JPH0811709B2 - Positive characteristic semiconductor porcelain with reduction resistance - Google Patents
Positive characteristic semiconductor porcelain with reduction resistanceInfo
- Publication number
- JPH0811709B2 JPH0811709B2 JP60193642A JP19364285A JPH0811709B2 JP H0811709 B2 JPH0811709 B2 JP H0811709B2 JP 60193642 A JP60193642 A JP 60193642A JP 19364285 A JP19364285 A JP 19364285A JP H0811709 B2 JPH0811709 B2 JP H0811709B2
- Authority
- JP
- Japan
- Prior art keywords
- positive
- weight
- semiconductor porcelain
- parts
- potassium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Thermistors And Varistors (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、キュリー温度を越えると電気抵抗値が著し
く増大するPTC特性を有する正特性半導体磁器に関する
ものであり、主として還元性ガス雰囲気下で使用される
自己温度制御型ヒータ、温度センサ等に利用される耐還
元性を有する正特性半導体磁器に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a positive temperature coefficient semiconductor porcelain having a PTC characteristic in which the electric resistance value remarkably increases when the Curie temperature is exceeded, and is mainly used in a reducing gas atmosphere. The present invention relates to a reduction-resistant positive-characteristic semiconductor porcelain used for a self-temperature control type heater, a temperature sensor, etc. used.
[従来の技術] 従来チタン酸バリウムにY、La、Sm、Ce、Ga等の希土
類元素のあるいはNb、Ta等の遷移元素を添加し、大気
中、1200〜1400℃で焼成した磁器において、キュリー点
で電気抵抗値が急に増加する、いわゆる正特性(PTC特
性)を示すことが知られている。そしてこの特性を利用
し、ヒータ、温度センサ等に使用されている。[Prior Art] Conventionally, in barium titanate, rare earth elements such as Y, La, Sm, Ce, and Ga, or transition elements such as Nb and Ta are added, and burned in the atmosphere at 1200 to 1400 ° C. It is known that the point shows a so-called positive characteristic (PTC characteristic) in which the electric resistance value suddenly increases. Utilizing this characteristic, it is used for heaters, temperature sensors and the like.
従来の、チタン酸バリウム半導体を主成分とする正特
性半導体磁器を使用した半導体素子は、水素ガス、或は
ガソリン等の還元性雰囲気中で使用された場合には、そ
の特徴であるPTC特性が劣化するという問題点があっ
た。例えば自己温度制御型ヒーターとして使用した場合
には、PTC特性の劣化(以下R−T劣化と言う)によ
り、制御されるべき温度になっても抵抗値が上がらず、
最悪の場合には、通電によりPTC素子が溶損するという
問題があった。また、R−T劣化は還元性雰囲気中だけ
で生じるものではなく、窒素又はアルゴンガス等の中性
雰囲気中においても、程度の差はあれ、R−T劣化が生
じることもわかっている。A conventional semiconductor device using a positive-characteristic semiconductor porcelain mainly composed of barium titanate semiconductor has a characteristic PTC characteristic when used in a reducing atmosphere such as hydrogen gas or gasoline. There was a problem of deterioration. For example, when it is used as a self-temperature control type heater, the resistance value does not rise even when the temperature reaches a temperature to be controlled due to deterioration of PTC characteristics (hereinafter referred to as RT deterioration),
In the worst case, there was a problem that the PTC element was melted and damaged by energization. It is also known that RT deterioration does not occur only in a reducing atmosphere, but RT deterioration also occurs to some extent in a neutral atmosphere such as nitrogen or argon gas.
以上のことからチタン酸バリウム半導体を主成分とす
る正特性半導体磁器を使用した半導体素子の使用環境は
限定されざるを得なかった。また上記還元性雰囲気の環
境にて使用される場合には、第5図に示すように、樹脂
或は金属等のケース4に該素子11を封入し、環境から遮
蔽して使用せざるを得なかった。その為に放熱性を悪化
に伴う性能の低下、部品点数及び組付工数の増加に伴う
コスト高、等の問題点が生じていた。From the above, the use environment of the semiconductor element using the positive-characteristic semiconductor porcelain containing the barium titanate semiconductor as the main component had to be limited. When used in an environment of the above reducing atmosphere, as shown in FIG. 5, the element 11 must be enclosed in a case 4 made of resin or metal and shielded from the environment before use. There wasn't. As a result, there have been problems such as a decrease in performance due to deterioration of heat dissipation, and an increase in cost due to an increase in the number of parts and assembling steps.
[発明が解決しようとする問題点] 本発明は、上記問題点を克服するものであり、耐還元
性が良好で、かつ所定のケースに素子を封入する必要も
ない正特性半導体磁器を提供することを目的とする。[Problems to be Solved by the Invention] The present invention overcomes the above-mentioned problems and provides a positive-characteristic semiconductor porcelain having good reduction resistance and not requiring encapsulation of an element in a predetermined case. The purpose is to
また本発明は、上記従来技術を克服するために本出願
と同一出願人が出願した未公知先出願に係わる耐還元性
を有する正特性半導体磁器(特許出願No.59−281418)
の改良に関する。該未公知先出願に係わる正特性半導体
磁器において、フラックス成分は、0.14〜2.88重量部の
TiO2と、0.1〜1.6重量部のAl2O3と、0.1〜1.6重量部のS
iO2と、から構成されている。本発明においては、この
3成分から成るフラックス成分に、さらにカリウム化合
物を追加して、所望の目的を達成するものである。Further, the present invention relates to a reduction-resistant positive-characteristic semiconductor porcelain (patent application No. 59-281418) relating to an unknown prior application filed by the same applicant as the present application in order to overcome the above-mentioned conventional technique.
Regarding the improvement of. In the positive characteristic semiconductor porcelain according to the previously unknown prior application, the flux component is 0.14 to 2.88 parts by weight.
TiO 2 , 0.1-1.6 parts by weight Al 2 O 3 , 0.1-1.6 parts by weight S
iO 2 and. In the present invention, a potassium compound is further added to the flux component consisting of these three components to achieve the desired purpose.
[問題点を解決するための手段] 本発明と耐還元性を有する正特性半導体磁器は還元性
雰囲気中で密封されることなく該還元性雰囲気に晒され
て用いられる正特性半導体磁器であって、チタン酸バリ
ウム系組成物と、 該チタン酸バリウム系組成物100重量部に対し、0.2重
量部以上1.6重量部未満のアルミナ(Al2O3)、0.14〜2.
88重量部の二酸化チタン(TiO2)、0.1〜1.6重量部の二
酸化珪素(SiO2)、および上記チタン酸バリウム系組成
物100モルに対し、含まれるカリウムに換算して該カリ
ウム含量が0.01〜0.6モルであるカリウム化合物とから
構成されるフラックス成分と、 からなることを特徴とする。ここで該フラックス成分と
は、焼成後の磁器中に含まれる組成成分を有する助剤を
いい、該助剤の原料をいう時にはフラックス原料とい
い、両者を区別する。[Means for Solving the Problems] The positive-characteristic semiconductor porcelain having reduction resistance and the present invention is a positive-characteristic semiconductor porcelain used by being exposed to the reducing atmosphere without being sealed in the reducing atmosphere. A barium titanate-based composition and, based on 100 parts by weight of the barium titanate-based composition, 0.2 parts by weight or more and less than 1.6 parts by weight of alumina (Al 2 O 3 ), 0.14 to 2 .
88 parts by weight of titanium dioxide (TiO 2 ), 0.1 to 1.6 parts by weight of silicon dioxide (SiO 2 ), and 100 mol of the barium titanate-based composition, the potassium content is 0.01 to And a flux component composed of a potassium compound of 0.6 mol. Here, the flux component means an auxiliary agent having a compositional component contained in the porcelain after firing, and when the raw material of the auxiliary agent is referred to as a flux raw material, the two are distinguished.
本発明の耐還元性を有する正特性半導体磁器に使用さ
れるチタン酸バリウムの主剤となる炭酸バリウム(BaCO
3)及び酸化チタン(TiO2)は、通常等モル配合され
る。しかし使用目的によっては等モルである必要はな
く、一般式(1)あるいは(2)に示されるようなチタ
ン酸バリウム系組成物とすることもできる。Barium carbonate (BaCO), which is the main component of barium titanate used in the positive-characteristic semiconductor porcelain having reduction resistance of the present invention, is used.
3 ) and titanium oxide (TiO 2 ) are usually mixed in equimolar amounts. However, it is not necessary to be equimolar depending on the purpose of use, and a barium titanate-based composition represented by the general formula (1) or (2) can be used.
Ba1xM3 xTiO3 ……(1) BaTi1yM5 yO3 ……(2) ここで、M3及びM5は通常使用される希土類元素及び遷
移元素から選ばれる半導体化剤であり、M3としてはY、
La、Sm、Ce、Ga等の希土類元素の何れでもよく、M5とし
ては、Nb、Ta等の遷移元素の何れでもよい。またx及び
yの値はそれぞれ0.001〜0.005、0.0005〜0.005の範囲
が望ましい。Ba 1x M 3 x TiO 3 (1) BaTi 1y M 5 y O 3 (2) where M 3 and M 5 are semiconducting agents selected from commonly used rare earth elements and transition elements. , M 3 is Y,
Any rare earth element such as La, Sm, Ce or Ga may be used, and M 5 may be any transition element such as Nb or Ta. The values of x and y are preferably 0.001 to 0.005 and 0.0005 to 0.005, respectively.
本発明の最大の特徴であるフラックス成分は、アルミ
ナ(Al2O3)、二酸化チタン(TiO2)、二酸化珪素(SiO
2)およびカリウム化合物とから構成され、各フラック
ス成分の組成割合は、チタン酸バリウム系組成物100重
量部に対し、Al2O3が0.2重量部以上1.6重量部未満、TiO
2が0.14〜2.88重量部、SiO2が0.1〜1.6重量部およびカ
リウム化合物がチタン酸バリウム系組成物を100モルと
する場合、含まれるカリウム原子に換算して該カリウム
含量が0.01〜0.6モルである。該フラックス成分は各成
分とも該範囲内で添加されることが必要であり、添加量
が該範囲より少なくなっても、また、多過ぎても、好ま
しくない。さらに該フラックス成分の添加量の増大に伴
い、該正特性半導体磁器の比抵抗が大きくなる傾向があ
る。この不具合を解決するには該フラックス成分は、チ
タン酸バリウム系組成物100重量部に対し、Al2O3が0.2
〜0.4重量部、TiO2が0.14〜1.15重量部、SiO2が0.2〜0.
8重量部およびカリウム化合物としてチタン酸バリウム
系組成物を100モルとする場合、含まれるカリウムに換
算して該カリウム含量が0.01〜0.2モル含まれているこ
とが望ましい。各成分がこ含有量の範囲にあれば得られ
る正特性半導体磁器の比抵抗は約200Ω・cm以下、特に
その多くが100Ω・cm以下となり自動車部品への応用に
適している。The flux component, which is the greatest feature of the present invention, is alumina (Al 2 O 3 ), titanium dioxide (TiO 2 ), silicon dioxide (SiO 2 ).
2 ) and a potassium compound, and the composition ratio of each flux component is such that Al 2 O 3 is 0.2 parts by weight or more and less than 1.6 parts by weight, and TiO 2 is 100 parts by weight of the barium titanate-based composition.
2 is 0.14 to 2.88 parts by weight, SiO 2 is 0.1 to 1.6 parts by weight and when the potassium compound is 100 mol of the barium titanate-based composition, the potassium content is 0.01 to 0.6 mol in terms of potassium atoms contained. is there. It is necessary that each of the flux components be added within the above range, and it is not preferable if the added amount is less than the above range or too much. Furthermore, as the amount of the flux component added increases, the specific resistance of the PTC semiconductor ceramic tends to increase. In order to solve this problem, the flux component is Al 2 O 3 0.2 parts to 100 parts by weight of the barium titanate-based composition.
~ 0.4 parts by weight, TiO 2 0.14 to 1.15 parts by weight, SiO 2 0.2 to 0.
When the barium titanate-based composition is 8 parts by weight and the potassium compound is 100 mol, it is desirable that the potassium content is 0.01 to 0.2 mol in terms of potassium contained. If each component is in this range, the specific resistance of the positive-characteristic semiconductor porcelain obtained is about 200 Ω · cm or less, and most of them are 100 Ω · cm or less, which is suitable for application to automobile parts.
上記フラックス成分の一つであるカリウム化合物は、
通常酸化カリウム(K2O)であるが、これにより限定さ
れるものではなく、所定の焼結条件下においてカリウム
化合物として本発明の正特性半導体磁器中に含まれるも
のであればよい。該カリウム化合物の原料としては、K2
Oでもよいし、炭酸カリウム(K2Co3)、硝酸カリウム
(KNO3)、塩化カリウム(KCl)、水酸化カリウム(KO
H)等であってもよいし、またそれらの混合物であって
もよい。該原料は多くは仮焼又は焼成等の製造工程で多
くはK2Oになると思われるが、原料の種類、焼成条件等
によりK2Oにならないものでもよいし、その一部がK2Oと
ならないものでもよい。The potassium compound, which is one of the above flux components,
Usually, it is potassium oxide (K 2 O), but it is not limited thereto, and may be any one contained in the positive temperature coefficient semiconductor porcelain of the present invention as a potassium compound under a predetermined sintering condition. As a raw material of the potassium compound, K 2
O may be used, or potassium carbonate (K 2 Co 3 ), potassium nitrate (KNO 3 ), potassium chloride (KCl), potassium hydroxide (KO
H) or the like, or a mixture thereof. Raw material is much in calcination or firing in manufacturing processes often seems to be a K 2 O, kinds of raw materials, may be one which does not become K 2 O by firing conditions and the like, a part of K 2 O It does not have to be
該原料としては、通常、K2CO3又はKNO3を用いる。As the raw material, K 2 CO 3 or KNO 3 is usually used.
上記フラックス成分のAl2O3、TiO2又はSiO2において
も、焼成後の正特性半導体磁器中に含まれる成分が、各
々Al2O3、TiO2又はSiO2であればよく、その原料として
は酸化物に限定されない。従って、該原料としてはAl等
の各金属の水酸化物等であってもよい。Also in the above flux components Al 2 O 3 , TiO 2 or SiO 2 , the components contained in the positive temperature coefficient semiconductor porcelain after firing may be Al 2 O 3 , TiO 2 or SiO 2 , respectively, as a raw material thereof. Is not limited to oxides. Therefore, the raw material may be a hydroxide of each metal such as Al.
上記フラックス成分はチタン酸バリウムの主剤となる
BaCO3及びTiO2等と共に混合され、焼成される。上記フ
ラックス成分は、上記4成分を上記範囲内で添加する事
によって極めて良好な耐還元性を有する正特性半導体磁
器を得ることができるものである。また、上記範囲内で
上記各成分の比率、又はフラックス全体としての添加量
を変化させることにより、正特性半導体磁器の結晶粒子
の成長度合等の調整が可能となり、種々の性能を有する
正特性半導体磁器を得ることが可能となる。The above flux components become the main agent of barium titanate
It is mixed with BaCO 3, TiO 2, etc., and baked. By adding the above-mentioned four components within the above range, it is possible to obtain a positive temperature coefficient semiconductor ceramic having extremely good reduction resistance. Further, by changing the ratio of each component within the above range or the addition amount as the whole flux, it becomes possible to adjust the growth degree of the crystal particles of the positive characteristic semiconductor porcelain and the positive characteristic semiconductor having various performances. It becomes possible to obtain porcelain.
本発明の正特性半導体磁器には上記の成分以外に、チ
タン酸ストロンチウム又はチタン酸鉛等のチタン酸塩、
ジルコン酸バリウム等のジルコン酸塩、錫酸バリウム等
の錫酸塩、等を含んでもよい。なお、鉛成分について
は、PbTiO3にて仮焼後に添加して仮焼時にBaTiO3と固溶
させるよりも、酸化鉛(PbO)にて仮焼前に添加し、仮
焼時に固溶させた方が、耐還元性に有効である。In addition to the above components, the positive temperature coefficient semiconductor porcelain of the present invention includes titanates such as strontium titanate or lead titanate,
A zirconate such as barium zirconate or a stannate such as barium stannate may be contained. The lead component was added before calcination with lead oxide (PbO) and dissolved during calcination, rather than added after calcination with PbTiO 3 and solid solution with BaTiO 3 during calcination. Is more effective in reducing resistance.
また、キュリー点制御剤としてPb、Sr、Zr、Sn等の元
素を添加することも好ましく、PTC特性を向上させる添
加剤としてMn、Fe、Co等の元素を微量添加することも好
ましい。It is also preferable to add elements such as Pb, Sr, Zr and Sn as Curie point control agents, and it is also preferable to add a trace amount of elements such as Mn, Fe and Co as additives for improving PTC characteristics.
本発明の正特性半導体磁器は従来と同様の方法で混
合、成形及び焼成して得られる。その半導体化の過程は
次の通りである。The positive temperature coefficient semiconductor porcelain of the present invention can be obtained by mixing, molding and firing in the same manner as in the past. The process of making the semiconductor is as follows.
まず800〜1100℃の温度にてチタン酸バリウムが生成
するが、この状態ではまだ結晶格子が乱れている。1200
〜1280℃になるとフラックス成分の一部が溶融し始め、
チタン酸バリウムは急激に成長しながら半導体化する。
そしてフラックス成分が完全に溶融し、チタン酸バリウ
ム粒子は該フラックス成分の液相内にて半導体化する。
このようにして焼成された後冷却行程に入ると、フラッ
クス成分の液相はチタン酸バリウム半導体粒子を被覆し
ながら固化し、一体化する。First, barium titanate is produced at a temperature of 800 to 1100 ° C, but the crystal lattice is still disordered in this state. 1200
When it reaches ~ 1280 ° C, some of the flux components begin to melt,
Barium titanate becomes a semiconductor while rapidly growing.
Then, the flux component is completely melted, and the barium titanate particles are converted into a semiconductor in the liquid phase of the flux component.
In the cooling process after firing in this way, the liquid phase of the flux component is solidified while covering the barium titanate semiconductor particles, and is integrated.
本発明の正特性半導体磁器が耐還元性を有する機構に
ついては明確ではないが、フラックス成分がチタン酸バ
リウム半導体粒界を被覆し、還元性雰囲気から保護して
いる為であると推察される。また、従来の正特性半導体
磁器では吸水率が約0.5重量%であったのに対し、本発
明の正特性半導体磁器の吸水率は約0.01重量%とほとん
ど0%に近く、吸水率が著しく低下している。この理由
によって還元性物質の侵入が少なくなっていることも耐
還元性を有する一因と考えられる。Although the mechanism by which the positive-characteristic semiconductor porcelain of the present invention has resistance to reduction is not clear, it is presumed that the flux component covers the barium titanate semiconductor grain boundary and protects it from the reducing atmosphere. Further, the water absorption rate of the conventional positive temperature coefficient semiconductor porcelain was about 0.5% by weight, whereas the water absorption rate of the positive temperature coefficient semiconductor porcelain of the present invention was about 0.01% by weight, which was almost 0%, and the water absorption rate was remarkably reduced. are doing. For this reason, it is considered that the reduction substance invasion is reduced, which is one of the reasons for the reduction resistance.
[発明の効果] 本発明の正特性半導体磁器は還元性雰囲気中で使用さ
れてもR−T劣化ほとんど生じず、またキュリー温度が
高くなっても還元劣化が生じず、優れたPTC特性を有し
ている。従って窒素、炭酸ガス等の中性雰囲気のみなら
ず水素ガス又はガソリン等の還元性雰囲気においても、
樹脂や金属で密封する必要はなく、露出構造にて使用す
ることが可能であるので、ヒーター性能が向上するとと
もに、製品設計の自由度が拡大する他、コストの低減等
に対し特に効果がある。[Effect of the Invention] The positive temperature coefficient semiconductor porcelain of the present invention has an excellent PTC characteristic because it hardly causes RT deterioration even when used in a reducing atmosphere and does not cause reduction deterioration even when the Curie temperature becomes high. are doing. Therefore, not only in a neutral atmosphere such as nitrogen and carbon dioxide, but also in a reducing atmosphere such as hydrogen gas or gasoline,
Since it does not need to be sealed with resin or metal and can be used in an exposed structure, it improves heater performance, expands the degree of freedom in product design, and is particularly effective in reducing costs. .
また、本発明の正特性半導体磁器は、不純物、焼成条
件、及び半導体化剤の添加量等の影響を受けにくい為、
安価な工業用原料が使用できるなど、従来に比べ製造が
はるかに容易となる。Further, since the positive temperature coefficient semiconductor porcelain of the present invention is not easily affected by impurities, firing conditions, and the amount of addition of the semiconducting agent,
It is much easier to manufacture than in the past, because cheap industrial raw materials can be used.
以上により、本発明の耐還元性を有する正特性半導体
磁器は、特に比抵抗が小さなもの例えば100Ω・cm以下
のものについては、例えば、自動車用部品として吸気加
熱ヒータ、燃料ヒータ又は温度センサ等と種々の製品へ
の応用が可能である。From the above, the positive-characteristic semiconductor porcelain having reduction resistance of the present invention, particularly those having a small specific resistance, for example, 100 Ω · cm or less, for example, as an automobile part intake air heater, fuel heater or temperature sensor and the like. It can be applied to various products.
[試験例] 以下試験例により本発明の正特性半導体磁器の性能を
説明する。[Test Example] The performance of the positive temperature coefficient semiconductor porcelain of the present invention will be described below with reference to a test example.
(試験例1)−水素ガス中における耐還元性の検討 本試験例においてBaCO3、TiO2、Al2O3、SiO2、酸化イ
ットリウム(Y2O3)、K2CO3又はKNO3およびPbO又はPbTi
O3を原料とした。なおこれらは全て工業用原料を用い
た。これらの原料をそれぞれ第1〜3表に示した55種類
の組成に配合し、それぞれメノウ石と共にボールミルに
て湿式で20時間粉砕混合を行なった。なお第1〜3表に
おいて、フラックス原料であるK2CO3等の添加割合を示
す値は、*2で示すように、BaおよびPbに対する、この
原料のモル%を表わす。そして、これらの混合物を乾燥
した後約1100℃の温度で4時間仮焼した。こうして得ら
れた仮焼物に耐電圧(R、T、特性)を向上させるため
二酸化マンガ ン(MnO2)を微量添加し、再びメノウ玉石とボールミル
にて湿式で20時間粉砕混合を行なった。乾燥後それぞれ
の混合粉末に結合剤として10%のポリビニルアルコール
水溶液を1重量%添加混合し、800kg/cm2の圧力でプレ
ス成形した。これらの成形物を空気中で約1320℃にて約
1時間焼成し、直径25mm、厚さ2.5mmの円板状正特性半
導体磁器を製造した。(Test Example 1) - BaCO 3, TiO 2 , Al 2 O 3, SiO 2 in the study this test example of reduction resistance in the hydrogen gas, yttrium oxide (Y 2 O 3), K 2 CO 3 or KNO 3 and PbO or PbTi
O 3 was used as a raw material. All of these were industrial raw materials. Each of these raw materials was blended into 55 types of compositions shown in Tables 1 to 3, and each was pulverized and mixed with agate stone by a ball mill for 20 hours in a wet manner. In addition, in Tables 1 to 3, the value showing the addition ratio of the flux raw material such as K 2 CO 3 represents the mol% of this raw material with respect to Ba and Pb, as indicated by * 2. Then, these mixtures were dried and then calcined at a temperature of about 1100 ° C. for 4 hours. In order to improve the withstand voltage (R, T, characteristics) of the thus obtained calcined product, manganese dioxide (MnO 2 ) was added in a small amount, and the mixture was again pulverized and mixed with agate boulders in a ball mill for 20 hours. After drying, 1% by weight of a 10% polyvinyl alcohol aqueous solution as a binder was added to each mixed powder and mixed, and the mixture was press-molded at a pressure of 800 kg / cm 2 . These molded products were fired in air at about 1320 ° C. for about 1 hour to produce a disk-shaped positive-characteristic semiconductor porcelain having a diameter of 25 mm and a thickness of 2.5 mm.
なお試験例No.24に係わる正特性半導体磁器の比抵抗
は92Ω・cm、キュリー点は200c、耐電圧は150Vであり、
又、吸水率は0.01wt%とほとんど零に近く従来素子(0.
5wt%)に比べ極めて低くかった。The positive resistance semiconductor porcelain of Test Example No. 24 has a specific resistance of 92 Ω · cm, a Curie point of 200 c, and a withstand voltage of 150 V.
In addition, the water absorption rate is 0.01 wt%, which is almost zero and the conventional element (0.
5 wt%) was extremely low.
得られた55種類の正特性半導体磁器の特性を調べるた
め、各正特性半導体磁器の両面にNi−Ag電極(Ni無電解
メッキ、Agペースト)を付与し、大気中25℃における電
気抵抗値(比抵抗R0)を測定し、結果を第1表、第2
表、第3表に示す。また水素ガス雰囲気中に各正特性半
導体磁器を投入し、300℃にて、各正特性半導体磁器の
投入直後の電気抵抗(R1)及び30分後の電気抵抗値
(R2)を測定し、次式(3)より抵抗変化率(△R)を
測定した。In order to investigate the characteristics of the 55 types of positive-characteristic semiconductor porcelain thus obtained, Ni-Ag electrodes (Ni electroless plating, Ag paste) were applied to both sides of each positive-characteristic semiconductor porcelain, and the electrical resistance value at 25 ° C in the atmosphere ( The specific resistance R 0 ) was measured, and the results are shown in Table 1 and Table 2.
The results are shown in Tables and Table 3. Also, put each PTC semiconductor porcelain in a hydrogen gas atmosphere and measure the electrical resistance (R 1 ) immediately after putting each PTC semiconductor porcelain and the electrical resistance value (R 2 ) after 30 minutes at 300 ° C. The rate of change in resistance (ΔR) was measured by the following equation (3).
△R=100×(R2−R1)/R1 ……(3) ここでR2がR1に近い程、すなわち△Rが0に近い程、
耐還元性に優れている。ΔR = 100 × (R 2 −R 1 ) / R 1 (3) Here, the closer R 2 is to R 1 , that is, the closer ΔR is to 0,
Excellent reduction resistance.
各正特性半導体磁器の評価は△Rが0〜−10%を
(○)、−10〜−50%を(△)、−50%未満を(×)と
して第1表、第2表及び第3表に示す。The evaluation of each positive characteristic semiconductor porcelain is as follows: Table 1 Table 2 Table 2 It is shown in Table 3.
第1表において、チタン酸バリウム系組成物100重量
部に対しフラックス成分としてAlO3が0.2〜1.6重量部
(以下重量部%という。)TiO2が0.14〜2.88重量%、Si
O2が0.1〜1.6重量%およびカリウム化合物がチタン酸バ
リウム系組成物100モルに対しカリウム原子に換算して
該カリウム含量が0.01〜0.6モル(以下モル%という。
なお第1表に示すようにK2CO3等の原料化合物の添加量
を示す場合には原料モル%という。)含まれる正特性半
導体磁器(No18〜27、29、30、34〜55)は、これ以外の
フラックスの4成分系の正特性半導体磁器(No.17、2
8、31〜33)に比べ△Rは−0.5〜−9.5と小さく(比較
例では−21〜−62、)、明らかに耐還元性に優れてい
る。また、特に望ましい範囲であるAl2O3が0.2〜0.4重
量%、TiO2が0.14〜1.15重量%、SiO2が0.2〜0.8重量%
およびカリウム含量が0.01〜0.2モル%含まれる正特性
半導体磁器(No.18〜20、24〜27、29、35、36、39、4
0、49〜51)は、比抵抗(R0)が約200Ω・cm以下(多く
は100Ω・cm以下)と小さく、かつ△Rも小さく耐還元
性にさらに優れているので、自動車用部品への応用に最
適である。In Table 1, 0.2 to 1.6 parts by weight of AlO 3 (hereinafter referred to as% by weight) as a flux component, 0.14 to 2.88% by weight of TiO 2 , and Si of 100 parts by weight of the barium titanate-based composition.
O 2 is 0.1 to 1.6% by weight, and the potassium compound is 0.01 to 0.6 mol (hereinafter referred to as mol%) in terms of potassium atom based on 100 mol of the barium titanate-based composition.
When the addition amount of the raw material compound such as K 2 CO 3 is shown as shown in Table 1, it is referred to as raw material mol%. ) The positive characteristic semiconductor porcelain (No. 18 to 27, 29, 30, 34 to 55) included is a positive component semiconductor porcelain (No.
ΔR is as small as −0.5 to −9.5 (-8 to 31 to 33) (−21 to −62 in the comparative example), and is clearly excellent in reduction resistance. Further, particularly desirable ranges of Al 2 O 3 are 0.2 to 0.4% by weight, TiO 2 is 0.14 to 1.15% by weight, and SiO 2 is 0.2 to 0.8% by weight.
And positive content semiconductor porcelain containing 0.01 to 0.2 mol% of potassium (No.18 to 20, 24 to 27, 29, 35, 36, 39, 4
0 , 49-51) has a small specific resistance (R 0 ) of about 200 Ω · cm or less (mostly 100 Ω · cm or less), has a small ΔR, and is more excellent in reduction resistance. Is most suitable for application.
(試験例2)−サワーガソリン中における耐還元性の検
討 次に試験例1に用いたものと同一の組成の原料を使用
し、試験例1と同様に混合、成形、焼成を行なって、直
径25mm、厚さ2.5mmの円板状正特性半導体磁器を製造し
た。得られた正特性半導体磁器は試験例1と同様に表面
にNi−Ag電極が付与され、大気中において、各正特性半
導体磁器の電気抵抗値を室温から300℃までの間ほぼ連
続的に測定して、第2図の概念図に示す実線(イ)のPT
C特性を表わす曲線を求めた。次に各正特性半導体磁器
をサワーガソリン中に浸漬し、30Vの電圧を200時間以上
付与する浸漬通電耐久試験を行なった。ここでサワーガ
ソリンとは、酸化が進んで過酸化物や酸が生成したガソ
リンのことであり、促進試験用として使用されるもので
ある。浸漬通電耐久試験後の正特性半導体磁器は大気中
において、電気抵抗値を室温から300℃までの間ほぼ連
続的に測定され、第2図の破線(ロ)のPTC特性を表わ
す曲線を得た。得られた2つの曲線の差から第2図に示
すR−T劣化(A)を求め、結果を第1〜3表に示す。
なお、R−T劣化(A)は次式により求められる。(Test Example 2) -Study of reduction resistance in sour gasoline Next, using a raw material having the same composition as that used in Test Example 1, mixing, molding and firing were performed in the same manner as in Test Example 1 to obtain a diameter. A disc-shaped positive-characteristic semiconductor porcelain having a thickness of 25 mm and a thickness of 2.5 mm was manufactured. The obtained positive-characteristic semiconductor porcelain was provided with a Ni-Ag electrode on the surface in the same manner as in Test Example 1, and the electric resistance value of each positive-characteristic semiconductor porcelain was measured substantially continuously in the air from room temperature to 300 ° C. Then, the PT of the solid line (a) shown in the conceptual diagram of FIG.
A curve representing the C characteristic was obtained. Next, each positive-characteristic semiconductor porcelain was immersed in sour gasoline, and an immersion current durability test was performed in which a voltage of 30 V was applied for 200 hours or more. Here, sour gasoline is gasoline that has been oxidized to generate peroxides and acids, and is used for accelerated tests. After the immersion current durability test, the positive resistance semiconductor porcelain was measured for electrical resistance in the atmosphere from room temperature to 300 ° C almost continuously, and a curve showing the PTC characteristic of the broken line (b) in Fig. 2 was obtained. . The RT deterioration (A) shown in FIG. 2 was obtained from the difference between the two obtained curves, and the results are shown in Tables 1-3.
The RT deterioration (A) is obtained by the following equation.
log(R′max/R′min)−log(Rmax/Rmin) =R−T劣化(A) (R…耐久試験前の抵抗値、R′…耐久試験後の抵抗
値、max…最大値、min…最小値) 第1〜3表において、測定結果の記載が無い箇所があ
るが、これは比抵抗が100Ω・cm以上の正特性半導体磁
器については、浸漬通電耐久試験で十分な発熱が得られ
ず、信頼性のあるデータとならない為測定しなかったも
のである。また、結果の判定は(A)の度合が1以内を
(○)、1〜2を(△)、2以上を(×)とした。log (R'max / R'min) -log (Rmax / Rmin) = RT deterioration (A) (R ... resistance value before endurance test, R '... resistance value after endurance test, max ... maximum value, min… Minimum value) In Tables 1 to 3, there is a part where the measurement result is not described, but this is because the positive resistance semiconductor porcelain with a specific resistance of 100 Ω · cm or more shows sufficient heat generation in the immersion current durability test. It was not measured because it was not possible to obtain reliable data. In addition, in the determination of the result, the degree of (A) is within 1 (o), 1-2 is (Δ), and 2 or more is (x).
第1〜3表において、本発明の正特性半導体磁器(N
o.18〜20、24〜27、29、34、35、39、52)はこれ以外の
正特性半導体磁器(例えばNo.17)に比べR−T劣化は
対数値で+0.1〜−0.9であり(No.17では−2.6)、明ら
かに耐還元性に優れている。なお、上記本発明の試験例
(No.18〜20、24〜27、29、34、35、39、52)は特に望
ましい範囲であるAl2O3が0.2〜0.4重量%TiO2が0.14〜
1.15重量%、SiO2が0.2〜0.8重量%およびカリウム含量
が0.01〜0.2モル%の範囲に含まれている。In Tables 1 to 3, the positive-characteristic semiconductor porcelain (N
o.18 to 20, 24 to 27, 29, 34, 35, 39, 52) has RT deterioration of +0.1 to -0.9 in logarithmic value compared to other positive characteristic semiconductor porcelains (for example, No. 17). (-2.6 in No. 17), it is clearly excellent in reduction resistance. The test examples of the present invention (No. 18 to 20, 24 to 27, 29, 34, 35, 39, 52) are 0.2 to 0.4% by weight of Al 2 O 3 , which is a particularly desirable range of 0.14 to TiO 2 .
1.15 wt%, SiO 2 0.2-0.8 wt% and potassium content 0.01-0.2 mol%.
(試験例1および2の結果の検討) (1)原料カリウム化合物の検討 原料カリウム化合物は、K2CO3でもKNO3でもほぼ同等
の性能を示した(No.24と25、No.26と27)。(Study of Results of Test Examples 1 and 2) (1) Investigation of Raw Material Potassium Compound The raw material potassium compound exhibited almost the same performance in both K 2 CO 3 and KNO 3 (No. 24 and 25, No. 26). 27).
(2)各フラックス成分の組成割合の検討 カリウム化合物(原料)(K2CO3)が、0.005、0.01、
0.05、0.1、0.2、0.3原料モル%の場合(各々No.18〜2
3)には、耐還元性に優れる。なお特に0.005、0.01、0.
05、0.1原料モル%(No.18〜21)については、比抵抗が
100Ω・cm以下となり、より好ましい。しかしそれが0.0
01、原料モル%(No.17)の場合には、水素おびサワー
ガソリン両者に対する性能判定は△となり、両者に対す
る対還元性は不十分である。(2) Examination of composition ratio of each flux component Potassium compound (raw material) (K 2 CO 3 ) was 0.005, 0.01,
0.05, 0.1, 0.2, 0.3 Raw material mol% (No. 18 to 2 for each)
3) has excellent reduction resistance. Especially 0.005, 0.01, 0.
05, 0.1 For raw material mol% (No.18-21), the specific resistance is
It is 100 Ω · cm or less, and more preferable. But that is 0.0
In the case of 01 and the raw material mol% (No. 17), the performance judgment for both hydrogen and sour gasoline was Δ, and the reducibility for both was insufficient.
Al2O3の組成割合が、0.1重量%の場合(No.28、31〜3
3)、水素に対する耐還元性は△又は×であり、耐還元
性は良くない。なおサワーガソリンに対する還元性はN
o.32については良好であった。When the composition ratio of Al 2 O 3 is 0.1% by weight (No. 28, 31 to 3
3), Reduction resistance to hydrogen is Δ or ×, and reduction resistance is not good. The reducibility for sour gasoline is N
o.32 was good.
第1〜3表の試験例において、フラックス成分がAl2O
3、TiO2、SiO2およびカリウム化合物の4成分の場合、
本発明の正特性半導体磁器における各フラックス成分の
割合は、Al2O3が0.2〜1.6重量%、TiO2が0.14〜2.88重
量%、SiO2が0.1〜1.6重量%およびカリウム化合物がカ
リウム原子に換算して0.01〜0.6モル%のとき(No.17〜
55のうちNo.17、28、31〜33を除く全試験例)、水素又
はサワーガソリンに耐する耐還元性は優れる。In the test examples of Tables 1 to 3, the flux component was Al 2 O.
In case of 4 components of 3 , TiO 2 , SiO 2 and potassium compound,
The proportion of each flux component in the positive temperature coefficient semiconductor porcelain of the present invention is 0.2 to 1.6% by weight of Al 2 O 3 , 0.14 to 2.88% by weight of TiO 2 , 0.1 to 1.6% by weight of SiO 2 and potassium compound as a potassium atom. When converted to 0.01-0.6 mol% (No.17-
Out of 55, all test examples except No. 17, 28, 31 to 33), and reduction resistance to hydrogen or sour gasoline is excellent.
Al2O3、TiO2およびSiO2の3成分系のもの(例えばNo.
11、12)はキュリー温度が150℃以上(各々160℃、180
℃)になると、還元劣化するのに対し、本発明について
は(例えばNo.24、25)、キュリー温度が200℃において
も問題はなく、カリウム化合物を添加することにより高
キュリー温度のPTC半導体磁気に対しても耐還元性は良
好となる。A three-component system of Al 2 O 3 , TiO 2 and SiO 2 (for example, No.
11 and 12) have a Curie temperature of 150 ℃ or higher (160 ℃ and 180 respectively)
In contrast to the present invention (for example, Nos. 24 and 25), there is no problem even when the Curie temperature is 200 ° C., and by adding a potassium compound, the PTC semiconductor magnetic material having a high Curie temperature can be obtained. Also, the reduction resistance becomes good.
(3)鉛の添加方法 キューリー点の高い正特性半導体磁器については、仮
焼後にPbTiO3を添加する(No.10〜12、24、25)より
も、PbOを仮焼前に添加し、仮焼時にBaTiO3と固溶させ
た方(No.13〜15、26、27)がPbの飛散が少なく吸水率
も少なくなり耐還元性に対し有効である。(3) Lead addition method For positive-characteristic semiconductor porcelain with a high Curie point, PbO should be added before calcination rather than PbTiO 3 after calcination (No.10-12, 24, 25). The solid solution with BaTiO 3 during baking (No. 13 to 15, 26, 27) is effective for reduction resistance because Pb is less scattered and the water absorption rate is also smaller.
(試験例3) 試験例1に使用した正特性半導体磁器のうち従来の組
成としてNo.12を、本発明の組成としてNo.24を選び、試
験例1と同様に混合、成形、焼成を行なって、直径25m
m、厚さ2.5mmの円板状正特性半導体磁器を製造した。得
られた2種類の正特性半導体磁器の両面にNi−Ag電極を
付与し、還元性雰囲気である水素ガス中において、300
℃で30分間放置した。その30分の間の各正特性半導体磁
器の電気抵抗値をほぼ連続的に測定し、還元性雰囲気へ
投入した直後の、電気抵抗値を基準とし抵抗変化率を求
め、結果を第1図に示す。第1図よりも明らかに、フラ
ックス成分が3成分系の組成の正特性半導体磁器(従来
公知の正特性半導体磁気よりも高性能のもの)No.12は
水素ガス中において68%の抵抗変化率(△R)の減少を
示しているが、本発明の正特性半導体磁器No.24は水素
ガス中での抵抗変化率(△R)は6.4%減少しているに
すぎず、ほとんど変化はなかった。すなわち、本発明の
正特性半導体磁器は水素ガスの還元性雰囲気中でも電気
抵抗値がほとんど変化せず、耐還元性に極めて優れてい
る。(Test Example 3) Of the positive temperature coefficient semiconductor porcelain used in Test Example 1, No. 12 was selected as the conventional composition and No. 24 was selected as the composition of the present invention, and mixing, molding and firing were performed in the same manner as in Test Example 1. 25m in diameter
A disc-shaped positive-characteristic semiconductor porcelain having a thickness of 2.5 mm and a thickness of 2.5 mm was manufactured. Ni-Ag electrodes were applied on both sides of the obtained two types of positive-characteristic semiconductor porcelain, and 300% was set in hydrogen gas in a reducing atmosphere.
It was left at ℃ for 30 minutes. The electric resistance value of each positive-characteristic semiconductor porcelain during the 30 minutes was measured almost continuously, and the resistance change rate was calculated based on the electric resistance value immediately after being put into the reducing atmosphere. The results are shown in Fig. 1. Show. It is clear from Fig. 1 that the positive characteristic semiconductor porcelain (having higher performance than the conventionally known positive characteristic semiconductor magnet) of which the flux component is a ternary composition has a resistance change rate of 68% in hydrogen gas. Although there is a decrease in (ΔR), the positive temperature coefficient semiconductor porcelain No. 24 of the present invention has only a 6.4% decrease in the rate of change in resistance (ΔR) in hydrogen gas, and there is almost no change. It was That is, the positive temperature coefficient semiconductor porcelain of the present invention has very little change in electric resistance even in a reducing atmosphere of hydrogen gas, and is extremely excellent in reduction resistance.
尚、耐還元性が向上した機構については明確ではない
が、Al2O3、TiO2、SiO2及びカリウム化合物のフラック
ス成分の添加により吸水率が著しく低下し、還元物質の
侵入が減少したことも一因であると考えられる。Although the mechanism of improvement in reduction resistance is not clear, the addition of the flux components of Al 2 O 3 , TiO 2 , SiO 2 and potassium compounds significantly reduced the water absorption rate and reduced the penetration of reducing substances. Is also considered to be a factor.
(試験例4) 本発明に係わる正特性半導体磁器(No.24)を第3図
に示すような露出構造とした場合又は第4図に示すよう
な密封構造とした場合の各エンジンのトルク性能を評価
し、両者を比較した結果を第5図に示した。この場合の
エンジン条件は、1600rpm(1500cc)、4.5kg・m、W/チ
ョーク、A/F:11〜12とした。(Test Example 4) Torque performance of each engine when the positive temperature coefficient semiconductor porcelain (No. 24) according to the present invention has an exposed structure as shown in FIG. 3 or a sealed structure as shown in FIG. FIG. 5 shows the results of evaluating the above and comparing both. The engine conditions in this case were 1600 rpm (1500 cc), 4.5 kgm, W / choke, and A / F: 11-12.
この結果によれば本発明に係わる正特性半導体磁器を
露出構造で用いれば、従来の密封構造の場合と比べてエ
ンジントルク性能は良好となった。According to this result, when the positive temperature coefficient semiconductor porcelain according to the present invention is used in the exposed structure, the engine torque performance becomes better than that in the case of the conventional sealed structure.
第1図は水素ガス中での電気抵抗値の変化を表わす線
図、第2図はサワーガソリン中でのR−T劣化を示す線
図である。 第3図は本発明の耐還元性を有する正特性半導体磁器
を、露出構造で吸気加熱ヒータに応用した説明図であ
る。第4図は本発明の耐還元性を有する正特性半導体磁
器を、密封構造で吸気加熱ヒータに応用した説明図であ
る。第5図は第3図および第4図に示した吸気加熱ヒー
タを用いた場合のエンジントルク性能を示す線図であ
る。 1、11……正特性半導体磁器 2、21……ガソリンエンジンのヒートインシュレータ 3、31……ばね、4……ケース (A)……R−T劣化 (イ)……初期状態 (ロ)……耐久試験後FIG. 1 is a diagram showing changes in electric resistance value in hydrogen gas, and FIG. 2 is a diagram showing RT deterioration in sour gasoline. FIG. 3 is an explanatory diagram in which the positive-characteristic semiconductor porcelain having reduction resistance of the present invention is applied to an intake air heater with an exposed structure. FIG. 4 is an explanatory diagram in which the positive-characteristic semiconductor porcelain having reduction resistance of the present invention is applied to an intake air heater with a sealed structure. FIG. 5 is a diagram showing the engine torque performance when the intake air heaters shown in FIGS. 3 and 4 are used. 1, 11 …… Positive characteristic semiconductor porcelain 2, 21 …… Gas engine heat insulator 3, 31 …… Spring, 4 …… Case (A) …… RT deterioration (a) …… Initial state (b)… … After durability test
───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹羽 準 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 三輪 直人 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (56)参考文献 特公 昭49−21876(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Junji Niwa, 1-1, Showa-cho, Kariya city, Aichi prefecture, Nihon Denso Co., Ltd. (72) Inventor, Naoto Miwa, 1-1, Showa-cho, Kariya city, Aichi prefecture, Nidec Within the corporation (56) References Japanese Patent Publication Sho 49-21876 (JP, B1)
Claims (4)
元性雰囲気に晒されて用いられる正特性半導体磁器であ
って、 チタン酸バリウム系組成物と、 該チタン酸バリウム系組成物100重量部に対し、0.2重量
部以上1.6重量部未満のアルミナ(Al2O3)、0.14〜2.88
重量部の二酸化チタン(TiO2)、0.1〜1.6重量部の二酸
化珪素(SiO2)、および上記チタン酸バリウム系組成物
100モルに対し、含まれるカリウム原子に換算して該カ
リウム含量が0.01〜0.6モルであるカリウム化合物とか
ら構成されるフラックス成分と、 からなることを特徴とする耐還元性を有する正特性半導
体磁器。1. A positive-characteristic semiconductor porcelain used by being exposed to a reducing atmosphere without being sealed in a reducing atmosphere, comprising: a barium titanate-based composition; and 100 parts by weight of the barium titanate-based composition. 0.2 parts by weight or more and less than 1.6 parts by weight of alumina (Al 2 O 3 ), 0.14 to 2.88
Parts by weight of titanium dioxide (TiO 2 ), 0.1 to 1.6 parts by weight of silicon dioxide (SiO 2 ), and the above barium titanate-based composition
A positive-characteristic semiconductor porcelain having reduction resistance, which comprises: a flux component composed of a potassium compound having a potassium content of 0.01 to 0.6 mol in terms of potassium atoms contained with respect to 100 mol. .
成物100重量部に対し、0.2〜0.4重量部のアルミナ(Al2
O3)、0.14〜1.15重量部の二酸化チタン(TiO2)、0.2
〜0.8重量部の二酸化珪素(SiO2)、および上記チタン
酸バリウム系組成物100モルに対し、含まれるカリウム
原子に換算して該カリウム含量が0.01〜0.2モルである
カリウム化合物とから構成される特許請求の範囲第1項
記載の耐還元性を有する正特性半導体磁器。2. The flux component is 0.2 to 0.4 parts by weight of alumina (Al 2 per 100 parts by weight of the barium titanate-based composition).
O 3), 0.14~1.15 parts by weight of titanium dioxide (TiO 2), 0.2
To 0.8 parts by weight of silicon dioxide (SiO 2 ), and a potassium compound having a potassium content of 0.01 to 0.2 mol in terms of potassium atoms contained with respect to 100 mol of the barium titanate-based composition. A positive-characteristic semiconductor porcelain having reduction resistance according to claim 1.
である特許請求の範囲第1項記載の耐還元性を有する正
特性半導体磁器。3. A potassium compound is potassium oxide (K 2 O).
The positive-characteristic semiconductor porcelain having reduction resistance according to claim 1.
3 xTiO3あるいはBaTi1-yM5 yO3(ただしM3はY、La、Sm、
Ce、Ga等の希土類元素、M5はNb、Ta等の遷移元素、xは
0.001〜0.005、yは0.0005〜0.005をそれぞれ示す)な
る組成を有する特許請求の範囲第1項記載の耐還元性を
有する正特性半導体磁器。4. A barium titanate-based composition has the general formula Ba 1-x M
3 x TiO 3 or BaTi 1-y M 5 y O 3 (M 3 is Y, La, Sm,
Rare earth elements such as Ce and Ga, M 5 is a transition element such as Nb and Ta, x is
The positive-characteristic semiconductor porcelain having reduction resistance according to claim 1, which has a composition of 0.001 to 0.005 and y is 0.0005 to 0.005, respectively.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60193642A JPH0811709B2 (en) | 1985-09-02 | 1985-09-02 | Positive characteristic semiconductor porcelain with reduction resistance |
EP85116071A EP0186095B1 (en) | 1984-12-26 | 1985-12-17 | Anti-reducing semiconducting porcelain having a positive temperature coefficient of resistance |
AU51364/85A AU572013B2 (en) | 1984-12-26 | 1985-12-17 | Anti-reducing semi conducting porcelain with a positive temperature coefficient of resistance |
DE8585116071T DE3579427D1 (en) | 1984-12-26 | 1985-12-17 | REDUCTION RESISTANT SEMICONDUCTOR PORCELAIN WITH POSITIVE TEMPERATURE COEFFICIENT OF THE RESISTANCE. |
CA000498513A CA1272589A (en) | 1984-12-26 | 1985-12-23 | Anti-reducing semiconducting porcelain having a positive temperature coefficient of resistance |
US07/096,242 US4834052A (en) | 1984-12-26 | 1987-09-08 | Internal combustion engine having air/fuel mixture with anti-reducing semiconducting porcelain having a positive temperature coefficient of resistance and method for using such porcelain for heating air/fuel mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60193642A JPH0811709B2 (en) | 1985-09-02 | 1985-09-02 | Positive characteristic semiconductor porcelain with reduction resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6256359A JPS6256359A (en) | 1987-03-12 |
JPH0811709B2 true JPH0811709B2 (en) | 1996-02-07 |
Family
ID=16311335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60193642A Expired - Lifetime JPH0811709B2 (en) | 1984-12-26 | 1985-09-02 | Positive characteristic semiconductor porcelain with reduction resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0811709B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5038870B2 (en) * | 1972-06-23 | 1975-12-12 |
-
1985
- 1985-09-02 JP JP60193642A patent/JPH0811709B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6256359A (en) | 1987-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5327556B2 (en) | Semiconductor ceramic and positive temperature coefficient thermistor | |
JP3822798B2 (en) | Voltage nonlinear resistor and porcelain composition | |
JP5327555B2 (en) | Semiconductor ceramic and positive temperature coefficient thermistor | |
US4724416A (en) | Voltage non-linear resistor and its manufacture | |
JPH0141241B2 (en) | ||
EP0437613B1 (en) | Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same | |
EP0186095B1 (en) | Anti-reducing semiconducting porcelain having a positive temperature coefficient of resistance | |
EP0412167B1 (en) | Laminated type grain boundary insulated semiconductor ceramic capacitor and method of producing the same | |
EP0149681B1 (en) | Oxide semiconductor for thermistor | |
WO1990011606A1 (en) | Laminated and grain boundary insulated type semiconductive ceramic capacitor and method of producing the same | |
EP0221696A2 (en) | Dielectric compositions | |
JPH0811709B2 (en) | Positive characteristic semiconductor porcelain with reduction resistance | |
JPH0136684B2 (en) | ||
JPH10316467A (en) | Piezoelectric ceramic composition and its production | |
JPH0788250B2 (en) | Positive characteristic semiconductor porcelain with reduction resistance | |
JPH0311081B2 (en) | ||
JPH078744B2 (en) | Positive characteristic semiconductor porcelain with reduction resistance | |
JPS5821806B2 (en) | Sintered voltage nonlinear resistor | |
JP3598177B2 (en) | Voltage non-linear resistor porcelain | |
JP2725357B2 (en) | Ceramic capacitor and method of manufacturing the same | |
JP2990679B2 (en) | Barium titanate-based semiconductor porcelain composition | |
JP2707707B2 (en) | Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same | |
JP3111630B2 (en) | Barium titanate-based semiconductor porcelain and method of manufacturing the same | |
JPH0255921B2 (en) | ||
JP2725406B2 (en) | Voltage-dependent nonlinear resistor element and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |