickness is t (mm), the welding speed is V (m / min) and strip. When the preheating temperature of both edges of the steel is T (° C.) and the welding is performed while satisfying the relationship of the above formula (2) according to the strip steel wall thickness t, a defect-free weld without oxides or the like is obtained. thing.

【0024】(d) 溶接後、局部加熱可能な高周波誘導加
熱手段を用いて溶接部に後熱処理を施す際、溶接部を一
旦Ac3変態点以上に加熱後、放冷するか或いは(Ar3
態点−30℃)〜1000℃の温度域から加速冷却する
と、溶接金属部の組織が粗粒組織にならず、さらに加速
冷却に引き続いて500〜700℃の温度域で焼戻しを
施して硬度を下げると、溶接部の耐HIS性および耐S
SCがより一層向上すること。
(D) After the welding, when the post-heat treatment is applied to the weld using the high frequency induction heating means capable of local heating, the weld is once heated to the Ac 3 transformation point or higher and then allowed to cool (Ar 3 When accelerated cooling is carried out from the temperature range of (transformation point −30 ° C.) to 1000 ° C., the structure of the weld metal part does not become a coarse-grained structure, and further the accelerated cooling is followed by tempering in the temperature range of 500 to 700 ° C. to increase the hardness. When lowered, HIS resistance and S resistance of welded parts
SC will be further improved.

【0025】[0025]

【作用】以下、本発明の方法を上記のように限定した理
由について詳細に説明する。
The reason why the method of the present invention is limited as described above will be described in detail below.

【0026】耐HIC性と耐SSC性に優れるラインパ
イプ用溶接鋼管を得るためには、当然のことながら優れ
た耐HIC性と耐SSC性を備えた素材帯鋼(熱延鋼
板)を用いる必要がある。なお、製管後に少なくとも溶
接シーム部、望ましくは管全体に所定の熱処理を施し
て、素材帯鋼製造時の履歴に関係なく耐HIC性と耐S
SC性に優れた母材性能が得られるようにするのが好ま
しい。このため、素材として用いる帯鋼(熱延鋼板)の
成分組成を指定したが、各成分の含有量は次の理由によ
って特定範囲に限定した。
In order to obtain a welded steel pipe for line pipes having excellent HIC resistance and SSC resistance, it is naturally necessary to use a material strip steel (hot rolled steel sheet) having excellent HIC resistance and SSC resistance. There is. After pipe production, at least the weld seam, preferably the entire pipe, is subjected to a prescribed heat treatment to obtain HIC resistance and S resistance irrespective of the history during the production of the material strip steel.
It is preferable to obtain the base material performance excellent in SC property. For this reason, the composition of the strip steel (hot rolled steel sheet) used as a material is specified, but the content of each component is limited to a specific range for the following reasons.

【0027】C:0.01〜0.20% Cは鋼管に所定の強度(X42級以上の強度)を付与す
る作用があるが、その含有量が0.01%未満であると
上記強度の保証が困難となり、一方、その含有量が0.
20%を超えると靭性劣化を招くことから、C含有量は
0.01〜0.20%と定めた。
C: 0.01 to 0.20% C has an effect of imparting a predetermined strength (strength of X42 grade or higher) to the steel pipe, but if the content is less than 0.01%, the above-mentioned strength is increased. Guarantee becomes difficult, while its content is 0.
If it exceeds 20%, toughness is deteriorated, so the C content is set to 0.01 to 0.20%.

【0028】ただし、溶接後に溶接シーム部に後熱処理
を施さない場合には、その含有量が0.12%を超える
と溶接部の硬化を招いて耐HIC性と耐SSC性がとも
に低下するので、この場合のC含有量は0.01〜0.
12%とするのが望ましい。
However, in the case where the post-heat treatment is not applied to the weld seam after welding, if the content exceeds 0.12%, hardening of the weld will be caused and both the HIC resistance and the SSC resistance will decrease. , And the C content in this case is 0.01-0.
12% is preferable.

【0029】また、X70〜X80級の高張力鋼管を得
ようとする場合は、溶接シーム部の後熱処理の有無にか
かわらず、その含有量は0.01〜0.07%とするの
が望ましい。
When an X70 to X80 grade high-strength steel pipe is to be obtained, its content is preferably 0.01 to 0.07% regardless of the presence or absence of post heat treatment of the weld seam. .

【0030】Si:0.03〜0.80% Siは鋼の脱酸のために0.03%以上の含有量を確保
する必要があり、一方、その含有量が0.80%を超え
ると靭性劣化を招く上、焼き戻し脆化を招くので、Si
含有量は0.03〜0.80%と定めた。好ましくは、
0.05〜0.30%である。
Si: 0.03 to 0.80% Si is required to secure a content of 0.03% or more for deoxidation of steel. On the other hand, when the content exceeds 0.80%. Since it causes toughness deterioration and temper embrittlement, Si
The content was set to 0.03 to 0.80%. Preferably,
It is 0.05 to 0.30%.

【0031】Mn:0.40〜2.00% Mnは鋼管に所定の強度(X42級以上の強度)を確保
する作用があるが、その含有量が0.40%未満では所
望とする強度の確保ができず、一方、2.00%を超え
て含有させると耐SSC性の低下を招くことから、Mn
含有量は0.40〜2.00%と定めた。
Mn: 0.40 to 2.00% Mn has a function of ensuring a predetermined strength (strength of X42 grade or higher) in the steel pipe, but if the content thereof is less than 0.40%, the desired strength is obtained. However, the content of Mn exceeds 2.00%, the SSC resistance is deteriorated.
The content was set to 0.40 to 2.00%.

【0032】ただし、X70級未満の高張力鋼管を得よ
うとする場合、その含有量が1.80%を超えると母材
偏析部の合金元素濃度が高くなり、特にC含有量が0.
08%以上の母材では母材の耐HIC性と耐SSC性が
ともに劣化するので、この場合のMn含有量は0.40
〜1.80%とするのが望ましい。また、溶接後に溶接
シーム部に後熱処理を施さない場合には、その含有量が
1.40%を超えると溶接部の硬化を招いて耐HIC性
と耐SSC性がともに低下するので、この場合のMn含
有量は0.40〜1.40%とするのが望ましい。さら
に、X70〜X80級の高張力鋼管を得ようとする場合
には、溶接シーム部の後熱処理の有無にかかわらず、そ
の含有量は0.40〜2.00%とするのが望ましい。
However, in order to obtain a high-strength steel pipe of less than X70 grade, if the content exceeds 1.80%, the alloy element concentration in the base metal segregated portion becomes high, and particularly the C content is less than 0.
Since the HIC resistance and the SSC resistance of the base material both deteriorate with a base material of 08% or more, the Mn content in this case is 0.40.
It is desirable to be set to 1.80%. Further, when the post-heat treatment is not applied to the weld seam portion after welding, if the content exceeds 1.40%, hardening of the weld portion is caused and both the HIC resistance and the SSC resistance decrease, so in this case The Mn content of is preferably 0.40 to 1.40%. Further, when an X70 to X80 grade high-strength steel pipe is to be obtained, the content thereof is preferably 0.40 to 2.00% regardless of the presence or absence of post heat treatment of the weld seam.

【0033】P:0.025%以下 Pは不可避不純物であり、その含有量は低い方が望まし
い。特に、0.025%を超えてPが含有されると母材
偏析部の合金元素濃度が高くなり、母材の耐SSC性低
下が顕著となる上、焼き戻し脆化の点でも悪影響が現れ
ることから、P含有量は0.025%以下と定めた。好
ましくは、0.015%以下である。
P: 0.025% or less P is an unavoidable impurity, and its content is preferably low. In particular, when P is contained in excess of 0.025%, the concentration of alloying elements in the base metal segregated portion becomes high, the SSC resistance of the base material is significantly reduced, and adverse effects also appear in terms of temper embrittlement. Therefore, the P content is determined to be 0.025% or less. It is preferably 0.015% or less.

【0034】S:0.002%以下 Sは不可避不純物であり、その含有量は低い方が望まし
い。特に、0.002%を超えてSが含有されるとCa
あるいはREM(希土類元素)によってもその形態制御
が不可能な硫化物系介在物(MnS)が生成し、耐HI
C性および耐SSC性の低下が著しくなることから、S
含有量は0.002%以下と定めた。好ましくは、0.
001%以下である。
S: 0.002% or less S is an unavoidable impurity, and its content is preferably low. In particular, when S is contained in excess of 0.002%, Ca
Alternatively, REM (rare earth elements) also produces sulfide-based inclusions (MnS) whose morphology cannot be controlled, and is resistant to HI.
Since the deterioration of the C property and SSC resistance becomes remarkable, S
The content was set to 0.002% or less. Preferably, 0.
It is 001% or less.

【0035】sol−Al:0.01〜0.10% Alは鋼の脱酸のためにsol−Al含有量で0.01
%以上を確保する必要があるが、その含有量が0.10
%を超えると鋼の清浄度確保が困難となることから、s
ol−Al含有量は0.01〜0.10%と定めた。好
ましくは、0.02〜0.05%である。
Sol-Al: 0.01 to 0.10% Al is 0.01 in sol-Al content for deoxidizing steel.
% Must be secured, but the content is 0.10
%, It becomes difficult to secure the cleanliness of steel.
The ol-Al content was set to 0.01 to 0.10%. Preferably, it is 0.02 to 0.05%.

【0036】本発明の素材帯鋼は、上記成分に加えて、
次のCaおよびREM(希土類元素)の1種または2
種、並びにCu、Ni、Cr、Mo、Nb、V、Ti、
ZrおよびBのうちの1種または2種以上を含有する鋼
からなるものであってもよい。
The material strip steel of the present invention, in addition to the above components,
One or two of the following Ca and REM (rare earth elements)
Seeds, Cu, Ni, Cr, Mo, Nb, V, Ti,
It may be made of steel containing one or more of Zr and B.

【0037】CaおよびREM(希土類元素):上限
は、それぞれ0.0050%、0.01% これらの成分は、硫化物系介在物の形態制御を通じて耐
SSC性の向上作用を発揮するので、これらの効果を得
たい場合には、必要に応じてCaおよびREMのうちの
1種または2種を含有させることができるが、いずれの
元素もその含有量が0.0005%未満では前記作用に
よる所望の効果が充分に得られず、一方、Caの場合に
は0.005%を超えて含有されるとCa系介在物の増
加により耐HIC性および耐SSC性の劣化を招き、ま
た、REMの場合には0.01%を超えて含有されると
酸化物系介在物の増加により耐HIC性および耐SSC
性の劣化を招くことから、含有させる場合のCa含有量
は0.0005〜0.0050%、REM含有量は0.
0005〜0.01%とそれぞれ定めた。
Ca and REM (rare earth elements): The upper limits are 0.0050% and 0.01%, respectively. These components exert an action of improving SSC resistance through controlling the morphology of sulfide inclusions. If desired, one or two of Ca and REM can be contained. However, if the content of any element is less than 0.0005%, the desired effect due to the above action can be obtained. In the case of Ca, on the other hand, if the content of Ca exceeds 0.005%, HIC resistance and SSC resistance are deteriorated due to the increase of Ca-based inclusions. In some cases, if the content exceeds 0.01%, HIC resistance and SSC resistance are increased due to an increase in oxide inclusions.
If it is contained, the Ca content is 0.0005 to 0.0050%, and the REM content is 0.
It was defined as 0005 to 0.01%.

【0038】Cu、Ni、Cr、Mo、Nb、V、T
i、ZrおよびB これらの成分は、いずれも鋼管の強度および靭性を改善
する作用があるので、これらの効果を得たい場合には、
必要に応じてCu、Ni、Cr、Mo、Nb、V、T
i、ZrおよびBのうちから1種または2種以上を選ん
で含有させることができるが、各成分は次の理由から含
有させる場合の含有量を次のように定めた。
Cu, Ni, Cr, Mo, Nb, V, T
i, Zr, and B All of these components have the effect of improving the strength and toughness of the steel pipe. Therefore, if these effects are desired,
Cu, Ni, Cr, Mo, Nb, V, T as required
One or more of i, Zr, and B can be selected and contained. However, the content of each component is defined as follows for the following reasons.

【0039】Cu、Ni:上限は、いずれも0.50% いずれの元素も、その含有量が0.05%未満であると
強度及び靭性の改善効果が不十分であり、一方、0.5
0%を超えて含有させると熱間加工性が低下して素材と
なる熱延コイルの製造が困難となるので、含有させる場
合の含有量は、いずれの元素も0.05〜0.50%と
定めた。
Cu, Ni: The upper limits are both 0.50%. If the content of any element is less than 0.05%, the effect of improving strength and toughness is insufficient, while 0.5%
If the content exceeds 0%, the hot workability is deteriorated and it becomes difficult to manufacture the hot-rolled coil used as the raw material. Therefore, the content of each element is 0.05 to 0.50%. I decided.

【0040】Cr:上限は、1.20% Cr含有量が0.05%未満であると強度及び靭性の改
善効果が不十分であり、一方、1.20%を超えて含有
させると靭性の低下、耐SSC性の低下を招くので、含
有させる場合の含有量は0.05〜1.20%と定め
た。
Cr: The upper limit is 1.20%. If the Cr content is less than 0.05%, the effect of improving the strength and toughness is insufficient, while if it is more than 1.20%, the toughness is improved. Since it causes deterioration in the SSC resistance and the SSC resistance, the content in the case of containing it is set to 0.05 to 1.20%.

【0041】Mo:上限は、1.00% Mo含有量が0.05%未満であると強度及び靭性の改
善効果が不十分であり、一方、1.00%を超えて含有
させると、靭性の低下、耐SSC性の低下を招くので、
含有させる場合の含有量は0.05〜1.00%と定め
た。
Mo: The upper limit is 1.00%. If the Mo content is less than 0.05%, the effect of improving the strength and toughness is insufficient, while if it exceeds 1.00%, the toughness is increased. And SSC resistance are deteriorated.
When it is contained, the content is defined as 0.05 to 1.00%.

【0042】Nb、V、TiおよびZr:上限は、いず
れも0.15% いずれの元素も、その含有量が0.01%未満であると
強度及び靭性の改善効果が不十分であり、一方、0.1
5%を超えて含有させると靭性の低下を招くので、含有
させる場合の含有量は、いずれの元素も0.01〜0.
15%と定めた。
Nb, V, Ti and Zr: The upper limits are all 0.15%. If the content of any element is less than 0.01%, the effect of improving strength and toughness is insufficient. , 0.1
If it is contained in excess of 5%, the toughness will be deteriorated. Therefore, the content of each element is 0.01 to 0.
It was set at 15%.

【0043】B:上限は、0.0050%、 B含有量が0.0005%未満であると強度及び靭性の
改善効果が不十分であり、一方、0.0050%を超え
て含有されると靭性の低下を招くので、含有させる場合
の含有量は0.0005〜0.0050%と定めた。
B: The upper limit is 0.0050%, and if the B content is less than 0.0005%, the effect of improving strength and toughness is insufficient, while if it exceeds 0.0050%. Since the toughness is deteriorated, the content in the case of containing it is set to 0.0005 to 0.0050%.

【0044】上記成分組成の素材帯鋼は、以下に述べる
条件で製造するのが望ましいが、これに限定されるもの
ではない。
The material strip steel having the above composition is preferably produced under the conditions described below, but the invention is not limited thereto.

【0045】[スラブ加熱温度]スラブ加熱温度は、以
下の熱延が可能となる温度範囲とするのが望ましい。
[Slab heating temperature] The slab heating temperature is preferably in a temperature range that enables the following hot rolling.

【0046】[熱延仕上温度]耐HIC性および耐SS
C性の改善のためには、熱延をAr3変態点以上で終了し
て次に示す加速冷却開始温度を確保するのがよく、出来
れば熱延仕上温度は(Ar3変態点+30℃)の温度以上
とするのがよい。
[Hot Rolling Finishing Temperature] HIC resistance and SS resistance
In order to improve C property, it is preferable to finish hot rolling at the Ar 3 transformation point or higher and secure the following accelerated cooling start temperature. If possible, the hot rolling finishing temperature is (Ar 3 transformation point + 30 ° C). It is better to be above the temperature.

【0047】[加速冷却開始温度]熱延後の加速冷却開
始温度が低いと初析フェライトの成長に伴い偏析部にC
が濃縮して加速冷却時に硬化組織が生成し、耐HIC性
および耐SSC性の低下を招くようになる。また、X7
0〜X80級の高強度を得ることが困難となる。そのた
め加速冷却開始温度は(Ar3変態点−30℃)の温度以
上とするのがよく、出来れば初析フェライトのないAr3
変態点以上が望ましい。
[Accelerated Cooling Start Temperature] When the accelerated cooling start temperature after hot rolling is low, C is formed in the segregated portion as the pro-eutectoid ferrite grows.
Is concentrated and a hardened structure is generated at the time of accelerated cooling, resulting in deterioration of HIC resistance and SSC resistance. Also, X7
It becomes difficult to obtain high strength of 0 to X80 grade. Therefore, the accelerated cooling start temperature is preferably set to a temperature higher than (Ar 3 transformation point −30 ° C.), and if possible, Ar 3 without proeutectoid ferrite.
A transformation point or higher is desirable.

【0048】[加速冷却時の平均冷却速度]加速冷却時
の平均冷却速度が遅いとフェライト/パーライトの2相
分離が進んで、中心偏析部で耐HIC性および耐SSC
性に劣るバンド状組織が形成される。また、X70〜X
80級の高強度を得ることが困難となる。そのため平均
冷却速度は5℃/s以上とするのがよい。しかし、その
値が20℃/sを超えると硬化したブロック状ベイナイ
トが生成し易くなって好ましくない。X70〜X80級
の高強度用熱延鋼板の場合は30℃/sである。
[Average cooling rate during accelerated cooling] When the average cooling rate during accelerated cooling is slow, two-phase separation of ferrite / pearlite progresses, and HIC resistance and SSC resistance at the center segregation portion occur.
A band-like structure with poor properties is formed. Also, X70 to X
It becomes difficult to obtain high strength of 80 grade. Therefore, the average cooling rate is preferably 5 ° C./s or more. However, if the value exceeds 20 ° C./s, hardened block bainite is likely to be formed, which is not preferable. In the case of the high-strength hot-rolled steel sheets of X70 to X80 grade, it is 30 ° C / s.

【0049】[加速冷却停止温度]600℃を超える温
度域で加速冷却を停止すると、停止時に未変態のオース
テナイトが残るのでその後パーライトが生成すると共
に、中心偏析部がCの濃縮によって硬化して耐HIC性
および耐SSC性が低下する傾向となる。また、X70
〜X80級の高強度を得ることが困難となる。一方、4
00℃を下回る温度域で加速冷却を停止すると、硬化し
たブロック状ベイナイトが生成し易くなってやはり耐H
IC性および耐SSC性が低下する。そのため、加速冷
却停止温度は600〜400℃とするのが望ましい。X
70〜X80級の高強度用熱延鋼板の場合は600〜2
00℃が望ましい。
[Accelerated Cooling Stop Temperature] When accelerated cooling is stopped in a temperature range exceeding 600 ° C., untransformed austenite remains at the time of stopping, so that pearlite is generated thereafter, and the central segregation portion is hardened by the concentration of C and hardened. The HIC property and SSC resistance tend to decrease. Also, X70
~ It becomes difficult to obtain high strength of X80 grade. On the other hand, 4
If accelerated cooling is stopped in the temperature range below 00 ° C, hardened block-shaped bainite is likely to be formed, and the H-resistant
IC property and SSC resistance decrease. Therefore, the accelerated cooling stop temperature is preferably 600 to 400 ° C. X
In the case of 70-X80 grade hot rolled steel sheet for high strength, 600-2
00 ° C is desirable.

【0050】[巻取温度]巻取は、加速冷却停止に引き
続いて実施すればよい。
[Winding temperature] Winding may be carried out after the accelerated cooling is stopped.

【0051】本発明においては、先ず上記成分組成を有
するとともに上記条件で製造された素材帯鋼を常法通り
に成形ロール群に通して連続的にロール成形してオープ
ンパイプ状となし、成形ロール群の末尾に設けられた左
右一対のスクイズロールの作用によって帯鋼両エッジ相
互が当接する接合点、すなわちオープンパイプの突き合
わせ部にレーザービームを上方から垂直に照射して衝合
溶接を行うが、この際、そのレーザー出力P(kW)、
溶接速度V(m/min)、帯鋼肉厚t(mm)、帯鋼
両エッジ端面の予熱温度T(℃)、室温T0 (℃)とし
た時、下記の(1)および(2)式を満足する条件で衝
合溶接を行う。
In the present invention, first, the raw steel strip having the above component composition and produced under the above conditions is continuously roll-formed through a forming roll group in the usual manner to form an open pipe shape, The abutting welding is performed by vertically irradiating the laser beam to the joint point where both edges of the steel strip contact each other by the action of a pair of right and left squeeze rolls provided at the end of the group, that is, the abutting portion of the open pipe, At this time, the laser output P (kW),
When welding speed V (m / min), strip steel wall thickness t (mm), preheating temperature T (° C) of both edges of the strip steel, and room temperature T 0 (° C), the following equations (1) and (2) are used. Butt welding is performed under the condition that satisfies

【0052】V≧2 ・・・・・・(1) P≧0.4Vt/ea(T-T0) ・・・・・・(2) ただし、a=0.0006 すなわち、上記(1)および(2)式は、本発明者らが
種々実験研究の結果見い出した関係式であり、前述した
ように、(1)式は、オープンパイプの突き合わせ部に
おけるV溝形成の有無、レーザー出力Pおよび帯鋼肉厚
(帯鋼肉厚)t等とは無関係に、溶接速度Vが2m/m
in未満では、溶融金属部の溶接後冷却速度の低下に起
因して溶接部のとけ込み形状がワインカップ状となって
溶接部の結晶粒が粗大化して肉厚方向の柱状晶となり、
溶接部の靭性、耐HIC性および耐SSC性が低下する
のみならず、HAZも広くなるのでHAZ軟化が顕著と
なって管の強度も低下するが、溶接速度Vを2m/mi
n以上に設定して製管溶接すると、溶接部のとけ込み形
状がワインカップ状とならず、溶接部の組織が結晶粒の
粗大化した肉厚方向への柱状晶組織になるのを防止で
き、これによって溶接部の結晶粒の粗大柱状晶組織化に
起因する耐HIC性等が低下するのを防止できる。この
ことは、後述の実施例の結果からもあきらかであ。
V ≧ 2 ··· (1) P ≧ 0.4Vt / e a (T-T0) ··· (2) However, a = 0.0006, that is, the above (1) The expressions (2) and (2) are relational expressions found by the present inventors as a result of various experimental studies. As described above, the expression (1) is the presence or absence of V-groove formation at the butt portion of the open pipe and the laser output P. And the welding speed V is 2 m / m regardless of the strip steel wall thickness (strip steel wall thickness) t, etc.
If it is less than in, the melting shape of the molten metal portion due to the decrease in the cooling rate after welding becomes a wine cup shape and the crystal grains of the welding portion become coarse and become columnar crystals in the thickness direction,
Not only the toughness, HIC resistance, and SSC resistance of the welded part deteriorate, but also the HAZ becomes wider, so that HAZ softening becomes remarkable and the strength of the pipe also decreases, but the welding speed V is 2 m / mi.
When pipe manufacturing welding is performed with n or more, the welded part does not have a wine cup shape, and the structure of the welded part can be prevented from becoming a columnar crystal structure in the thickness direction in which the crystal grains become coarse. As a result, it is possible to prevent the HIC resistance and the like from being deteriorated due to the coarse columnar crystal structure of the crystal grains of the welded portion. This is also clear from the results of Examples described later.

【0053】また、上記(2)式は、溶接部に酸化物等
が存在しない無欠陥溶接を行うための条件を示してお
り、帯鋼肉厚tに応じて、溶接速度Vおよび帯鋼両エッ
ジ部の予熱温度Tを調整設定することによってレーザー
出力Pが(2)式で求められる値以上となるように設定
して溶接することによって、溶接部の酸化物等の異物内
在起因による耐HIC性および耐SSC性が低下するの
を防止できる。すなわち、(2)式の右辺で求められる
値未満のレーザー出力Pでは、溶接速度が2m/min
以上であって溶接部の組織が結晶粒の粗大化した肉厚方
向への柱状晶組織でなくても、溶接部に酸化物等の異物
内在の溶接欠陥が生じて耐HIC性および耐SSC性が
低下することを意味している。
The above equation (2) shows the conditions for performing defect-free welding in which no oxides or the like are present in the welded portion, and the welding speed V and the strip steel are both determined according to the strip steel wall thickness t. By adjusting and setting the preheating temperature T of the edge portion so that the laser output P becomes equal to or higher than the value obtained by the equation (2) and welding, the HIC resistance due to the presence of foreign matters such as oxides in the welded portion. And deterioration of SSC resistance can be prevented. That is, when the laser output P is less than the value obtained on the right side of the equation (2), the welding speed is 2 m / min.
Even if the structure of the welded portion is not the columnar crystal structure in the thickness direction in which the crystal grains are coarsened as described above, welding defects due to foreign matters such as oxides occur in the welded portion and HIC resistance and SSC resistance Is meant to decrease.

【0054】図4は、帯鋼肉厚t、溶接速度V、帯鋼両
エッジ部の予熱温度Tおよびレーザー出力PがSSC発
生に及ぼす影響を示した図であり、横軸に上記(2)式
中の右辺「0.4Vt/ea(T-T0) 」で求められる値と
レーザー出力Pとの差を、縦軸にSSC発生率を採って
示した図である。
FIG. 4 is a view showing the effects of the strip steel wall thickness t, the welding speed V, the preheating temperature T of both edges of the strip steel and the laser output P on the SSC generation. It is the figure which showed the difference of the value calculated | required by "0.4Vt / ea (T-T0) " on the right-hand side in a formula, and the laser output P by taking the SSC generation rate on the vertical axis.

【0055】図4から明らかなように、レーザー出力P
が「0.4Vt/ea(T-T0) 」で求められる値未満の場
合にはSSCが発生し、レーザー出力Pが「0.4Vt
/ea(T-T0) 」で求められる値以上の場合にはSSCが
発生しておらず、このことから上記(2)式を満足させ
る必要のあることがわかる。
As is apparent from FIG. 4, the laser output P
Is less than the value obtained by "0.4Vt / ea (T-T0) ", SSC occurs and the laser output P is "0.4Vt.
/ E a (T−T0) ”or more, the SSC does not occur, which indicates that it is necessary to satisfy the above equation (2).

【0056】なお、上記(1)および(2)式を同時に
満足させるためには、前述したように、従来一般的に用
いられている5kW程度の低出力のレーザー発振機では
不十分で、例えば25kWあるいはこれ以上の高出力の
レーザー発振機を用いる必要がある。
In order to satisfy the above equations (1) and (2) at the same time, as described above, the low output laser oscillator of about 5 kW which is generally used in the past is not sufficient. It is necessary to use a high-power laser oscillator of 25 kW or more.

【0057】また、大出力レーザーによる本発明の方法
においては、前記特開平5−228660号公報に記載
されると同様の図1に示すV溝2をオープンパイプの突
き合わせ部に形成させて溶接することもでき、この場合
にはより一層の高速化溶接が可能となる。すなわち、帯
鋼肉厚をt、集光前のレーザービーム径をD、集光光学
系の焦点距離をf、溶接速度をV、レーザー出力をPと
した時、幅aと深さbとが下記(3)〜(6)式を満足
するV溝を形成して溶接するのが望ましい。
Further, in the method of the present invention using a high-power laser, the V groove 2 shown in FIG. 1 similar to that described in JP-A-5-228660 is formed at the abutting portion of the open pipe and welded. It is also possible to perform higher speed welding in this case. That is, when the strip steel thickness is t, the laser beam diameter before focusing is D, the focal length of the focusing optical system is f, the welding speed is V, and the laser output is P, the width a and the depth b are It is desirable to form and weld a V groove satisfying the following expressions (3) to (6).

【0058】a/b>D/f ・・・・・・・ (3) a×b≦2×(P/V) ・・・・・・・ (4) t−b≦4×(P/V) ・・・・・・・ (5) a≦2×(P/V) ・・・・・・・ (6) なお、上記(3)〜(6)式の意味するところは、以下
の通りである。
A / b> D / f (3) a × b ≦ 2 × (P / V) (4) t−b ≦ 4 × (P / V) V) ···· (5) a ≦ 2 × (P / V) ···· (6) In addition, the meaning of the above formulas (3) to (6) is as follows. On the street.

【0059】(3)式:溶け込み深さを減少させないよ
うにするための条件。すなわち、集光前のビーム径がD
のレーザービーム3の光軸心を素材帯鋼1の両エッジ端
の突き合わせ部に一致させるとともに、その焦点位置を
V溝2の底部5に合わせた場合、a/b値がD/f未満
の時には、図5(a)に示すように、レーザービーム3
がV溝2の肩部4に当たり、肩部4で金属プラズマが発
生してこの金属プラズマにレーザービーム3が吸収され
てレーザーエネルギーが低下し、溶け込み深さが減少す
るが、a/b値がD/f値を超えると時には、図5
(b)に示すように、レーザビーム3が前記肩部4に当
たることがないので、エネルギー低下のないレーザービ
ーム3をV溝2の底部5に集中照射できて深い溶け込み
深さを効率良く得ることができる。
Formula (3): Conditions for preventing the penetration depth from decreasing. That is, the beam diameter before focusing is D
When the optical axis of the laser beam 3 is aligned with the abutting portions of both edge ends of the material strip steel 1 and the focus position is aligned with the bottom portion 5 of the V groove 2, the a / b value is less than D / f. At times, as shown in FIG.
Hits the shoulder portion 4 of the V groove 2 and metal plasma is generated in the shoulder portion 4 and the laser beam 3 is absorbed by this metal plasma to lower the laser energy and the penetration depth is reduced, but the a / b value is When the D / f value is exceeded, sometimes FIG.
As shown in (b), since the laser beam 3 does not hit the shoulder portion 4, the laser beam 3 without energy reduction can be focused on the bottom portion 5 of the V groove 2 and a deep penetration depth can be efficiently obtained. You can

【0060】(4)式:溶接部の外面側にアンダービー
ドを発生させないようにするための条件。すなわち、図
2に示したようなアンダービード6を発生させないため
にはV溝が溶融金属で十分に埋められることが必要であ
り、これに必要な溶融金属量はV溝の断面積と供給され
る溶融金属量とで決定される。そして、V溝の断面積は
1/2(a×b)で表され、一方、溶融金属量は、レー
ザー出力P、溶接速度Vの時、その入熱量(P/V)に
比例するから、アンダービード6の防止条件は[a×b
≦k×(P/V)]になる。なお、kは比例定数であ
り、多数の実験結果から「2」とするのが適切であるこ
とがわかった。
Expression (4): A condition for preventing under-beads from being generated on the outer surface side of the welded portion. That is, in order not to generate the under-beads 6 as shown in FIG. 2, it is necessary that the V groove is sufficiently filled with the molten metal, and the amount of the molten metal required for this is supplied with the cross-sectional area of the V groove. And the amount of molten metal. The cross-sectional area of the V groove is represented by 1/2 (a × b), while the molten metal amount is proportional to the heat input amount (P / V) at the laser output P and the welding speed V. The prevention condition for the under-bead 6 is [a × b
≦ k × (P / V)]. It should be noted that k is a proportional constant, and it has been found from a number of experimental results that it is appropriate to set it to “2”.

【0061】(5)式:V溝の底部に連続して存在する
帯鋼両エッジ端が完全に突き合わされた部分の肉厚(t
−b)を貫通溶融させるための条件。すなわち、突き合
わせ部にV溝を形成してレーザーで溶かし込む必要のあ
る肉厚を減少させて溶接速度の高速化を図るためには、
前記V溝の底部に存在する肉厚(t−b)部分を完全に
溶かし込むに足りるレーザーエネルギーを供給する必要
があるが、レーザーの溶け込み深さはその入熱(P/
V)と比例関係にあることから、前記肉厚(t−b)部
分を完全に溶かし込む条件は[(t−b)≦p×(P/
V)]となる。なお、pは比例定数であり、多数の実験
結果から「4」とするのが適切であることがわかった。
Formula (5): The wall thickness (t) of the portion where the two edges of the strip continuously existing at the bottom of the V groove are completely abutted with each other.
-Conditions for melt-through of b). That is, in order to increase the welding speed by forming a V groove in the butted portion and reducing the thickness that needs to be melted by laser,
It is necessary to supply laser energy sufficient to completely melt the wall thickness (tb) portion existing at the bottom of the V groove, but the depth of laser penetration is the heat input (P /
Since it has a proportional relationship with V), the condition for completely melting the thickness (t-b) portion is [(t-b) ≦ p × (P /
V)]. It should be noted that p is a proportional constant, and it was found from a number of experimental results that it is appropriate to set it to "4".

【0062】(6)式:溶接部にアンダーカット6を発
生させないための条件。すなわち、図2に示したよう
に、V溝の幅aがビード幅Baより過剰に大きい場合に
はアンダーカット6が発生する。従って、溶接部にアン
ダーカット6を発生させないためには、V溝の幅aをビ
ード幅Baより小さくなるようにする必要がある。今、
溶接速度Vを一定とするとビード幅Baはレーザーによ
る入熱量に比例するから、[a≦q×(P/V)]の関
係が成立する。なお、qは比例定数であり、多数の実験
結果から「2」とするのが適切であることがわかった。
Expression (6): Condition for preventing undercut 6 from being generated in the welded portion. That is, as shown in FIG. 2, undercut 6 occurs when the width a of the V groove is excessively larger than the bead width Ba. Therefore, in order not to generate the undercut 6 at the welded portion, it is necessary to make the width a of the V groove smaller than the bead width Ba. now,
If the welding speed V is constant, the bead width Ba is proportional to the amount of heat input by the laser, so the relationship [a ≦ q × (P / V)] is established. It should be noted that q is a proportional constant, and it has been found from a number of experimental results that it is appropriate to set it to “2”.

【0063】このようにしてオープンパイプの突合せ部
を溶接した溶接鋼管は、溶接ままで十分な性能を発揮す
るが、より一層の性能向上を図るためには溶接後の溶接
シーム部に次の熱処理を施すことが望ましい。
The welded steel pipe in which the butt portion of the open pipe is thus welded exhibits sufficient performance as it is, but in order to further improve the performance, the next heat treatment is performed on the welded seam portion after welding. Is desirable.

【0064】[溶接シーム部の加熱温度]溶接シーム部
をAC3変態点以上の温度域へ加熱するのが望ましいの
は、加熱時にオーステナイト単相として溶接部の粗粒組
織を破壊して細粒組織を得るためであるが、加熱温度が
この温度未満であるとその効果が得られない。なお、上
限は特に規定する必要はないが、1100℃を超えると
結晶粒が再び粗粒化し、特にC含有量が0.12%を超
える素材では耐HIC性、耐SSC性および靭性に悪影
響を及ぼすので1100℃以下とするのが望ましい。
[Heating Temperature of Weld Seam] It is desirable to heat the weld seam to a temperature range not lower than the A C3 transformation point by destroying the coarse grain structure of the weld as austenite single phase at the time of heating to obtain fine grain. This is to obtain a tissue, but if the heating temperature is lower than this temperature, the effect cannot be obtained. The upper limit is not particularly specified, but when the temperature exceeds 1100 ° C., the crystal grains become coarse again, and particularly in a material having a C content of more than 0.12%, HIC resistance, SSC resistance and toughness are adversely affected. Therefore, it is desirable to set the temperature to 1100 ° C. or lower.

【0065】[加熱後の冷却]上記温度域への加熱後、
そのまま放冷(空冷)すると溶接部の硬度が低く抑えら
れて耐HIC性および耐SSC性が向上する。
[Cooling after heating] After heating to the above temperature range,
If it is left to cool (air cool) as it is, the hardness of the welded portion is suppressed to a low level, and the HIC resistance and SSC resistance are improved.

【0066】ただし、溶接シーム部のみを上記温度域に
加熱して放冷すると母材部に比べて溶接部の強度が低下
する場合があるので、その場合には加熱後速やかに加速
冷却を実施すると溶接部の強度低下を防ぐことができる
から、強度低下を防止したい場合には加速冷却を実施す
るのが望ましい。しかし、加速冷却開始温度が(Ar3
態点−30℃)の温度未満であると初析フェライトの成
長に伴いCが濃縮した残留オーステナイトが加速冷却時
に硬化して、耐HIC性および耐SSC性の低下を招く
ようになる。一方、加速冷却開始温度が1000℃を超
えると硬度の高いマルテンサイト組織やベイナイト組織
が生成し、耐HIC性および耐SSC性にとって望まし
くない。従って、加速冷却を行う場合の冷却開始温度は
(Ar3変態点−30℃)〜1000℃とするのが望まし
い。また、加速冷却を行う場合の冷却速度としては、母
材である素材帯鋼(熱延鋼板)製造時の条件と同じ、5
〜30℃/sとするのが望ましい。
However, if only the weld seam portion is heated to the above temperature range and allowed to cool, the strength of the welded portion may be lower than that of the base metal portion. In that case, accelerated cooling is performed immediately after heating. Then, since it is possible to prevent the strength of the welded portion from decreasing, it is desirable to carry out accelerated cooling if it is desired to prevent the strength from decreasing. However, if the accelerated cooling start temperature is lower than the temperature of (Ar 3 transformation point −30 ° C.), the retained austenite in which C is concentrated is hardened during the accelerated cooling as the pro-eutectoid ferrite grows, and HIC resistance and SSC resistance are increased. Will lead to a decrease in. On the other hand, when the accelerated cooling start temperature exceeds 1000 ° C., a martensite structure or bainite structure with high hardness is generated, which is not desirable for HIC resistance and SSC resistance. Therefore, the cooling start temperature in the case of performing accelerated cooling is preferably (Ar 3 transformation point −30 ° C.) to 1000 ° C. In addition, the cooling rate in the case of performing accelerated cooling is the same as the condition at the time of manufacturing the base material strip steel (hot rolled steel sheet), which is the base material.
It is desirable to set it to -30 ° C / s.

【0067】[加速冷却後の焼戻し]上記加速冷却後に
焼戻し処理を施して溶接部の軟化を図ると、溶接部の耐
HIC性および靭性がより一層改善されることから、耐
HIC性と靭性のより一層の向上を図りたい場合には加
速冷却後に焼戻し処理を施すのが望ましい。しかし、焼
戻し温度が500℃未満であると材料が軟化しないので
焼戻の効果が得られず、一方、750℃を超えると一部
オーステナイト変態が生じて所定の強度が得られないば
かりか、残留オーステナイトや焼戻されないマルテンサ
イト相が生じて耐HIC性および耐SSC性にとって望
ましくないことから、焼戻処理を施す場合の温度は50
0〜750℃とするのが望ましい。
[Tempering After Accelerated Cooling] When the tempering process is performed after the above accelerated cooling to soften the welded portion, the HIC resistance and toughness of the welded portion are further improved. If further improvement is desired, it is desirable to perform tempering treatment after accelerated cooling. However, if the tempering temperature is lower than 500 ° C, the material is not softened, so that the tempering effect cannot be obtained. On the other hand, if the tempering temperature exceeds 750 ° C, some austenite transformation occurs and the predetermined strength cannot be obtained, and the residual strength cannot be obtained. Since austenite and an untempered martensite phase are generated, which is not desirable for HIC resistance and SSC resistance, the tempering temperature is 50.
The temperature is preferably 0 to 750 ° C.

【0068】[0068]

【実施例】製管溶母材として、耐SSC性および耐HI
C性に優れるX42〜X80級の表1に示す化学成分を
有する9種類の素材帯鋼(熱延鋼板)を準備した。これ
ら母材のAPI等級、強度、耐HIC性および耐SSC
性を調査した結果も表1に併記した。なお、母材の耐H
IC性は、NACE(米国腐食協会規格)−TM−02
−84に規定の方法に基づき、NACE浴(0.5%酢
酸、5%食塩水、25℃、1気圧H2 S飽和)に96h
浸漬したときの割れ長さ率(CLR)での評価結果、耐
SSC性は、NACE−TM−01−77−METHO
D−Aに規定の単軸引張試験法で評価したときにおける
σth(SSCにより破断を生じる最小の応力)とσys
(降伏応力)の比での評価結果であるが、いずれの母材
も、耐HIC性については1つの目安であるNACE条
件のCLR≦15%を、また耐SSC性については1つ
の目安であるNACE条件のσth/σys≧72%を満足
している。
[Example] SSC resistance and HI resistance as a molten base material for pipe manufacturing
Nine types of raw material steel strips (hot rolled steel sheets) having chemical compositions shown in Table 1 of X42 to X80 grade having excellent C property were prepared. API grade, strength, HIC resistance and SSC resistance of these base materials
The results of the sex investigation are also shown in Table 1. The H resistance of the base material
IC property is NACE (American Corrosion Association standard) -TM-02
Based on the method specified in -84, 96 hours in NACE bath (0.5% acetic acid, 5% saline solution, 25 ° C, 1 atm H 2 S saturated).
As a result of evaluation by a crack length ratio (CLR) when immersed, SSC resistance is NACE-TM-01-77-METHO.
Σth (minimum stress that causes fracture by SSC) and σys when evaluated by the uniaxial tensile test method specified in DA
The evaluation results are based on the ratio of (yield stress). For all the base materials, one criterion for HIC resistance is CLR ≦ 15% under NACE conditions and one criterion for SSC resistance. It satisfies the NACE condition of σth / σys ≧ 72%.

【0069】[0069]

【表1】 [Table 1]

【0070】上記素材帯鋼(熱延鋼板)を常法に基づき
成形ロール群に通してオープンパイプに成形し、スクイ
ズロールでその両エッジ部相互を突き合わせ、この突き
合わせ部分に上方よりシールドガスとしてプラズマ除去
効果の高いヘリウムガスを用いてレーザービームを垂直
に照射して衝合溶接を行うに当たり、表2、表3および
表4に示す各条件で溶接を行った。レーザー源として
は、集光前ビーム径Dが51mm、ミラー(放物面鏡)
焦点距離fが381mmの出力25kWの炭酸ガスレー
ザー発振機と、集光前ビーム径Dが30mm、ミラー
(放物面鏡)焦点距離fが150mmの出力5kWの炭
酸ガスレーザー発振機を使用した。なお、焦点位置は、
いずれも突合せ部のオープンパイプ外表面に設定した
が、突き合わせ部にV溝を形成した一部のものについて
はV溝底部に設定した。また、比較のため同様素材帯鋼
を用いた従来のERW法によって溶接した溶接ままの溶
接鋼管も用意した。
The above material strip steel (hot rolled steel sheet) is formed into an open pipe by passing it through a group of forming rolls according to a conventional method, and both edge portions thereof are butted against each other with a squeeze roll, and a plasma is used as a shield gas from above at the butted portion. When performing butt welding by vertically irradiating a laser beam with helium gas having a high removal effect, welding was performed under the conditions shown in Tables 2, 3, and 4. As a laser source, the beam diameter D before condensing is 51 mm, a mirror (parabolic mirror)
A carbon dioxide gas laser oscillator with a focal length f of 381 mm and an output of 25 kW and a carbon dioxide gas laser oscillator with an output of 5 kW and a beam diameter D before focusing of 30 mm and a mirror (parabolic mirror) focal length f of 150 mm were used. The focal position is
All of them were set on the outer surface of the open pipe of the butted portion, but some of the butted portions having V grooves were set at the bottom of the V groove. For comparison, an as-welded steel pipe welded by the conventional ERW method using a strip steel was also prepared.

【0071】[0071]

【表2】 [Table 2]

【0072】[0072]

【表3】 [Table 3]

【0073】[0073]

【表4】 [Table 4]

【0074】得られた溶接鋼管の溶接ままの溶接部(一
部のものについては、表2、表3および表4に示す条件
で溶接シーム部に後熱処理を施した後の溶接部)の耐H
IC性と耐SSC性を次に述べる方法で評価した。
The resistance of the as-welded welded part of the obtained welded steel pipe (for some, the welded part after post-heat treatment of the weld seam under the conditions shown in Table 2, Table 3 and Table 4) H
The IC property and SSC resistance were evaluated by the methods described below.

【0075】溶接シーム部が中央に位置するように管軸
方向に切開して周方向に展開後、図6に示した各位置か
ら、HIC試験片については図7に示す形状、寸法の試
験片を管軸長方向の異なる位置から各3枚を、SSC試
験片については素材帯鋼の肉厚に応じて図8に示す
(X)または(Y)のいずれかの形状、寸法の試験片を
管軸長方向の異なる位置から各3本を切り出し採取し
た。なお、SSC試験片は、いずれも素材肉厚の関係上
ネジ部が欠けたので、試験時にテフロンテープ等をネジ
部に巻き付けシールして試験に供した。また、試験に先
立ち、各試番のSSC試験片各1本を対象に、常温引張
試験を行って降伏応力(YS)と引張強さ(TS)を求
めた結果、母材の規格以下に強度が低下した試番につい
てはHIC試験およびSSC試験ともに省略した。
After incising in the pipe axial direction so that the weld seam portion is located at the center and deploying in the circumferential direction, from each position shown in FIG. 6, the HIC test piece has the shape and size shown in FIG. 3 pieces from different positions in the pipe axis length direction, and for the SSC test piece, a test piece of either shape (X) or (Y) shown in FIG. 8 according to the thickness of the material strip steel is used. Three pieces were cut out from different positions in the tube axis length direction and collected. The SSC test piece lacked the threaded portion due to the thickness of the material, so a Teflon tape or the like was wrapped around the threaded portion during the test and sealed before use. In addition, prior to the test, a room temperature tensile test was performed on each SSC test piece of each trial number to determine the yield stress (YS) and tensile strength (TS). For the test number with a decreased value, both the HIC test and the SSC test were omitted.

【0076】HIC試験は、上記の試験片(各試番各3
枚)を、NACE浴(0.5%酢酸、5%食塩水、25
℃、1気圧H2 S飽和)中に96時間浸漬後、各試験片
について図9に示すように超音波探傷法で接合面の割れ
発生面積を検出し、平均割れ面積率(CAR)を求めて
HIC感受性を評価した。なお、CAR値の3倍値が上
記CLR値に相当し、CRA≦5%であれば耐HIC性
に優れることを示している。
The HIC test was conducted by using the above-mentioned test pieces (each trial number 3 for each).
NACE bath (0.5% acetic acid, 5% saline solution, 25 sheets)
After dipping for 96 hours in (atmospheric pressure, H 2 S saturated at 1 atmosphere), the crack generation area of the joint surface was detected by ultrasonic flaw detection for each test piece as shown in FIG. 9, and the average crack area ratio (CAR) was calculated. HIC susceptibility was evaluated. It should be noted that a triple value of the CAR value corresponds to the CLR value, and CRA ≦ 5% indicates that the HIC resistance is excellent.

【0077】SSC試験は、上記の各試験片(各試番各
2本)を、図10に示すSSC試験装置を用い、NAC
E浴(0.5%酢酸、5%食塩水、25℃、1気圧H2
S飽和)中で、SMYS(規格最小降伏応力)の72%
の引張応力を付加し、720時間の試験期間中での破断
の有無を調査した。
In the SSC test, each of the above test pieces (two for each test number) was subjected to NAC using the SSC test apparatus shown in FIG.
E bath (0.5% acetic acid, 5% saline, 25 ° C, 1 atm H 2
72% of SMYS (standard minimum yield stress) in S saturation)
Was applied and the presence or absence of breakage was examined during the test period of 720 hours.

【0078】これらの試験結果を、表2、表3および表
4に併記した。なお、表2、表3および表4中、試番
1、18および35はERW法による従来例、試番2、
3、4、19〜21、43および44はV溝を形成した
レーザー単独溶接の従来例、その他が本発明例と比較例
である。
The results of these tests are also shown in Tables 2, 3 and 4. In Table 2, Table 3 and Table 4, trial numbers 1, 18 and 35 are conventional examples by the ERW method, trial number 2,
3, 4, 19 to 21, 43, and 44 are conventional examples of laser-only welding in which a V groove is formed, and others are examples of the present invention and comparative examples.

【0079】試番1、18および35から明らかなよう
に、従来例のERW法では、溶接部の耐HIC性および
耐SSC性がいずれも劣っている。
As is clear from Test Nos. 1, 18 and 35, the conventional ERW method is inferior in both HIC resistance and SSC resistance of the welded portion.

【0080】また、試番4、8、12、13、21、2
5、30、34および40から明らかなように、溶接速
度が2m/min未満の場合には、素材帯鋼肉厚の大
小、レーザー出力の大小、V溝形成の有無および帯鋼両
エッジ部の予熱の有無に関係なく、いずれの場合も溶接
部の溶け込み形状がワインカップ状となって溶接部の強
度低下が著しいか、強度低下がない場合でも耐SSC性
が劣っており、このことから上記(1)式が溶接部の強
度低下およびSSC発生を防止するための必要条件であ
ることがわかる。
Also, trial numbers 4, 8, 12, 13, 21, 2
As is clear from 5, 30, 34 and 40, when the welding speed is less than 2 m / min, the thickness of the material strip steel, the size of the laser output, the presence or absence of V-groove formation and the edges of both strips of the steel strip. In all cases, regardless of whether preheating is performed, the welded shape of the weld becomes a wine cup shape, and the strength of the weld is significantly reduced, or even if there is no strength reduction, the SSC resistance is inferior. It can be seen that the expression (1) is a necessary condition for preventing the strength of the welded portion from decreasing and the occurrence of SSC.

【0081】肉厚が11.1mmのI鋼(X80級)で
は、レーザー出力が5kWの場合には、試番2と試番3
の対比から明らかなように、V溝を形成した従来法での
溶接部の耐HIC性および耐SSC性が良好な製品の得
られる最高溶接速度は高々2.2m/minでしかな
い。また、試番4から明らかなように、V溝を形成して
も溶接速度が1.8m/minと遅い場合は、溶接部の
溶け込み形状がワインカップ状となって溶接部の強度が
母材に比べて著しく劣っている。
For I steel (X80 grade) having a wall thickness of 11.1 mm, if the laser output is 5 kW, trial number 2 and trial number 3
As is clear from the comparison of the above, the maximum welding speed at which a product having a V-groove-formed conventional weld with good HIC resistance and SSC resistance is 2.2 m / min at most. Also, as is clear from trial number 4, when the welding speed is as low as 1.8 m / min even if the V groove is formed, the welded shape of the weld becomes a wine cup shape and the strength of the welded part is the base metal. Is significantly inferior to.

【0082】さらに、V溝を形成しない場合は、試番5
から明らかなように、溶接速度が2m/minでも、帯
鋼両エッジ部を予熱しないと溶け込み不足となって溶接
不能となっている。しかし、試番6、7から明らかなよ
うに、帯鋼両エッジ部を高温予熱するとV溝を形成しな
くても2m/min以上の溶接速度で溶接可能である
が、試番6から明らかなように、0.4Vt/e
a(T-T0) 値が本発明で規定する上記(2)式の範囲を外
れているため、溶接欠陥が生じ、耐SSC性が劣ってい
る。
Further, when the V groove is not formed, trial number 5 is used.
As is clear from the above, even if the welding speed is 2 m / min, if both edges of the steel strip are not preheated, the melting will be insufficient and welding will be impossible. However, as is clear from trial Nos. 6 and 7, it is possible to weld at a welding speed of 2 m / min or more without forming V-grooves when both edges of the steel strip are preheated at a high temperature. So that 0.4 Vt / e
Since the value of a (T-T0) is out of the range defined by the formula (2) defined in the present invention, welding defects occur and the SSC resistance is poor.

【0083】これに対し、レーザー出力25kWの場合
には、試番9〜13の対比から明らかなように、帯鋼両
エッジ部を予熱せず、かつV溝を形成しない場合にあっ
ても、耐SSC性の良好な製品の得られる最高溶接速度
が5m/minとなり、V溝を形成したレーザー出力5
kWのもの(試番3)に比べて2倍以上という速い溶接
速度での溶接が可能となっている。また、試番14と試
番15との対比から明らかなように、帯鋼両エッジ部を
1250℃の高温に予熱すると、耐SSC性の良好な製
品が得られる最高溶接速度は10m/minにまで上が
っている。さらに、試番16と試番17との対比から明
らかなように、出力25kWの大出力レーザーとV溝形
成とを組み合わせた場合には、帯鋼両エッジ部を予熱し
なくても、同一寸法のV溝を形成したレーザー出力5k
Wのもの(試番3)に比べて約4倍の8m/minとい
う速い溶接速度でも耐SSC性の良好な製品が得られて
いる。
On the other hand, in the case of the laser output of 25 kW, as is clear from the comparison of trial Nos. 9 to 13, even when the both edges of the strip steel are not preheated and the V groove is not formed, The maximum welding speed that can obtain a product with good SSC resistance is 5 m / min, and the laser output with V-groove is 5
Welding is possible at a welding speed that is more than twice that of the kW type (Trial No. 3). Further, as is clear from the comparison between trial No. 14 and trial No. 15, when both edges of the steel strip were preheated to a high temperature of 1250 ° C., the maximum welding speed at which the product with good SSC resistance was obtained was 10 m / min. Has gone up. Further, as is clear from the comparison between trial No. 16 and trial No. 17, when the high-power laser with an output of 25 kW and V-groove formation are combined, the same dimensions can be obtained without preheating both edges of the steel strip. 5k laser output with V groove
A product with good SSC resistance is obtained even at a welding speed as high as 8 m / min, which is about four times that of the W type (Trial No. 3).

【0084】また、肉厚が7.1mmのE鋼(X65
級)では、上記I鋼に比べて肉厚が薄いため、レーザー
出力が5kWの場合に、耐SSC性等の良好な製品の得
られる最高溶接速度は、帯鋼両エッジ部を予熱せずにV
溝を形成した時で4m/min(試番19〜21参照)
であり、V溝形成せずに帯鋼両エッジ部を1200℃に
予熱した時で3m/min(試番22〜25参照)であ
るが、レーザー出力が25kWの場合の耐SSC性等の
良好な製品の得られる最高溶接速度は、V溝を形成しな
くても、帯鋼両エッジ部を900℃に予熱した時で12
m/min(試番31〜34参照)に、1200℃に予
熱した時で16m/min(試番26〜30参照)まで
速くなっている。
Further, E steel (X65 with a thickness of 7.1 mm
Grade), the wall thickness is smaller than that of the I steel, so when the laser output is 5 kW, the maximum welding speed at which a good product such as SSC resistance can be obtained is without preheating both edges of the strip steel. V
4 m / min when the groove is formed (see trial numbers 19-21)
Is 3 m / min when both edges of the steel strip are preheated to 1200 ° C. without forming V-grooves (see trial numbers 22 to 25), but good SSC resistance and the like when the laser output is 25 kW. The maximum welding speed that can be obtained with various products is 12 when both edges of the steel strip are preheated to 900 ° C without forming V-grooves.
When it is preheated to 1200 ° C., the speed is increased to 16 m / min (see trial numbers 26 to 30).

【0085】さらに、肉厚が8.7mmのB鋼(X52
級)では、レーザー出力が5kWの場合には、V溝を形
成せずに帯鋼両エッジ部を1250℃の高温に予熱した
時、溶接速度が3m/minでは耐SSC性が良好な製
品は得られなかったが(試番36参照)、レーザー出力
が25kWの場合には同様条件で溶接速度12m/mi
nでも耐SSC性等が良好な製品が得られている(試番
37〜40参照)。
Furthermore, the B steel (X52
Class), when the laser output is 5 kW, when both edges of the steel strip are preheated to a high temperature of 1250 ° C. without forming V-grooves, a product with good SSC resistance at a welding speed of 3 m / min is Although not obtained (see Trial No. 36), the welding speed was 12 m / mi under the same conditions when the laser output was 25 kW.
Even with n, products with good SSC resistance and the like have been obtained (see trial numbers 37 to 40).

【0086】またさらに、肉厚が12.7mmと最も厚
いF鋼(X70級)では、レーザー出力が5kWの場合
には、V溝を形成し、かつ帯鋼両エッジ部を1100℃
に予熱した時、溶接速度2m/minで耐SSC性の良
好な製品が得られたに過ぎないが(試番43、44参
照)、レーザー出力が25kWの場合には、帯鋼両エッ
ジ部を同一温度に予熱するだけでV溝を形成しなくても
3倍の溶接速度6m/minで強度、耐HIC性、耐S
SC性のいずれにも優れた製品が得られている(試番4
5参照)。
Furthermore, in the thickest F steel (X70 grade) having a wall thickness of 12.7 mm, when the laser output is 5 kW, V-grooves are formed and both edges of the strip steel are 1100 ° C.
When it was preheated, the product with good SSC resistance was only obtained at the welding speed of 2 m / min (see trial Nos. 43 and 44), but when the laser output was 25 kW, both edges of the strip steel were Even if pre-heated to the same temperature without forming V-grooves, triple welding speed 6m / min, strength, HIC resistance, S resistance
Products with excellent SC properties have been obtained (Trial No. 4
5).

【0087】以上のことは、A、C、D、GおよびH鋼
を対象にした試番44〜48の本発明例からも明かであ
る。また、溶接部の耐HIC性および耐SSC性は、溶
接シーム部に後熱処理を施さない場合にあっても良好で
あった(試番49〜53参照)。
The above is also clear from the present invention examples of trial numbers 44 to 48 for A, C, D, G and H steels. Further, the HIC resistance and SSC resistance of the welded portion were good even when the post-heat treatment was not applied to the welded seam portion (see trial numbers 49 to 53).

【0088】なお、ERW法での平均的な溶接速度は、
肉厚7.1mmのE鋼で15m/min、肉厚11.1
mmのA鋼で10m/minであり、本発明例の大出力
レーザーを用いた場合の溶接速度はこのERW法での溶
接速度に相当し、また従来の低出力レーザーを用いてV
溝を形成して溶接する方法の約2倍であることがわか
る。
The average welding speed in the ERW method is
15 mm / min with 7.1 mm thick E steel, thickness 11.1
It is 10 m / min for A steel of mm, the welding speed when the high power laser of the present invention example is used is equivalent to the welding speed in this ERW method, and when using the conventional low power laser, V
It can be seen that this is about twice as much as the method of forming a groove and welding.

【0089】[0089]

【発明の効果】本発明の方法によれば、湿潤H2 S環境
において溶接部の強度、耐HIC性および耐SSC性の
すべての性能を十分に満足するERW法での製造サイズ
のラインパイプ用溶接鋼管を高能率に安定して製造する
ことが可能で、産業上極めて有用な効果を奏する。
EFFECT OF THE INVENTION According to the method of the present invention, for a line pipe having a manufacturing size according to the ERW method, which sufficiently satisfies all the performances of the weld strength, HIC resistance and SSC resistance in a wet H 2 S environment. It is possible to manufacture welded steel pipes with high efficiency and stability, and it has an extremely useful effect in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶接前のV溝形状の一例を示す図である。FIG. 1 is a diagram showing an example of a V-groove shape before welding.

【図2】V溝幅が過大時に生じる溶接ビード形状を示す
図である。
FIG. 2 is a view showing a weld bead shape that occurs when the V groove width is excessively large.

【図3】溶接速度が遅い場合に生じるビード形状を示す
図である。
FIG. 3 is a diagram showing a bead shape that occurs when the welding speed is low.

【図4】SSC発生に及ぼす板厚、出力、溶接速度、予
熱温度の相関(式2)の影響を示す図である。
FIG. 4 is a diagram showing the influence of correlation (Equation 2) of plate thickness, output, welding speed, and preheating temperature on SSC generation.

【図5】V溝寸法とレーザービーム経路の関係を示す説
明図である。
FIG. 5 is an explanatory diagram showing a relationship between a V groove size and a laser beam path.

【図6】HICとSSC調査用試験片の採取部位を示す
概念図である。
FIG. 6 is a conceptual diagram showing a collection site of a test piece for HIC and SSC investigation.

【図7】HIC試験片の形状、寸法を示す図である。FIG. 7 is a diagram showing the shape and dimensions of a HIC test piece.

【図8】SSC試験片の形状、寸法を示す図である。FIG. 8 is a diagram showing the shape and dimensions of an SSC test piece.

【図9】HICを超音波探傷法にて評価する様子を説明
する概念図である。
FIG. 9 is a conceptual diagram for explaining how to evaluate HIC by an ultrasonic flaw detection method.

【図10】SSC試験装置の概念図である。FIG. 10 is a conceptual diagram of an SSC test apparatus.

【符号の説明】[Explanation of symbols]

1 :帯鋼 2 :V溝 3 :レーザービーム 4 :V溝の肩部 5 :V溝の底部 6 :アンダーカット 1: strip steel 2: V groove 3: laser beam 4: shoulder of V groove 5: bottom of V groove 6: undercut

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C22C 38/04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.01〜0.20%、S
i:0.03〜0.80%、Mn:0.40〜2.00
%、P:0.025%以下、S:0.002%以下、s
ol−Al:0.01〜0.10%を含み、さらにC
u:0〜0.50%、Ni:0〜0.50%、Cr:0
〜1.20%、Mo:0〜1.00%、Nb:0〜0.
15%、V:0〜0.15%、Ti:0〜0.15%、
Zr:0〜0.15%およびB:0〜0.0050%の
うちの1種または2種以上、並びにCa:0〜0.00
50%およびREM:0〜0.01%の1種または2種
を含み、残部がFeおよび不可避不純物からなる帯鋼
を、成形ロール群に通して連続的にオープンパイプ状に
成形し、このオープンパイプをスクイズロールで加圧し
て帯鋼両エッジを突合せ、その突合せ部にレーザービー
ムを照射して衝合溶接して溶接鋼管となすに際し、下記
の(1)および(2)式を満たす条件でレーザービーム
を照射して溶接することを特徴とする耐水素誘起割れ性
および耐硫化物応力割れ性に優れるラインパイプ用溶接
鋼管の製造方法。 V≧2 ・・・・・・(1) P≧0.4Vt/ea(T-T0) ・・・・・・(2) ただし、a=0.0006 P :レーザ出力(kW) V :溶接速度(m/min) t :帯鋼プ肉厚(mm) T :帯鋼両エッジ部の予熱温度(℃) T0 :室温(℃)
1. By weight%, C: 0.01 to 0.20%, S
i: 0.03 to 0.80%, Mn: 0.40 to 2.00
%, P: 0.025% or less, S: 0.002% or less, s
ol-Al: 0.01 to 0.10% inclusive, and further C
u: 0 to 0.50%, Ni: 0 to 0.50%, Cr: 0
˜1.20%, Mo: 0 to 1.00%, Nb: 0 to 0.
15%, V: 0 to 0.15%, Ti: 0 to 0.15%,
One or more of Zr: 0 to 0.15% and B: 0 to 0.0050%, and Ca: 0 to 0.00
50% and REM: 0 to 0.01% of one or two kinds, and the balance consisting of Fe and inevitable impurities is continuously formed into an open pipe shape through a forming roll group, and this open When pressing the pipe with a squeeze roll, butting both edges of the steel strip together, irradiating the butted portion with a laser beam and performing abutting welding to form a welded steel pipe, under the conditions that satisfy the following formulas (1) and (2). A method for producing a welded steel pipe for a line pipe, which is excellent in hydrogen-induced cracking resistance and sulfide stress cracking resistance, characterized by irradiating a laser beam for welding. V ≧ 2 (1) P ≧ 0.4 Vt / e a (T-T0) (2) where a = 0.006 P: laser output (kW) V: Welding speed (m / min) t: Wall thickness of steel strip (mm) T: Preheating temperature of both edges of steel strip (° C) T0: Room temperature (° C)
【請求項2】請求項1に記載の方法において、溶接後、
少なくとも溶接部をAc3変態点以上に加熱した後、放冷
することを特徴とする耐水素誘起割れ性および耐硫化物
応力割れ性に優れるラインパイプ用溶接鋼管の製造方
法。
2. The method according to claim 1, wherein after welding,
A method for producing a welded steel pipe for a line pipe, which is excellent in hydrogen-induced cracking resistance and sulfide stress cracking resistance, characterized in that at least a welded portion is heated to an Ac 3 transformation point or higher and then allowed to cool.
【請求項3】請求項1に記載の方法において、溶接後、
少なくとも溶接部をAc3変態点以上に加熱した後、(A
r3変態点−30℃)以上、1000℃以下の温度域から
加速冷却することを特徴とする耐水素誘起割れ性および
耐硫化物応力割れ性に優れるラインパイプ用溶接鋼管の
製造方法。
3. The method according to claim 1, wherein after welding,
After heating at least the weld to the Ac 3 transformation point or higher, (A
A method for producing a welded steel pipe for a line pipe, which is excellent in hydrogen-induced cracking resistance and sulfide stress cracking resistance, characterized by accelerated cooling from a temperature range of r 3 transformation point −30 ° C.) to 1000 ° C. inclusive.
【請求項4】請求項3に記載の方法において、加速冷却
に引き続き、500〜750℃の温度域で焼き戻すこと
を特徴とする耐水素誘起割れ性および耐硫化物応力割れ
性に優れるラインパイプ用溶接鋼管の製造方法。
4. The line pipe excellent in hydrogen-induced cracking resistance and sulfide stress cracking resistance, which is characterized in that, in the method according to claim 3, it is tempered in a temperature range of 500 to 750 ° C. following accelerated cooling. For manufacturing welded steel pipes for automobiles.
JP26009194A 1994-10-25 1994-10-25 Method for producing welded steel pipe for line pipes having excellent resistance to hydrogen-induced cracking and sulfide stress cracking Expired - Fee Related JP3146886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26009194A JP3146886B2 (en) 1994-10-25 1994-10-25 Method for producing welded steel pipe for line pipes having excellent resistance to hydrogen-induced cracking and sulfide stress cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26009194A JP3146886B2 (en) 1994-10-25 1994-10-25 Method for producing welded steel pipe for line pipes having excellent resistance to hydrogen-induced cracking and sulfide stress cracking

Publications (2)

Publication Number Publication Date
JPH08118050A true JPH08118050A (en) 1996-05-14
JP3146886B2 JP3146886B2 (en) 2001-03-19

Family

ID=17343177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26009194A Expired - Fee Related JP3146886B2 (en) 1994-10-25 1994-10-25 Method for producing welded steel pipe for line pipes having excellent resistance to hydrogen-induced cracking and sulfide stress cracking

Country Status (1)

Country Link
JP (1) JP3146886B2 (en)

Also Published As

Publication number Publication date
JP3146886B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
RU2427662C2 (en) High strength welded steel pipe for pipeline possessing excellent low temperature ductility and procedure for its fabrication
CA2657518C (en) Hot bend pipe and a process for its manufacture
JP2007260715A (en) Method for producing superhigh strength welded steel pipe
WO2003099482A1 (en) Uoe steel pipe with excellent crash resistance, and method of manufacturing the uoe steel pipe
JPH0941083A (en) Resistance welded tube excellent in hic resistance and sscc resistance and its production
JPH09194998A (en) Welded steel tube and its production
JPH1017980A (en) Welded steel pipe with low yield ratio, and its production
EP0699773B1 (en) Method for manufacturing electric-resistance-welded steel pipe
JP3077576B2 (en) Method for producing low carbon martensitic stainless steel welded pipe
Ichiyama et al. Factors affecting flash weldability in high strength steel–a study on toughness improvement of flash welded joints in high strength steel
JPH08120346A (en) Production of welded steel pipe for oil well excellent in sulphide corrosion cracking resistance
JPH03268877A (en) Manufacture of sulfide stress cracking resistant welded steel pipe for oil well
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
JP3319358B2 (en) Method for producing welded steel pipe for line pipe with excellent hydrogen-induced cracking resistance, sulfide stress cracking resistance and low-temperature toughness
JPH08141762A (en) Manufactureof high c-high cr containing welded steel tube excellent in toughness of weld zone
JPH09168878A (en) Manufacture of duplex stainless steel welded tube
JP3146886B2 (en) Method for producing welded steel pipe for line pipes having excellent resistance to hydrogen-induced cracking and sulfide stress cracking
JPH08309428A (en) Production of welded steel tube
JP5979373B2 (en) Manufacturing method of ERW steel pipe with excellent low temperature toughness
JPH09194997A (en) Welded steel tube and its production
JPH06116645A (en) Production of oil well steel pipe excellent in sulfide stress cracking resistance
JPH08174249A (en) Manufacture of welded steel pipe
JPH08276207A (en) Strengthening method for weld zone of steel strip in continuous rolling
JP2000317642A (en) Flash butt welding method for high-carbon steel sheet or steel strip

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees