JP3319358B2 - Method for producing welded steel pipe for line pipe with excellent hydrogen-induced cracking resistance, sulfide stress cracking resistance and low-temperature toughness - Google Patents

Method for producing welded steel pipe for line pipe with excellent hydrogen-induced cracking resistance, sulfide stress cracking resistance and low-temperature toughness

Info

Publication number
JP3319358B2
JP3319358B2 JP24291197A JP24291197A JP3319358B2 JP 3319358 B2 JP3319358 B2 JP 3319358B2 JP 24291197 A JP24291197 A JP 24291197A JP 24291197 A JP24291197 A JP 24291197A JP 3319358 B2 JP3319358 B2 JP 3319358B2
Authority
JP
Japan
Prior art keywords
resistance
welding
pipe
temperature
welded steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24291197A
Other languages
Japanese (ja)
Other versions
JPH1177350A (en
Inventor
幸雄 真保
雅紀 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP24291197A priority Critical patent/JP3319358B2/en
Publication of JPH1177350A publication Critical patent/JPH1177350A/en
Application granted granted Critical
Publication of JP3319358B2 publication Critical patent/JP3319358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Laser Beam Processing (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硫化水素を含む原
油や天然ガスを輸送するラインパイプ用鋼管、特にAP
I規格(アメリカ石油協会規格)に規定されるX42級
以上の高強度ラインパイプに好適な溶接部の強度、耐水
素誘起割れ性および耐硫化物応力割れ性に優れたライン
パイプ用溶接鋼管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel pipe for a line pipe for transporting a crude oil or a natural gas containing hydrogen sulfide, and more particularly to an AP.
Manufacture of welded steel pipes for line pipes with excellent weld strength, hydrogen-induced cracking resistance and sulfide stress cracking resistance suitable for high-strength line pipes of X42 class or higher specified by I standard (American Petroleum Institute standard) About the method.

【0002】[0002]

【従来の技術】ラインパイプの製造方法として、UOE
プレスにより鋼板を管状に成形しサブマージアーク溶接
によりシーム部を溶接する方法(以下SAW法という)
と帯鋼を連続的に管状に成形し、シーム部を電気抵抗溶
接または高周波抵抗溶接により溶接する方法(以下ER
W法という)がある。ERW法は、溶接速度が速いこと
から高能率で製品を得ることが可能である反面、次のよ
うな問題がある。
2. Description of the Related Art As a method for manufacturing a line pipe, UOE is used.
A method in which a steel sheet is formed into a tube by pressing and the seam is welded by submerged arc welding (hereinafter referred to as SAW method)
And steel strip are continuously formed into a tube, and the seam is welded by electric resistance welding or high frequency resistance welding (hereinafter referred to as ER)
W method). The ERW method can obtain a product with high efficiency because the welding speed is high, but has the following problems.

【0003】すなわち、ERW法は、大気中での溶接あ
るいは不活性ガスシールド中での溶接であってもシール
ドが不完全で酸素分圧が比較的高いため、スケール等の
欠陥誘起物質が衝合溶接面間に混入して溶接欠陥が多発
し易い。また、高周波投入電力が低いと溶融不足による
溶接欠陥が多発し、逆に、高周波投入電力が高いと強い
電磁力による溶鋼の不安定現象が生じてペネトレーター
欠陥が多発する。しかし、これら溶接欠陥およびペネト
レータ欠陥の発生防止を図るための高周波投入電力の微
調整は極めて困難である。
That is, in the ERW method, even when welding in the atmosphere or welding in an inert gas shield, the shield is incomplete and the oxygen partial pressure is relatively high. Welding easily occurs when it is mixed between welding surfaces. In addition, when the high-frequency input power is low, welding defects due to insufficient melting occur frequently. On the contrary, when the high-frequency input power is high, the unstable phenomenon of molten steel due to strong electromagnetic force occurs, and penetrator defects frequently occur. However, it is extremely difficult to fine-tune the high-frequency input power to prevent the occurrence of these welding defects and penetrator defects.

【0004】このようなERW法で製造された溶接鋼管
をラインバイプとして使用した場合以下のような問題が
発生するおそれがある。すなわち、管内面が湿潤H2
環境に曝されると、腐食によって発生した水素が鋼中に
侵入して溶接欠陥部に水素ガスとして溜り、この結果、
衝合溶接面に水素誘起割れ(以下、HICという)が発
生し、これが衝合溶接時のアプセットによって形成され
たメタルフローに沿って肉厚方向に伝播する。この場
合、耐水素誘起割れ性(以下、耐HIC性という)に劣
る。また、ラインパイプでは、内圧によるフープ応力が
前記メタルフローに対して垂直にかかるので、溶接部に
硫化物応力割れ(以下、SSC性という)が発生し易
く、耐硫化物応力割れ性(以下、耐SSC性という)に
ついても必ずしも満足できるものでない。
[0004] When a welded steel pipe manufactured by such an ERW method is used as a line pipe, the following problems may occur. That is, the inner surface of the pipe is wet H 2 S
When exposed to the environment, hydrogen generated by corrosion penetrates into steel and accumulates as hydrogen gas at weld defects,
Hydrogen-induced cracking (hereinafter referred to as HIC) occurs on the abutment weld surface, and this propagates in the thickness direction along the metal flow formed by the upset during the abutment welding. In this case, the resistance to hydrogen-induced cracking (hereinafter referred to as HIC resistance) is poor. In a line pipe, since hoop stress due to internal pressure is applied perpendicularly to the metal flow, sulfide stress cracking (hereinafter referred to as SSC property) is likely to occur at a welded portion, and sulfide stress cracking resistance (hereinafter, referred to as SSC resistance). SSC resistance) is not always satisfactory.

【0005】これに対し、SAW法では溶接欠陥が発生
しにくいうえ、たとえ欠陥が発生したとしても非破壊検
査でこれを見つけ出して補修することが可能であり、そ
のため得られる溶接鋼管の信頼性が非常に高く、溶接部
にHICやSSCの発生はほとんど見られない。
On the other hand, in the SAW method, welding defects are less likely to occur, and even if defects occur, they can be found and repaired by non-destructive inspection, so that the reliability of the welded steel pipe obtained is low. Very high, almost no occurrence of HIC or SSC in the weld.

【0006】しかし、SAW法はERW法と比べて溶接
速度が小さく、生産性は大幅に劣る。このためERW法
に匹敵する生産性を有しHICやSSCの発生のない溶
接鋼管、製造プロセスが切望されている。
However, the welding speed of the SAW method is lower than that of the ERW method, and the productivity is significantly inferior. Therefore, there is a long-felt need for a welded steel pipe having a productivity comparable to the ERW method and free from HIC and SSC, and a manufacturing process.

【0007】ところで、HICおよびSSCの原因は大
きく分けて介在物と硬化組織であるが、ERW法におけ
る溶接欠陥は酸化物系介在物が主であり、これがHIC
やSSCの起点となるため、溶接衝合面における欠陥誘
起物質の混入、ペネトレーター欠陥や溶接欠陥の発生を
防ぐ方法が必要である。
[0007] The causes of HIC and SSC are roughly divided into inclusions and hardened structures, and welding defects in the ERW method are mainly oxide-based inclusions, which are caused by HIC.
Therefore, there is a need for a method for preventing the incorporation of a defect-inducing substance and the occurrence of a penetrator defect and a welding defect at the welding contact surface.

【0008】特開平2−70379号公報には、帯鋼両
エッジ部の高周波加熱に引き続いて溶接速度がERW法
の1/5〜1/10であるレーザビームを溶接部に照射
することで、SAW法等のアーク溶接と同等の溶接部性
能を有する溶接鋼管を得ることを目的とした方法が提案
されている。
Japanese Patent Application Laid-Open No. 2-70379 discloses that a laser beam whose welding speed is 1/5 to 1/10 of that of the ERW method is applied to a welded portion following high-frequency heating of both edges of a steel strip. There has been proposed a method for obtaining a welded steel pipe having a welded portion performance equivalent to that of arc welding such as the SAW method.

【0009】さらに、特開平8−118050号公報に
はレーザ溶接前の予熱の温度に応じてレーザ出力の下限
を設定して耐HIC性及び耐SSC性を確保するレーザ
溶接条件が開示されている。
Further, Japanese Patent Application Laid-Open No. HEI 8-118050 discloses a laser welding condition for setting a lower limit of a laser output according to a preheating temperature before laser welding to secure HIC resistance and SSC resistance. .

【0010】[0010]

【発明が解決しようとする課題】しかしながら、特開平
8−118050号公報では、予熱および溶接速度を定
めたときのレーザ出力の下限を設定しているのみであ
り、レーザ出力の上限は特に設定していない。しかし、
レーザ出力が過大となると、かえって耐HIC性、耐S
SC性が損なわれるばかりでなく低温靭性も低下する問
題がある。このようなレーザ出力が過大になると特性が
低下する機構は次のように考えられる。
However, in Japanese Patent Application Laid-Open No. Hei 8-118050, only the lower limit of the laser output when the preheating and the welding speed are determined is set, and the upper limit of the laser output is not particularly set. Not. But,
If the laser output becomes excessive, the HIC resistance and S resistance
There is a problem that not only does the SC property deteriorate, but also the low-temperature toughness decreases. The mechanism for deteriorating the characteristics when the laser output becomes excessive is considered as follows.

【0011】レーザ出力が大きくなると、必然的に溶融
池は溶接方向に長くなる。すなわち溶接金属が溶融して
いる時間が長くなる。ところで、鋼板の端面には予熱に
より酸化膜が生成している。この端面を突合わせてレー
ザ溶接すると端面に存在していた酸化物は溶融金属中に
分散する。レーザ溶接においては溶接速度が大きいた
め、溶融は急速におこり溶融直後には酸化物は極めて微
細に分散する。
As the laser output increases, the weld pool naturally becomes longer in the welding direction. That is, the time during which the weld metal is molten increases. By the way, an oxide film is formed on the end face of the steel sheet by preheating. When the end faces are butted by laser welding, the oxide present on the end faces is dispersed in the molten metal. In laser welding, since the welding speed is high, melting occurs rapidly, and oxides are dispersed very finely immediately after melting.

【0012】しかし、時間がたつにつれて酸化物粒子は
凝集、粗大化する。レーザ溶接金属中の微細酸化物(直
径0.4〜0.3μm程度)は耐HIC性、耐SSC
性、低温靭性に悪影響をあたえないが、1〜2μm程度
に粗大化すると悪影響を及ぼす。これはHICやSSC
の割れの発生起点として粗大酸化物が働くとともに、低
温での脆性破壊の起点として働くためである。
However, the oxide particles agglomerate and coarsen over time. Fine oxides (about 0.4-0.3 μm in diameter) in laser weld metal are resistant to HIC and SSC
It does not adversely affect the toughness and low-temperature toughness, but has an adverse effect when coarsened to about 1-2 μm. This is HIC or SSC
This is because the coarse oxide acts as a starting point of cracking and also acts as a starting point of brittle fracture at low temperatures.

【0013】さらに、特開平8−118050号公報で
は、レーザ出力の下限を溶接速度と予熱温度に応じて関
係式により設定しているが、レーザ溶接は溶融溶接であ
るため固相圧接であるERWとは異なり、レーザビーム
が貫通して裏側までビードが形成されればERWで見ら
れるペネトレータ等の欠陥は発生しない。
Further, in Japanese Patent Application Laid-Open No. HEI 8-118050, the lower limit of the laser output is set by a relational expression according to the welding speed and the preheating temperature. Unlike the case where the laser beam penetrates and a bead is formed to the back side, a defect such as a penetrator seen in the ERW does not occur.

【0014】したがってレーザ溶接におけるレーザ出力
の下限は裏面よりレーザ溶接状況を監視してレーザビー
ムの貫通を確認すれば十分であり、かつ精度も高い。本
発明は上記の知見に基づいてなされたもので、耐HIC
性、耐SSC性および低温靭性にすぐれたラインパイプ
用溶接鋼管の製造方法を提供することにある。
Therefore, the lower limit of the laser output in laser welding is sufficient if the laser welding condition is monitored from the back surface to confirm the penetration of the laser beam, and the accuracy is high. The present invention has been made based on the above findings,
It is an object of the present invention to provide a method for producing a welded steel pipe for a line pipe having excellent heat resistance, SSC resistance and low-temperature toughness.

【0015】[0015]

【課題を解決するための手段】この発明は、 (1) 重量%で、C:0.01〜0.2%と、Si:
0.03〜0.8%と、Mn:0.4〜2.0%と、
P:0.025%以下と、S:0.002%以下と、so
l.Al:0.01〜0.1%と、Cu:0〜0.5%、
Ni:0〜0.5%、Cr:0〜1.2%、Mo:0〜
1.0%、Nb:0〜0.15%、V:0〜0.15
%、Ti:0〜0.15%、Zr:0〜0.15%およ
びB:0〜0.005%から選択された1種または2種
以上と、Ca:0〜0.005%およびREM:0〜
0.01%から選択された1種または2種とを含む帯鋼
を、成形ロール群に通して連続的にオープンパイプ状に
成形し、このオープンパイプをスクイズロールで加圧し
て帯鋼両エッジを突合せ、その突合せ部にレーザビーム
を照射して衝合溶接して溶接鋼管となすに際し、下記の
(1)式を満たす条件でレーザビームを照射して溶接す
ることを特徴とする耐水素誘起割れ性、耐硫化物応力割
れ性および低温靭性に優れたラインパイプ用溶接鋼管の
製造方法。
According to the present invention, there are provided: (1) C: 0.01 to 0.2% by weight, and Si:
0.03 to 0.8%, Mn: 0.4 to 2.0%,
P: 0.025% or less, S: 0.002% or less, so
l. Al: 0.01 to 0.1%, Cu: 0 to 0.5%,
Ni: 0 to 0.5%, Cr: 0 to 1.2%, Mo: 0 to 0%
1.0%, Nb: 0 to 0.15%, V: 0 to 0.15
%, Ti: 0 to 0.15%, Zr: 0 to 0.15%, and B: 0 to 0.005%, Ca: 0 to 0.005%, and REM : 0
A steel strip containing one or two selected from 0.01% is continuously formed into an open pipe shape through a group of forming rolls, and the open pipe is pressed with a squeeze roll to form both edges of the steel strip. Irradiating a laser beam to the butt portion to form a welded steel pipe by butt welding to form a welded steel pipe, and irradiating with a laser beam under conditions satisfying the following formula (1) to perform welding. A method for producing a welded steel pipe for line pipes having excellent cracking properties, sulfide stress cracking resistance, and low-temperature toughness.

【0016】tm ≦1.8 (1) ただし tm =1.57・2a/v2 [Q/{2πλk(Tm −T)}]2 (2) a: 帯鋼の熱拡散率(m2 /s) v: 溶接速度(m/s) Q: レーザ出力(J/s) λ: 帯鋼の熱伝導率(J/m・s・k) k: 帯鋼の厚み(m) Tm :鋼の融点(K) T: 予熱温度(K) tm :溶融時間(s) (2) (1)に記載の方法において、溶接後、少なく
とも溶接部をAc3 変態点以上に加熱した後、放冷する
ことを特徴とする耐水素誘起割れ性および耐硫化物応力
割れ性に優れたラインパイプ用溶接鋼管の製造方法。
T m ≦ 1.8 (1) where t m = 1.57.2 a / v 2 [Q / {2πλk (T m −T)}] 2 (2) a: thermal diffusivity of the steel strip ( m 2 / s) v: Welding speed (m / s) Q: Laser power (J / s) λ: Thermal conductivity of the strip (J / m · s · k) k: Strip thickness (m) T m: steel melting point (K) T: preheating temperature (K) t m: the method according to melting time (s) (2) (1 ), after welding, and heating at least the weld than Ac 3 transformation point A method for producing a welded steel pipe for a line pipe having excellent resistance to hydrogen-induced cracking and resistance to sulfide stress cracking, characterized by allowing the steel pipe to cool afterwards.

【0017】(3) (1)に記載の方法において、溶
接後、少なくとも溶接部をAc3 変態点以上に加熱した
後、(Ar3 変態点−30℃)以上、1000℃以下の
温度域から加速冷却することを特徴とする耐水素誘起割
れ性および耐硫化物応力割れ性に優れたラインパイプ用
溶接鋼管の製造方法。
(3) In the method described in (1), after welding, at least the welded portion is heated to the Ac 3 transformation point or more, and then from the temperature range of (Ar 3 transformation point −30 ° C.) or more and 1000 ° C. or less. A method for producing a welded steel pipe for a line pipe having excellent hydrogen-induced cracking resistance and sulfide stress cracking resistance characterized by accelerated cooling.

【0018】(4) (3)に記載の方法において、加
速冷却に引き続き、500〜750℃の温度域で焼き戻
すことを特徴とする耐水素誘起割れ性および耐硫化物応
力割れ性に優れたラインパイプ用溶接鋼管の製造方法で
ある。
(4) The method according to (3), characterized in that tempering is performed in a temperature range of 500 to 750 ° C. following accelerated cooling, and the method is excellent in hydrogen-induced cracking resistance and sulfide stress cracking resistance. This is a method for manufacturing a welded steel pipe for a line pipe.

【0019】[0019]

【発明の実施の形態】以下、本発明の方法の実施の形態
を詳細に説明する。まず、素材として、優れた耐HIC
性、耐SSC性及び低温靭性を備えた(熱延鋼板)を用
いる。なお、製管後に少なくとも溶接シーム部、望まし
くは管全体に所定の熱処理を施して、素材帯鋼製造時の
履歴に関係なく耐HIC性と耐SSC性及び低温靭性に
優れた母材性能が得られるようにするのが好ましい。以
下、帯鋼の各成分の含有理由及び添加範囲を限定した理
由を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the method of the present invention will be described in detail. First, as a material, excellent HIC resistance
(Hot rolled steel sheet) having heat resistance, SSC resistance and low temperature toughness is used. After the pipe production, at least a predetermined heat treatment is applied to the welded seam portion, preferably the entire pipe, to obtain a base material having excellent HIC resistance, SSC resistance and low-temperature toughness regardless of the history of the production of the material strip. It is preferred that the Hereinafter, the reasons for containing each component of the steel strip and the reasons for limiting the addition range will be described.

【0020】C:0.01〜0.2% Cの添加により鋼管に所定の強度(X42級以上の強
度)を付与する。その含有量が0.01%未満であると
上記強度が得られず、その含有量が0.2%を超えると
靭性劣化を招くことので、C含有量は0.01〜0.2
%とする。ただし、溶接後に溶接シーム部に後熱処理を
施さない場合には、その含有量が0.12%を超えると
溶接部の効果を招いて耐HIC性と耐SSC性がいずれ
も低下するので、この場合、C含有量は0.01〜0.
12%とするのが望ましい。また、X70〜X80級の
高張力鋼管を得ようとする場合、溶接シーム部の後熱処
理の有無にかかわらず、その含有量は0.01〜0.0
7%とするのが望ましい。
C: 0.01 to 0.2% C is given a predetermined strength (strength of grade X42 or higher) by adding C. If the content is less than 0.01%, the above strength cannot be obtained, and if the content exceeds 0.2%, the toughness is deteriorated. Therefore, the C content is 0.01 to 0.2.
%. However, when the post-heat treatment is not performed on the welded seam after welding, if the content exceeds 0.12%, the effect of the welded portion is caused and both the HIC resistance and the SSC resistance are reduced. In this case, the C content is 0.01 to 0.1.
It is desirable to be 12%. Further, when obtaining a high-tensile steel pipe of X70 to X80 grade, the content thereof is 0.01 to 0.0 irrespective of the presence or absence of post heat treatment of the welded seam portion.
It is desirable to be 7%.

【0021】Si:0.03〜0.8% Siは鋼の脱酸のために0.03%以上の含有量を確保
する必要がある。一方、その含有量が0.8%を超える
と靭性劣化を招く上、焼き戻し脆化を招くので、Si含
有量は0.03〜0.8%とし、好ましくは、0.05
〜0.30%とするのがよい。
Si: 0.03 to 0.8% Si needs to secure a content of 0.03% or more to deoxidize steel. On the other hand, if the content exceeds 0.8%, toughness is deteriorated and tempering embrittlement is caused. Therefore, the Si content is set to 0.03 to 0.8%, preferably 0.05%.
It is preferable to set it to 0.30%.

【0022】Mn:0.4〜2.0% Mnの添加により鋼管に所定の強度(X42級以上の強
度)を確保する。その含有量が0.4%未満では所望の
強度を確保できず、2.0%を超えて含有させると耐S
SC性の低下を招くので、Mn含有量は0.4〜2.0
%とする。ただし、X70級未満の高張力鋼管を得よう
とする場合、その含有量が1.8%を超えると母材偏析
部の合金元素濃度が高くなり、特にC含有量が0.08
%以上の母材では母材の耐HIC性と耐SSC性がいず
れも劣化するので、この場合、Mn含有量は0.4〜
1.8%とするのが望ましい。また、溶接後に溶接溶接
シーム部に後熱処理を施さない場合、その含有量が1.
4%を超えると溶接部の硬化を招いて耐HIC性と耐S
SC性がいずれも低下するので、この場合Mn含有量は
0.4〜1.4%とするのが望ましい。さらに、X70
〜X80級の高張力鋼管を得ようとする場合には、溶接
シーム部の後熱処理の有無にかかわらず、その含有量は
0.4〜2.0%とするのが望ましい。
Mn: 0.4 to 2.0% A predetermined strength (strength of grade X42 or higher) is ensured in the steel pipe by adding Mn. If the content is less than 0.4%, the desired strength cannot be secured, and if the content exceeds 2.0%, the S
Since the decrease in SC property is caused, the Mn content is 0.4 to 2.0.
%. However, when attempting to obtain a high-strength steel pipe of less than X70 grade, if the content exceeds 1.8%, the alloy element concentration in the base metal segregated portion becomes high, and particularly, the C content is 0.08%.
% Or more, the HIC resistance and the SSC resistance of the base material are both deteriorated. In this case, the Mn content is 0.4 to
It is desirably 1.8%. When the post-heat treatment is not performed on the weld seam after welding, the content is 1.
If it exceeds 4%, the weld is hardened, and HIC resistance and S resistance
In this case, the Mn content is desirably set to 0.4 to 1.4% because the SC property is lowered. In addition, X70
In order to obtain a high tensile steel pipe of up to X80 grade, the content thereof is desirably 0.4 to 2.0% regardless of the presence or absence of post heat treatment of the welded seam.

【0023】P:0.025%以下 Pは不可避不純物で、特に、0.025%を超えてPが
含有されると母材偏析部の合金元素濃度が高くなり、母
材の耐SSC性低下が顕著となる上、焼き戻し脆化の点
でも悪影響が現れるので、P含有量は0.025%以
下、好ましくは、0.015%以下とするのがよい。
P: not more than 0.025% P is an unavoidable impurity. In particular, if P is contained in excess of 0.025%, the alloy element concentration in the base material segregated portion becomes high, and the SSC resistance of the base material decreases. Is notable, and the tempering embrittlement also has an adverse effect. Therefore, the P content is preferably 0.025% or less, and more preferably 0.015% or less.

【0024】S:0.002%以下 Sは不可避不純物で、特に、0.002%を超えてSが
含有されるとCaあるいはREM(希土類元素)によっ
てもその形態制御が不可能な硫化物系介在物(MnS)
が生成し、耐HIC性および耐SSC性の低下が著しく
なるので、S含有量は0.002%以下とする。好まし
くは、0.001%以下とするのがよい。
S: 0.002% or less S is an unavoidable impurity. In particular, when S is contained in an amount exceeding 0.002%, a sulfide-based material whose form cannot be controlled by Ca or REM (rare earth element). Inclusion (MnS)
Is generated, and the HIC resistance and the SSC resistance are significantly reduced. Therefore, the S content is set to 0.002% or less. Preferably, the content is 0.001% or less.

【0025】sol.Al:0.01〜0.1% Alは鋼の脱酸のためにsol.Al含有量で0.01%以
上を確保する必要がある。その含有量が0.1%を超え
ると鋼の清浄度確保が困難となるので、sol.Al含有量
は0.01〜0.1%、好ましくは、0.02〜0.0
5%とするのがよい。
Sol.Al: 0.01 to 0.1% Al needs to secure 0.01% or more in sol.Al content to deoxidize steel. If the content exceeds 0.1%, it becomes difficult to ensure the cleanliness of the steel, so the sol.Al content is 0.01 to 0.1%, preferably 0.02 to 0.0%.
It is good to make it 5%.

【0026】本発明の素材帯鋼は、上記成分に加えて、
Cu,Ni,Cr,Mo,Nb,V,Ti,Zrおよび
Bから選択された1種または2種以上、さらにはCaお
よびREM(希土類元素)から選択された1種または2
種を含有することもできる。
[0026] In addition to the above components, the steel strip of the present invention comprises:
One or more selected from Cu, Ni, Cr, Mo, Nb, V, Ti, Zr and B, and one or two selected from Ca and REM (rare earth element)
Species can also be included.

【0027】Cu,Ni,Cr,Mo,Nb,V,T
i,Zr及びB これらの元素の添加により、いずれも鋼管の強度および
靭性を改善するので、必要に応じてCu,Ni,Cr,
Mo,Nb,V,Ti,ZrおよびBのうちから1種ま
たは2種以上を含有させることができる。 Cu≦0.5%、Ni≦0.5% Cu,Niは強度及び靭性の改善効果を有するが,0.
5%を超えて含有させると熱間加工性が低下して素材と
なる熱熱延コイルの製造が困難となるので、上限を0.
5%とし、好ましくは、0.05〜0.5%とするのが
よい。
Cu, Ni, Cr, Mo, Nb, V, T
i, Zr and B The addition of these elements all improves the strength and toughness of the steel pipe, so that Cu, Ni, Cr,
One, two or more of Mo, Nb, V, Ti, Zr and B can be contained. Cu ≦ 0.5%, Ni ≦ 0.5% Cu and Ni have an effect of improving strength and toughness.
If the content exceeds 5%, the hot workability is reduced and it becomes difficult to produce a hot-rolled coil as a material.
5%, preferably 0.05 to 0.5%.

【0028】Cr≦1.2% Crは強度及び靭性の改善効果を有するが,1.2%を
超えて含有させると靭性の低下、耐SSC性の低下を招
くので、上限を1.2%とし、好ましくは0.05〜
1.2%とするのがよい。 Mo≦1.0% Moは強度及び靭性の改善効果を有するが,1.0%を
超えて含有させると、靭性の低下、耐SSC性の低下を
招くので、上限を1.0%とし、好ましくは0.05〜
1.0%とするのがよい。 Nb≦0.15%,V≦0.15%,Ti≦0.15
%,Zr≦0.15% Nb,V,Ti,Zrは、強度及び靭性の改善効果を有
するが,0.15%を超えて含有させると靭性の低下を
招くので、上限を0.15%とし、好ましくは0.01
〜0.15%とするのがよい。 B≦0.005% Bは強度及び靭性の改善効果を有するが,0.005%
を超えて含有されると靭性の低下を招くので、上限を
0.005%とし、好ましくは0.0005〜0.00
5%とするのがよい。 Ca≦0.005%,REM(希土類元素)≦0.01
% これらの成分は、硫化物系介在物の形態制御を通じて耐
SSC性の向上作用を発揮する。Caの場合には0.0
05%を超えて含有されるとCa系介在物の増加により
耐HIC性および耐SSC性の劣化を招き、また、RE
Mの場合には0.01%を超えて含有されると酸化物系
介在物の増加により耐HIC性および耐SSC性の劣化
を招くので、それぞれ上限を0.005%,0.01%
とし、好ましくは、Ca含有量は0.0005〜0.0
05%,REM含有量は0.0005〜0.01%とす
るのがよい。上記成分組成の素材帯鋼は、例えば、以下
に述べる条件で製造される。ただし、本発明はこの条件
に限定されるものではない。
Cr ≦ 1.2% Cr has an effect of improving strength and toughness, but if contained in excess of 1.2%, the toughness and SSC resistance are reduced. And preferably 0.05 to
It is better to be 1.2%. Mo ≦ 1.0% Mo has the effect of improving the strength and toughness, but if it is contained in excess of 1.0%, the toughness and SSC resistance decrease, so the upper limit is set to 1.0%. Preferably 0.05 to
It is good to make it 1.0%. Nb ≦ 0.15%, V ≦ 0.15%, Ti ≦ 0.15
%, Zr ≦ 0.15% Nb, V, Ti, and Zr have an effect of improving the strength and toughness, but if contained in excess of 0.15%, the toughness is reduced, so the upper limit is 0.15%. And preferably 0.01
The content is preferably set to 〜0.15%. B ≦ 0.005% B has the effect of improving strength and toughness, but 0.005%
If the content exceeds 0.005%, the toughness is reduced, so the upper limit is made 0.005%, preferably 0.0005 to 0.005%.
It is good to make it 5%. Ca ≦ 0.005%, REM (rare earth element) ≦ 0.01
% These components exhibit the effect of improving SSC resistance through morphological control of sulfide-based inclusions. 0.0 for Ca
If the content exceeds 0.05%, Ca-based inclusions increase, leading to deterioration of HIC resistance and SSC resistance.
In the case of M, if the content exceeds 0.01%, an increase in oxide inclusions causes deterioration of HIC resistance and SSC resistance, so the upper limits are 0.005% and 0.01%, respectively.
Preferably, the Ca content is 0.0005 to 0.0
It is good to make it 05% and REM content 0.0005-0.01%. The material strip having the above-mentioned composition is produced, for example, under the following conditions. However, the present invention is not limited to this condition.

【0029】[スラブ加熱温度]スラブ加熱温度は、以
下の熱延が可能となる温度範囲とするのが好ましい。 [熱延仕上温度]耐HIC性および耐SSC性の改善の
ために、熱延をAr3 変態点以上で終了して次に示す加
速冷却開始温度を確保するのがよく、特に、熱延仕上温
度は(Ar3 変態点+30℃)の温度以上とするのがよ
い。
[Slab Heating Temperature] The slab heating temperature is preferably set within a temperature range in which the following hot rolling is possible. [Hot rolling finish temperature] In order to improve the HIC resistance and the SSC resistance, it is preferable to complete the hot rolling at an Ar 3 transformation point or higher and secure the following accelerated cooling start temperature. The temperature is preferably equal to or higher than the temperature of (Ar 3 transformation point + 30 ° C.).

【0030】[加速冷却開始温度]熱延後の加速冷却開
始温度が低いと初析フェライトの成長に伴い偏析部にC
が濃縮して加速冷却時に硬化組織が生成し、耐HIC性
および耐SSC性の低下を招くようになり、また、X7
0〜X80級の高強度を得ることが困難となる。これら
を防止するために、加速冷却開始温度は(Ar3 変態点
−30℃)の温度以上とするのがよく、特に初析フェラ
イトのないAr3 変態点以上が好ましい。
[Accelerated Cooling Start Temperature] If the accelerated cooling start temperature after hot rolling is low, C
Is concentrated to form a hardened structure during accelerated cooling, which causes a decrease in HIC resistance and SSC resistance.
It is difficult to obtain a high strength of 0 to X80 class. In order to prevent these, the accelerated cooling start temperature is preferably equal to or higher than the temperature of (Ar 3 transformation point−30 ° C.), and particularly preferably equal to or higher than the Ar 3 transformation point without proeutectoid ferrite.

【0031】[加速冷却時の平均冷却速度]加速冷却時
の平均冷却速度が遅いとフェライト/パーライトの2相
分離が進んで、中心偏析部で耐HIC性および耐SSC
性に劣るバンド状組織が形成され、また、X70〜X8
0級の高強度を得ることが困難となる。そのため平均冷
却速度は5℃/s以上とするのがよい。しかし、その値
が20℃/sを超えると硬化したブロック状ベイナイト
が生成し易くなって好ましくない。X70〜X80級の
高強度用熱延鋼板の場合はほぼ30℃/sが好適であ
る。
[Average Cooling Rate During Accelerated Cooling] If the average cooling rate during accelerated cooling is low, the two-phase separation of ferrite / pearlite proceeds, and the HIC resistance and SSC resistance at the center segregation portion are increased.
Inferior band-like structure is formed, and X70-X8
It is difficult to obtain a zero-grade high strength. Therefore, the average cooling rate is preferably set to 5 ° C./s or more. However, when the value exceeds 20 ° C./s, hardened block-like bainite is easily formed, which is not preferable. In the case of a hot-rolled steel sheet for X70 to X80 grade high strength, approximately 30 ° C./s is suitable.

【0032】[加速冷却停止温度]600℃を超える温
度域で加速冷却を停止すると、停止時に未変態のオース
テナイトが残るのでその後パーライトが生成すると共
に、中心偏析部がCの濃縮によって硬化して耐HIC性
および耐SSC性が低下する傾向となる。また、X70
〜X80級の高強度を得ることが困難となる。一方、4
00℃を下回る温度域で加速冷却を停止すると、硬化し
たブロック状ベイナイトが生成し易くなり、耐HIC性
および耐SSC性が低下する。そのため、加速冷却停止
温度は600〜400℃とするのが好ましい。X70〜
X80級の高強度用熱延鋼板の場合は600〜200℃
が好ましい。
[Accelerated Cooling Stop Temperature] When accelerated cooling is stopped in a temperature range exceeding 600 ° C., untransformed austenite remains at the time of the stop, so that pearlite is generated, and the center segregated portion is hardened by the concentration of C and hardened. HIC and SSC resistance tend to decrease. Also, X70
It is difficult to obtain a high strength of up to X80 class. Meanwhile, 4
When accelerated cooling is stopped in a temperature range lower than 00 ° C., hardened block-like bainite is easily generated, and the HIC resistance and the SSC resistance decrease. Therefore, the accelerated cooling stop temperature is preferably set to 600 to 400 ° C. X70 ~
X80 class high strength hot rolled steel sheet: 600-200 ° C
Is preferred.

【0033】[巻取温度]巻取は、加速冷却停止に引き
続いて実施する。 [レーザ溶接条件]本発明においては、先ず上記成分組
成を有するとともに上記条件で製造された素材帯鋼を常
法通りに成形ロール群に通して連続的にロール成形して
オープンパイプ状となし、成形ロール群の後段に設けら
れた左右一対のスクイズロールによって帯鋼両エッジ相
互が当接する位置、すなわちオープンパイプの突き合わ
せ部に、レーザビームを上方から垂直に照射して衝合溶
接を行う。この際、下記の(1)式を満足する条件とす
る。
[Take-up temperature] Take-up is performed following the stop of the accelerated cooling. [Laser Welding Conditions] In the present invention, the steel strip having the above-mentioned composition and manufactured under the above-mentioned conditions is passed through a group of forming rolls as usual and continuously roll-formed to form an open pipe. A laser beam is applied vertically from above to a position where the two edges of the steel strip abut on each other by a pair of left and right squeeze rolls provided at the rear stage of the forming roll group, that is, the butted portion of the open pipe, to perform abutment welding. At this time, conditions satisfying the following equation (1) are set.

【0034】tm ≦1.8……(1) ただし tm =1.57・2a/v2 [Q/{2πλk(Tm −T)}]2 ……(2) a: 帯鋼の熱拡散率(m2 /s) v: 溶接速度(m/s) Q: レーザ出力(J/s) λ: 帯鋼の熱伝導率(J/m・s・k) k: 帯鋼の厚み(m) Tm :鋼の融点(K) T: 予熱温度(K) tm :溶融時間(s) ここで、上記(1)および(2)式は、本発明者が鋭
意、研究、実験の結果見出だした関係式である。(1)
はレーザ溶接において溶接金属が溶融している時間を規
定しているもので、前述したように溶接金属中の酸化物
介在物が粗大化しない条件を表わしている。また(2)
式は溶融時間を予熱温度、溶接速度、レーザ出力などの
パラメータから求めるものであり、伝熱論的な考察から
発明者が導出した。図1は、帯鋼肉厚t、溶接速度V、
帯鋼両エッジ部の予熱温度Tおよびレーザ出力PがSS
C発生に及ぼす影響を示した図であり、(2)式から計
算されるTm とHIC発生率との関係を示す図1からt
m >2.1とするとSSCが発生することがわかる。ま
た、図2は(2)式から計算されるtm とHIC発生率
との関係を示す図2からtm >1.8となるとHICが
発生することがかる。また、図3は(2)式から計算さ
れるtm とシャルピーの−50℃での吸収エネルギーと
の関係を示す。図3からTm >2.0となると吸収エネ
ルギーが急激に低下することがわかる。以上からtm
1.8とすれば耐HIC性、耐SSC性、低温靭性のい
ずれをも満足することがわかる。このようにしてオープ
ンパイプの突合せ部を溶接した溶接鋼管は、溶接ままで
十分な性能を発揮するが、より一層の性能向上を図るた
めには溶接後の溶接シーム部に次の熱処理を施すことが
好ましい。
T m ≦ 1.8 (1) where t m = 1.57.2 a / v 2 [Q / {2πλk (T m -T)}] 2 (2) a: Thermal diffusivity (m 2 / s) v: Welding speed (m / s) Q: Laser power (J / s) λ: Thermal conductivity of steel strip (J / m · s · k) k: Steel strip thickness (M) T m : melting point of steel (K) T: preheating temperature (K) t m : melting time (s) Here, the above formulas (1) and (2) are intensively studied, studied, and experimented by the present inventors. Is a relational expression found as a result of (1)
Defines the time during which the weld metal is melted in the laser welding, and indicates the condition under which the oxide inclusions in the weld metal are not coarsened as described above. Also (2)
In the equation, the melting time is obtained from parameters such as the preheating temperature, the welding speed, and the laser output, and was derived by the inventor from consideration of heat transfer theory. FIG. 1 shows strip steel thickness t, welding speed V,
The preheating temperature T and laser output P at both edges of the steel strip are SS
FIG. 3 is a diagram showing the effect on C generation, and FIG. 1 to t showing the relationship between T m calculated from the equation (2) and the HIC occurrence rate.
It can be seen that when m > 2.1, SSC occurs. FIG. 2 shows the relationship between t m calculated from the equation (2) and the HIC occurrence rate. FIG. 2 shows that HIC occurs when t m > 1.8. Further, FIG. 3 shows the relationship between absorbed energy at -50 ° C. for t m and Charpy calculated from equation (2). FIG. 3 shows that when T m > 2.0, the absorbed energy sharply decreases. From the above, t m
It can be seen that a value of 1.8 satisfies all of HIC resistance, SSC resistance and low-temperature toughness. The welded steel pipe obtained by welding the butt portion of the open pipe in this way can exhibit sufficient performance as it is, but in order to further improve the performance, perform the following heat treatment on the welded seam after welding. Is preferred.

【0035】[溶接シーム部の加熱温度]溶接シーム部
Ac3 変態点以上の温度域へ加速するのが好ましい。こ
れは、加熱時にオーステナイト単相として溶接部の粗粒
組織を破壊して細粒組織を得るためであるが、加熱温度
がこの温度未満であるとその効果が得られない。なお、
上限は特に規定する必要はないが、1100℃を超える
と結晶粒が再び粗粒化し、特にC含有量が0.12%を
超える素材では耐HIC性、耐SSC性および靭性に悪
影響を及ぼすので1100℃以下とするのが好ましい。
[Heating temperature of welding seam portion] It is preferable to accelerate the temperature to a temperature range not lower than the transformation point of the welding seam portion Ac 3 . This is to destroy the coarse-grained structure of the welded portion as an austenitic single phase during heating to obtain a fine-grained structure. However, if the heating temperature is lower than this temperature, the effect cannot be obtained. In addition,
The upper limit does not need to be particularly defined. However, if the temperature exceeds 1100 ° C., the crystal grains become coarse again. Particularly, in a material having a C content of more than 0.12%, the HIC resistance, SSC resistance and toughness are adversely affected. The temperature is preferably set to 1100 ° C. or lower.

【0036】[加熱後の冷却]上記温度域への加熱後、
そのまま放冷(空冷)すると溶接部の硬度が低く抑えら
れて耐HIC性および耐SSC性が向上する。ただし、
溶接シーム部のみを上記温度域に加熱して放冷すると母
材部に比べて溶接部の強度が低下する場合がある。この
場合、加熱後速やかに加速冷却を実施すると溶接部の強
度低下を防ぐことができるので、強度低下を防止したい
場合に加速冷却を実施するのが好ましい。しかし、加速
冷却開始温度が(Ar3 変態点−30℃)の温度未満で
あると初析フェライトの成長に伴いCが濃縮した残留オ
ーステナイトが加速冷却時に硬化して、耐HIC性およ
び耐SSC性の低下を招くようになる。一方、加速冷却
開始温度が1000℃を超えると硬度の高いマルテンサ
イト組織やベイナイト組織が生成し、耐HIC性および
耐SSC性にとって望ましくない。従って、加速冷却を
行う場合の冷却開始温度は(Ar3 変態点−30℃)〜
1000℃とするのが好ましい。また、加速冷却を行う
場合の冷却速度としては、母材である素材帯鋼(熱延鋼
板)製造時の条件と同じ、5〜30℃/sとするのが好
ましい。
[Cooling after heating] After heating to the above temperature range,
If left to cool as it is (air cooling), the hardness of the welded portion is kept low, and the HIC resistance and SSC resistance are improved. However,
If only the weld seam is heated to the above temperature range and allowed to cool, the strength of the weld may be lower than that of the base material. In this case, if accelerated cooling is performed immediately after heating, a decrease in the strength of the welded portion can be prevented. Therefore, it is preferable to perform accelerated cooling when it is desired to prevent a decrease in strength. However, if the accelerated cooling start temperature is lower than the temperature of (Ar 3 transformation point −30 ° C.), the residual austenite in which C is concentrated with the growth of pro-eutectoid ferrite hardens during accelerated cooling, and the HIC resistance and SSC resistance are reduced. Will be reduced. On the other hand, when the accelerated cooling start temperature exceeds 1000 ° C., a martensite structure or a bainite structure having high hardness is generated, which is not desirable for the HIC resistance and the SSC resistance. Therefore, the cooling start temperature when performing accelerated cooling is (Ar 3 transformation point −30 ° C.) to
The temperature is preferably set to 1000 ° C. Further, the cooling rate in the case of performing the accelerated cooling is preferably 5 to 30 ° C./s, which is the same as the condition at the time of manufacturing the base material steel strip (hot-rolled steel sheet).

【0037】[加速冷却後の焼戻し]上記加速冷却後に
焼戻し処理を施して溶接部の軟化を図ると、溶接部の耐
HIC性および靭性がより一層改善されることから、耐
HIC性と靭性のより一層の向上を図りたい場合には加
速冷却後に焼戻し処理を施すのが好ましい。しかし、焼
戻し温度が500℃未満であると材料が軟化しないので
焼戻の効果が得られない。一方、750℃を超えると一
部オーステナイト変態が生じて所定の強度が得られない
のみならず、残留オーステナイトや焼戻されないマルテ
ンサイト相が生じて耐HIC性および耐SSC性にとっ
て望ましくないので、焼戻処理を施す場合の温度は50
〜750℃とするのが好ましい。
[Tempering after Accelerated Cooling] When tempering is performed after accelerated cooling to soften the welded portion, the HIC resistance and toughness of the welded portion are further improved. If further improvement is desired, a tempering treatment is preferably performed after accelerated cooling. However, if the tempering temperature is lower than 500 ° C., the material does not soften, so that the tempering effect cannot be obtained. On the other hand, when the temperature exceeds 750 ° C., not only the austenite transformation occurs partially but a predetermined strength cannot be obtained, but also a retained austenite and a martensite phase which is not tempered occur, which is undesirable for HIC resistance and SSC resistance. The temperature when performing the return process is 50
It is preferably set to 750 ° C.

【0038】[0038]

【実施例】製管用母材として、耐SSC性および耐HI
C性に優れたX42〜X80級の表1に示す化学成分を
有する9種類の素材帯鋼(熱延鋼板)を準備した。これ
ら母材のAPI等級、強度、耐HIC性および耐SSC
性を調査した結果を表1に併記する。なお、母材の耐H
IC性は、NACE(米国腐食協会規格)−TM−02
−84に規定の方法に基づき、NACE浴(0.5%酢
酸、5%食塩水、25℃、1気圧H2 S飽和)に96h
浸漬したときの割れ長さ率(CLR)で評価した。耐S
SC性は、NACE−TM−01−77−METHOD
−Aに規定の単軸引張試験法で評価したときにおけるσ
th(SSCにより破断を生じる最小の応力)とσys(降
伏応力)の比での評価結果であるが、いずれの母材も、
耐HIC性については1つの目安であるNACE条件の
CLR≦15%を、また耐SSC性については1つの目
安であるNACE条件のσth/σys≧72%を満足して
いた。
EXAMPLES As a base material for pipe making, SSC resistance and HI resistance were used.
Nine types of steel strips (hot-rolled steel sheets) having chemical compositions shown in Table 1 of X42 to X80 grades having excellent C properties were prepared. API grade, strength, HIC resistance and SSC resistance of these base materials
Table 1 also shows the results of the examination of the properties. In addition, H resistance of the base material
The IC property is determined by NACE (American Corrosion Association Standard) -TM-02
96 h in a NACE bath (0.5% acetic acid, 5% saline, 25 ° C., 1 atm H 2 S saturation) based on the method specified in −84.
It was evaluated by the crack length ratio (CLR) when immersed. S resistance
SC property is NACE-TM-01-77-METHOD
Σ when evaluated by the uniaxial tensile test method specified in -A
th (the minimum stress that causes a fracture by SSC) and σys (yield stress).
The HIC resistance satisfies CLR ≦ 15% under NACE conditions, which is one standard, and the SSC resistance satisfies σth / σys ≧ 72% under NACE conditions, which is one standard.

【0039】[0039]

【表1】 [Table 1]

【0040】上記素材帯鋼(熱延鋼板)を常法に基づき
成形ロール群に通してオープンパイプに成形し、スクイ
ズロールでその両エッジ部相互を突き合わせ、この突き
合わせ部分に上方よりシールドガスとしてプラズマ除去
効果の高いヘリウムガスを用いてレーザビームを垂直に
照射して衝合溶接を行うに当たり、表2に示す各条件で
溶接を行った。レーザ源としては、集光前ビーム径Dが
51mm、ミラー(放物面鏡)焦点距離fが381mm
の出力25kWの炭酸ガスレーザ発振機を使用した。な
お、焦点位置は、いずれも突合せ部のオープンパイプ外
表面から内側に3mmに設定した。さらに、管内面に設
置したCCDカメラにより裏面の溶接ビードの状況を監
視し、レーザビームの貫通を確保した。また、比較のた
め同様素材帯鋼を用いた従来のERW法によって溶接し
た溶接ままの溶接鋼管も用意した。
The raw steel strip (hot rolled steel sheet) is formed into an open pipe by passing it through a group of forming rolls according to a conventional method, and both edges thereof are butted together by a squeeze roll. When performing abutment welding by vertically irradiating a laser beam using helium gas having a high removal effect, welding was performed under the conditions shown in Table 2. As the laser source, the beam diameter D before condensing is 51 mm, and the mirror (parabolic mirror) focal length f is 381 mm.
A carbon dioxide laser oscillator having an output of 25 kW was used. Note that the focal position was set to 3 mm inward from the outer surface of the open pipe at the butting portion. Furthermore, the condition of the welding bead on the back surface was monitored by a CCD camera installed on the inner surface of the tube, and the penetration of the laser beam was secured. For comparison, a welded steel pipe as-welded by a conventional ERW method using a steel strip was also prepared.

【0041】得られた溶接鋼管の溶接ままの溶接部(一
部のものについては、表2に示す条件で溶接シーム部に
後熱処理を施した後の溶接部)の耐HIC性、耐SSC
性、低温靭性とを次に述べる方法で評価した。
The HIC resistance and SSC resistance of the as-welded welded portion of the obtained welded steel pipe (for some, the welded portion after the post-heat treatment of the welded seam under the conditions shown in Table 2)
Properties and low temperature toughness were evaluated by the following methods.

【0042】溶接シーム部が中央に位置するように管軸
方向に切開して周方向に展開後、図4に示した各位置か
ら、HIC試験片については図5に示す形状、寸法の試
験片を管軸長方向の異なる位置から各3枚を、SSC試
験片については素材帯鋼の肉厚に応じて図6に示す
(X)または(Y)のいずれかの形状、寸法の試験片を
管軸長方向の異なる位置から各3本を、シャルピー試験
は図9に示す形状寸法の試験片を管軸長方向の異なる位
置から各3本を切り出し採取した。なお、SSC試験片
は、いずれも素材肉厚の関係上ネジ部が欠けたので、試
験時にテフロンテープ等をネジ部に巻き付けシールして
試験に供した。
After incision in the pipe axis direction so that the welded seam portion is located at the center and development in the circumferential direction, from each position shown in FIG. 4, the HIC test piece has the shape and dimensions shown in FIG. 6 from different positions in the longitudinal direction of the tube axis. For the SSC test piece, a test piece of either (X) or (Y) shown in FIG. In the Charpy test, three test pieces each having the shape and dimensions shown in FIG. 9 were cut out from three different positions in the longitudinal direction of the tube axis and sampled. Since the SSC test piece lacked a screw portion due to the thickness of the material, a Teflon tape or the like was wound around the screw portion and sealed during the test before the test.

【0043】HIC試験は、上記の試験片(各試番各3
枚)を、NACE浴(0.5%酢酸、5%食塩水、25
℃、1気圧H2 S飽和)に96時間浸漬後、各試験片に
ついて図7に示すように超音波探傷法で接合面割れ発生
面積を検出し、平均割れ面積率(CAR)を求めてHI
C感受性を評価した。なお、CAR値の3倍値が上記C
LR値に相当し、CRA≦5%であれば耐HIC性に優
れたことを示している。
In the HIC test, the above test pieces (each test number 3
Pieces) in a NACE bath (0.5% acetic acid, 5% saline, 25%).
° C., and after 96 hours immersion in 1 atm H 2 S saturated), to detect the bonding surface cracking area by the ultrasonic flaw detection method as shown in FIG. 7 for each specimen, an average crack area ratio (CAR) HI
C sensitivity was evaluated. Note that the triple value of the CAR value is the above C value.
This corresponds to the LR value, and if CRA ≦ 5%, it indicates that the HIC resistance is excellent.

【0044】SSC試験は、上記の各試験片(各試番各
2本)を、図8に示すSSC試験装置を用い、NACE
浴(0.5%酢酸、5%食塩水、25℃、1気圧H2
飽和)中で、SMYS(規格最小降伏応力)の72%の
引張応力を付加し、720時間の試験期間中での破断の
有無を調査した。
In the SSC test, each of the above test pieces (each test number, two) was subjected to NACE using an SSC test apparatus shown in FIG.
Bath (0.5% acetic acid, 5% saline, 25 ° C., 1 atm H 2 S
(Saturated), a tensile stress of 72% of SMYS (standard minimum yield stress) was applied, and the presence or absence of fracture during the 720 hour test period was examined.

【0045】低温靭性はシャルピー試験により評価し−
50℃での吸収エネルギーで評価した。吸収エネルギー
で65J以上であれば十分な低温靭性である。これらの
試験結果を表2に示す。
The low-temperature toughness was evaluated by a Charpy test.
It evaluated by the absorption energy at 50 degreeC. If the absorbed energy is 65 J or more, sufficient low-temperature toughness is obtained. Table 2 shows the test results.

【0046】[0046]

【表2】 [Table 2]

【0047】表2中、試番1,6,11はERWによる
従来例、2,3,7,8,12,13,14,17,1
8,19,21〜30が本発明例、その他が本発明条件
から外れて入熱が過大なレーザ溶接による比較例であ
る。
In Table 2, trial numbers 1, 6, and 11 are conventional examples based on ERW, and 2, 3, 7, 8, 12, 13, 14, 17, 1
8, 19, 21 to 30 are examples of the present invention, and the others are comparative examples by laser welding with heat input exceeding the conditions of the present invention.

【0048】これらの実施例及び比較例の結果から明ら
かなように、本発明によれば、EHIC性、耐SSC
性、及び低温靭性に優れた溶接管が得られる。また、溶
接部の対HIC性、耐SSC性および低温靭性は溶接シ
ーム部に後熱処理を施さない場合にあっても良好であっ
た。
As is apparent from the results of these Examples and Comparative Examples, according to the present invention, EHIC property and SSC resistance
A welded pipe having excellent heat resistance and low-temperature toughness can be obtained. Further, the HIC resistance, SSC resistance and low-temperature toughness of the welded portion were good even when the post-heat treatment was not performed on the welded seam portion.

【0049】[0049]

【発明の効果】以上詳述したように、本発明方法によれ
ば、湿潤H2 S環境において溶接部の強度、耐HIC性
および耐SSC性のすべての性能を十分に満足するER
W法での製造サイズのラインパイプ用溶接鋼管を高能率
に安定して製造することが可能で、産業上極めて有用な
効果を奏する。
As described above in detail, according to the method of the present invention, the ER sufficiently satisfies all the strengths, the HIC resistance and the SSC resistance of the weld in a wet H 2 S environment.
It is possible to stably manufacture a welded steel pipe for a line pipe having a production size by the W method with high efficiency, and has an extremely useful effect in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SSC発生に及ぼす板厚、出力、溶接速度、予
熱温度の相関(式1)の影響を示す図。
FIG. 1 is a view showing the influence of a correlation (Equation 1) of a sheet thickness, an output, a welding speed, and a preheating temperature on SSC generation.

【図2】HIC発生に及ぼす板厚、出力、溶接速度、予
熱温度の相関(式1)の影響を示す図。
FIG. 2 is a diagram showing the influence of the correlation (Equation 1) of the sheet thickness, output, welding speed, and preheating temperature on HIC generation.

【図3】低温靭性生に及ぼす板厚、出力、溶接速度、予
熱温度の相関(式1)の影響を示す図。
FIG. 3 is a view showing the influence of the correlation (Equation 1) of the sheet thickness, output, welding speed, and preheating temperature on the low-temperature toughness.

【図4】HICとSSC調査用試験片の採取部位を示す
概念図。
FIG. 4 is a conceptual diagram showing a sampling site of a test piece for HIC and SSC investigation.

【図5】HIC試験片の形状、寸法を示す図。FIG. 5 is a view showing the shape and dimensions of an HIC test piece.

【図6】SSC試験片の形状、寸法を示す図。FIG. 6 is a view showing the shape and dimensions of an SSC test piece.

【図7】HICを超音波探傷法にて評価する様子を説明
する概念図。
FIG. 7 is a conceptual diagram illustrating a state in which HIC is evaluated by an ultrasonic flaw detection method.

【図8】SSC試験装置の概念図。FIG. 8 is a conceptual diagram of an SSC test apparatus.

【図9】シャルピー試験片の形状寸法を示す図。FIG. 9 is a diagram showing the shape and dimensions of a Charpy test piece.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/00 301 C22C 38/00 301Z 38/50 38/50 38/58 38/58 // B23K 103:04 B23K 103:04 (56)参考文献 特開 平8−120346(JP,A) 特開 平5−228660(JP,A) 特開 平5−15986(JP,A) 特開 平8−155663(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23K 26/00 - 26/30 B21C 37/08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C22C 38/00 301 C22C 38/00 301Z 38/50 38/50 38/58 38/58 // B23K 103: 04 B23K 103: 04 (56) References JP-A-8-120346 (JP, A) JP-A-5-228660 (JP, A) JP-A-5-15986 (JP, A) JP-A-8-155563 (JP, A) ( 58) Field surveyed (Int.Cl. 7 , DB name) B23K 26/00-26/30 B21C 37/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.01〜0.2%と、
Si:0.03〜0.8%と、Mn:0.4〜2.0%
と、P:0.025%以下と、S:0.002%以下
と、sol.Al:0.01〜0.1%と、 Cu:0〜0.5%、Ni:0〜0.5%、Cr:0〜
1.2%、Mo:0〜1.0%、Nb:0〜0.15
%、V:0〜0.15%、Ti:0〜0.15%、Z
r:0〜0.15%およびB:0〜0.005%から選
択された1種または2種以上と、 Ca:0〜0.005%およびREM:0〜0.01%
から選択された1種または2種とを含む帯鋼を、 成形ロール群に通して連続的にオープンパイプ状に成形
し、このオープンパイプをスクイズロールで加圧して帯
鋼両エッジを突合せ、その突合せ部にレーザビームを照
射して衝合溶接して溶接鋼管とするラインパイプ用溶接
鋼管の製造方法において、 下記の(1)式を満たす条件でレーザビームを照射して
溶接することを特徴とする耐水素誘起割れ性、耐硫化物
応力割れ性および低温靭性に優れたラインパイプ用溶接
鋼管の製造方法。 tm ≦1.8……(1) ただし、 tm =1.57・2a/v2 [Q/{2πλk(Tm −T)}]2 ……(2) a: 帯鋼の熱拡散率(m2 /s) v: 溶接速度(m/s) Q: レーザ出力(J/s) λ: 帯鋼の熱伝導率(J/m・s・k) k: 帯鋼の厚み(m) Tm :鋼の融点(K) T: 予熱温度(K) tm :溶融時間(s)
(1) C: 0.01 to 0.2% by weight.
Si: 0.03 to 0.8% and Mn: 0.4 to 2.0%
, P: 0.025% or less, S: 0.002% or less, sol. Al: 0.01 to 0.1%, Cu: 0 to 0.5%, Ni: 0 to 0.5 %, Cr: 0
1.2%, Mo: 0 to 1.0%, Nb: 0 to 0.15
%, V: 0 to 0.15%, Ti: 0 to 0.15%, Z
One or more selected from r: 0 to 0.15% and B: 0 to 0.005%, Ca: 0 to 0.005%, and REM: 0 to 0.01%
The steel strip containing one or two types selected from the following is continuously formed into an open pipe shape through a group of forming rolls, and the open pipe is pressed with a squeeze roll to butt the two edges of the steel strip. A method for producing a welded steel pipe for a line pipe by irradiating a butt portion with a laser beam to form a welded steel pipe by abutment welding, wherein the welding is performed by irradiating the laser beam under a condition satisfying the following expression (1). Method for producing welded steel pipes for line pipes having excellent resistance to hydrogen-induced cracking, sulfide stress cracking and low-temperature toughness. t m ≦ 1.8 (1) where t m = 1.57.2a / v 2 [Q / {2πλk (T m −T)}] 2 (2) a: heat diffusion of the steel strip Rate (m 2 / s) v: Welding speed (m / s) Q: Laser output (J / s) λ: Thermal conductivity of the strip (J / m · s · k) k: Strip thickness (m) ) T m : melting point of steel (K) T: preheating temperature (K) t m : melting time (s)
【請求項2】 溶接後、少なくとも溶接部をAc3 変態
点以上に加熱した後、放冷することを特徴とする請求項
1に記載の耐水素誘起割れ性および耐硫化物応力割れ性
に優れたラインパイプ用溶接鋼管の製造方法。
2. The hydrogen-induced cracking resistance and the sulfide stress cracking resistance according to claim 1, wherein after welding, at least the weld is heated to at least the Ac 3 transformation point and then left to cool. For manufacturing welded steel pipes for line pipes.
【請求項3】 溶接後、少なくとも溶接部をAc3 変態
点以上に加熱した後、(Ar3 変態点−30℃)以上、
1000℃以下の温度域から加速冷却することを特徴と
する請求項1に記載の耐水素誘起割れ性および耐硫化物
応力割れ性に優れたラインパイプ用溶接鋼管の製造方
法。
3. After welding, at least the weld is heated to at least the Ac 3 transformation point and then (Ar 3 transformation point −30 ° C.) or more.
The method for producing a welded steel pipe for a line pipe excellent in hydrogen-induced cracking resistance and sulfide stress cracking resistance according to claim 1, wherein the cooling is performed at an accelerated temperature from a temperature range of 1000 ° C or lower.
【請求項4】 加速冷却に引き続き、500〜750℃
の温度域で焼き戻すことを特徴とする請求項3に記載の
耐水素誘起割れ性および耐硫化物応力割れ性に優れたラ
インパイプ用溶接鋼管の製造方法。
4. Following accelerated cooling, the temperature is 500 to 750 ° C.
The method for producing a welded steel pipe for a line pipe having excellent resistance to hydrogen-induced cracking and resistance to sulfide stress cracking according to claim 3, wherein the tempering is performed in a temperature range of:
JP24291197A 1997-09-08 1997-09-08 Method for producing welded steel pipe for line pipe with excellent hydrogen-induced cracking resistance, sulfide stress cracking resistance and low-temperature toughness Expired - Fee Related JP3319358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24291197A JP3319358B2 (en) 1997-09-08 1997-09-08 Method for producing welded steel pipe for line pipe with excellent hydrogen-induced cracking resistance, sulfide stress cracking resistance and low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24291197A JP3319358B2 (en) 1997-09-08 1997-09-08 Method for producing welded steel pipe for line pipe with excellent hydrogen-induced cracking resistance, sulfide stress cracking resistance and low-temperature toughness

Publications (2)

Publication Number Publication Date
JPH1177350A JPH1177350A (en) 1999-03-23
JP3319358B2 true JP3319358B2 (en) 2002-08-26

Family

ID=17096055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24291197A Expired - Fee Related JP3319358B2 (en) 1997-09-08 1997-09-08 Method for producing welded steel pipe for line pipe with excellent hydrogen-induced cracking resistance, sulfide stress cracking resistance and low-temperature toughness

Country Status (1)

Country Link
JP (1) JP3319358B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008174B1 (en) 2007-09-20 2011-01-13 주식회사 포스코 Steel Plate with high SOHIC resistance at the H2S containing environment
CN102031454A (en) * 2010-12-06 2011-04-27 西安摩尔石油工程实验室 Low-temperature casing pipe for polar region drilling and production
JP5370503B2 (en) * 2012-01-12 2013-12-18 新日鐵住金株式会社 Low alloy steel
JP5824401B2 (en) * 2012-03-30 2015-11-25 株式会社神戸製鋼所 Steel sheet with excellent resistance to hydrogen-induced cracking and method for producing the same
KR101647213B1 (en) * 2014-12-18 2016-08-10 주식회사 포스코 Hot rolled steels having high strength, elongation and toughness for use in oil well tube and method for producing the same and steel pipe prepared by the same method for producing the same

Also Published As

Publication number Publication date
JPH1177350A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
JP5098235B2 (en) High-strength steel pipe for line pipe excellent in low-temperature toughness, high-strength steel sheet for line pipe, and production method thereof
JP4977876B2 (en) Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP2007260715A (en) Method for producing superhigh strength welded steel pipe
JP2005040816A (en) Ultrahigh strength weld joint excellent in low temperature cracking property of weld metal, ultrahigh strength welded steel pipe, and their manufacturing methods
JPWO2006049036A1 (en) High strength welded steel pipe
WO2003099482A1 (en) Uoe steel pipe with excellent crash resistance, and method of manufacturing the uoe steel pipe
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
JP2005232513A (en) High strength steel sheet and manufacturing method
JP4171267B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JP3319358B2 (en) Method for producing welded steel pipe for line pipe with excellent hydrogen-induced cracking resistance, sulfide stress cracking resistance and low-temperature toughness
JPH1017980A (en) Welded steel pipe with low yield ratio, and its production
EP0699773B1 (en) Method for manufacturing electric-resistance-welded steel pipe
JPH09194998A (en) Welded steel tube and its production
JP2004068055A (en) High strength welded steel pipe having excellent weld zone toughness and method for producing the same
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
JPH09168878A (en) Manufacture of duplex stainless steel welded tube
JPH08309428A (en) Production of welded steel tube
JPH08141762A (en) Manufactureof high c-high cr containing welded steel tube excellent in toughness of weld zone
JPH08120346A (en) Production of welded steel pipe for oil well excellent in sulphide corrosion cracking resistance
JP3146886B2 (en) Method for producing welded steel pipe for line pipes having excellent resistance to hydrogen-induced cracking and sulfide stress cracking
JPH09194997A (en) Welded steel tube and its production
JPH06116645A (en) Production of oil well steel pipe excellent in sulfide stress cracking resistance
JPH05228660A (en) Manufacture of welded steel tube with high hic resistance and ssc resistance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140621

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees