JPH0788250B2 - Positive characteristic semiconductor porcelain with reduction resistance - Google Patents

Positive characteristic semiconductor porcelain with reduction resistance

Info

Publication number
JPH0788250B2
JPH0788250B2 JP60193643A JP19364385A JPH0788250B2 JP H0788250 B2 JPH0788250 B2 JP H0788250B2 JP 60193643 A JP60193643 A JP 60193643A JP 19364385 A JP19364385 A JP 19364385A JP H0788250 B2 JPH0788250 B2 JP H0788250B2
Authority
JP
Japan
Prior art keywords
positive
weight
semiconductor porcelain
parts
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60193643A
Other languages
Japanese (ja)
Other versions
JPS6256360A (en
Inventor
誠 堀
年厚 長屋
逸平 緒方
準 丹羽
直人 三輪
Original Assignee
日本電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電装株式会社 filed Critical 日本電装株式会社
Priority to JP60193643A priority Critical patent/JPH0788250B2/en
Priority to EP85116071A priority patent/EP0186095B1/en
Priority to AU51364/85A priority patent/AU572013B2/en
Priority to DE8585116071T priority patent/DE3579427D1/en
Priority to CA000498513A priority patent/CA1272589A/en
Publication of JPS6256360A publication Critical patent/JPS6256360A/en
Priority to US07/096,242 priority patent/US4834052A/en
Publication of JPH0788250B2 publication Critical patent/JPH0788250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、キュリー温度を越えると電気抵抗値が著しく
増大するPTC特性を有する正特性半導体磁器に関するも
のである。主として還元性ガス雰囲気下で使用される自
己温度制御型ヒータ、温度センサ等に利用される耐還元
性を有する正特性半導体磁器に関するものである。
TECHNICAL FIELD The present invention relates to a positive temperature coefficient semiconductor porcelain having PTC characteristics in which the electric resistance value remarkably increases when the Curie temperature is exceeded. The present invention relates to a positive-characteristic semiconductor porcelain having reduction resistance, which is mainly used for a self-temperature control type heater, a temperature sensor, etc. used in a reducing gas atmosphere.

[従来の技術] 従来チタン酸バリウムにY、La、Sm、Ce、Ga等の希土類
元素あるいはNb、Ta等の遷移元素を添加し、大気中、12
00〜1400℃で焼成した磁器において、キュリー点で電気
抵抗値が急に増加する、いわゆる正特性(PTC特性)を
示すことが知られている。そしてこの特性を利用し、ヒ
ータ、温度センサ等に使用されている。
[Prior Art] Conventionally, barium titanate was added with a rare earth element such as Y, La, Sm, Ce, or Ga or a transition element such as Nb or Ta.
It is known that porcelain fired at 00 to 1400 ° C exhibits a so-called positive characteristic (PTC characteristic) in which the electric resistance value suddenly increases at the Curie point. Utilizing this characteristic, it is used for heaters, temperature sensors and the like.

従来の、チタン酸バリウム半導体を主成分とする正特性
半導体磁器を使用した半導体素子は、水素ガス、或はガ
ソリン等の還元性雰囲気中で使用された場合には、その
特徴であるPTC特性が劣化するという問題点があった。
例えば自己温度制御型ヒーターとして使用した場合に
は、PTC特性の劣化(以下R−T劣化と言う)により、
制御されるべき温度になっても抵抗値が上がらず、最悪
の場合には、通電によりPTC素子が溶損するという問題
があった。また、R−T劣化は還元性雰囲気中だけで生
じるものではなく、窒素又はアルゴンガス等の中性雰囲
気中においても、程度の差はあれ、R−T劣化が生じる
こともわかっている。
A conventional semiconductor device using a positive-characteristic semiconductor porcelain mainly composed of barium titanate semiconductor has a characteristic PTC characteristic when used in a reducing atmosphere such as hydrogen gas or gasoline. There was a problem of deterioration.
For example, when used as a self-temperature control type heater, due to deterioration of PTC characteristics (hereinafter referred to as RT deterioration),
There was a problem that the resistance value did not rise even at the temperature to be controlled, and in the worst case, the PTC element was melted and damaged due to energization. It is also known that RT deterioration does not occur only in a reducing atmosphere, but RT deterioration also occurs to some extent in a neutral atmosphere such as nitrogen or argon gas.

以上のことからチタン酸バリウム半導体を主成分とする
性特性半導体磁器を使用した半導体素子の使用環境は限
定されざるを得なかった。また上記還元性雰囲気の環境
にて使用される場合には、第4図に示すように、樹脂或
は金属等のケース4に該素子11を封入し、環境から遮蔽
して使用せざるを得なかった。その為に放熱性の悪化に
伴う性能の定価、部品点数及び組付工数の増加に伴うコ
スト高、等の問題点が生じていた。
From the above, the use environment of the semiconductor element using the sexual characteristic semiconductor porcelain having the barium titanate semiconductor as its main component must be limited. When used in an environment of the above reducing atmosphere, as shown in FIG. 4, the element 11 must be enclosed in a case 4 made of resin or metal and shielded from the environment. There wasn't. Therefore, problems such as fixed price of performance due to deterioration of heat dissipation and high cost due to increase in the number of parts and assembling steps have occurred.

[発明が解決しようとする問題点] 本発明は、上記問題点を克服するものであり、耐還元性
が良好で、かつ所定のケースに素子を封入する必要もな
い正特性半導体磁器を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention overcomes the above-mentioned problems and provides a positive-characteristic semiconductor porcelain having good reduction resistance and not requiring encapsulation of an element in a predetermined case. The purpose is to

また本発明は、上記従来技術を克服するために本出願と
同一出願人が出願した未公知先出願に係わる耐還元性を
有する正特性半導体磁器(特許出願No.59−281418)の
改良に関する。該未公知先出願に係わる正特性半導体磁
器において、フラックス成分は、0.14〜2.88重量部のTi
O2と、0.1〜1.6重量部のAl2O3と、0.1〜1.6重量部のSiO
2と、から構成されている。本発明においては、この3
成分から成るフラックス成分に、さらにリチウム化合物
を追加して、所望の目的を達成するものである。
The present invention also relates to an improvement of a reduction-resistant positive-characteristic semiconductor porcelain (patent application No. 59-281418) according to an unknown prior application filed by the same applicant as the present application in order to overcome the above-mentioned conventional technique. In the positive characteristic semiconductor porcelain according to the previously unknown prior application, the flux component is 0.14 to 2.88 parts by weight of Ti.
O 2 , 0.1-1.6 parts by weight Al 2 O 3 , and 0.1-1.6 parts by weight SiO
It consists of 2 and. In the present invention, this 3
The lithium compound is further added to the flux component consisting of the components to achieve the desired purpose.

[問題点を解決するための手段] 本発明の耐還元性を有する正特性半導体磁器は還元性雰
囲気中で密封されることなく該還元性雰囲気に晒されて
用いられる正特性半導体磁器であって、チタン酸バリウ
ム系組成物と、 該チタン酸バリウム系組成物100重量部に対し、0.2〜1.
6重量部のアルミナ(Al2O3)、0.14〜2.88重量部の二酸
化チタン(TiO2)、0.1〜1.6重量部の二酸化珪素(Si
O2)、および上記チタン酸バリウム系組成物100モルに
対し、含まれるリチウムに換算して該リチウム含量が0.
04〜2.0モルあるリチウム化合物とから構成されるフラ
ックス成分と、 からなることを特徴とする。ここで該フラックス成分と
は、焼結後の磁器中に含まれる組成成分を有する助剤を
いい、該助剤の原料をいう時は、フラックス原料とい
い、両者を区別する。
[Means for Solving the Problems] The positive-characteristic semiconductor ceramic having reduction resistance of the present invention is a positive-characteristic semiconductor ceramic which is used by being exposed to the reducing atmosphere without being sealed in the reducing atmosphere. The barium titanate-based composition, and 0.2 to 1 per 100 parts by weight of the barium titanate-based composition.
6 parts by weight of alumina (Al 2 O 3 ), 0.14 to 2.88 parts by weight of titanium dioxide (TiO 2 ), 0.1 to 1.6 parts by weight of silicon dioxide (Si
O 2 ), and with respect to 100 mol of the barium titanate-based composition, the lithium content in terms of lithium contained is 0.
It is characterized in that it is composed of a flux component composed of a lithium compound in an amount of 04 to 2.0 mol. Here, the flux component refers to an auxiliary agent having a compositional component contained in the porcelain after sintering, and when the raw material of the auxiliary agent is referred to as a flux raw material, the two are distinguished.

本発明の耐還元性を有する正特性半導体磁器に使用され
るチタン酸バリウムの主剤となる炭酸バリウム(BaC
O3)及び酸化チタン(TiO2)は、通常等モル配合され
る。しかし使用目的によって等モルである必要はなく、
一般式(1)あるいは(2)に示されるようなチタン酸
バリウム系組成物とすることもできる。
Barium carbonate (BaC), which is the main component of barium titanate used in the reduction-resistant positive-characteristic semiconductor ceramics of the present invention, is used.
O 3 ) and titanium oxide (TiO 2 ) are usually mixed in equimolar amounts. However, it does not have to be equimolar depending on the purpose of use,
A barium titanate-based composition represented by the general formula (1) or (2) can also be used.

Ba1xM3xTiO3 ……(1) BaTi1yM5yO3 ……(2) ここでM3及びM5は通常使用される希土類元素及び遷移元
素から選ばれる半導体化剤であり、M3としてはY、La、
Sm、Ce、Ga等の希土類元素の何れでもよく、M5として
は、Nb、Ta等の遷移元素の何れでもよい。またx及びy
の値はそれぞれ0.001〜0.005、0.0005〜0.005の範囲が
望ましい。
Ba 1 xM 3 xTiO 3 (1) BaTi 1 yM 5 yO 3 (2) Here, M 3 and M 5 are semiconducting agents selected from commonly used rare earth elements and transition elements, and M 3 As Y, La,
It may be any rare earth element such as Sm, Ce or Ga, and M 5 may be any transition element such as Nb or Ta. Also x and y
It is desirable that the values of 0.001 to 0.005 and 0.0005 to 0.005, respectively.

本発明の最大の特徴であるフラックス成分は、アルミナ
(Al2O3)、二酸化チタン(TiO2)、二酸化珪素(Si
O2)およびリチウム化合物とから構成され、各フラック
ス成分の添加割合は、チタン酸バリウム系組成物100重
量部に対し、Al2O3が0.2〜1.6重量部、TiO2が0.14〜2.8
8重量部、SiO2が0.1〜1.6重量部およびリチウム化合物
がチタン酸バリウム系組成物を100モルとする場合、含
まれるリチウムに換算して該リチウム含量が0.04〜2.0
モルである。該フラックス成分は各成分とも該範囲内で
添加されることが必要であり、添加量が該範囲より少な
くなっても、また、多過ぎても、好ましくない。さらに
該フラックス成分の添加量の増大に伴い、該正特性半導
体磁器の比抵抗が大きくなる傾向がある。この不具合を
解決するには該フラックス成分は、チタン酸バリウム系
組成物100重量部に対し、Al2O3が0.2〜0.4重量部、TiO2
が0.14〜1.15重量部、及びSiO2が0.2〜0.8重量部および
リチウム化合物としてチタン酸バリウム系組成物を100
モルとする場合、含まれるリチウムに換算して該リチウ
ウ含量が0.1〜0.8モル含まれていることが望ましい。各
成分がこの含有量の範囲にあれば得られる正特性半導体
磁器の比抵抗は80Ω・cm以下となり自動車部品への応用
に適している。
The flux component, which is the greatest feature of the present invention, is alumina (Al 2 O 3 ), titanium dioxide (TiO 2 ), silicon dioxide (Si
O 2), and is composed of a lithium compound, the addition ratio of each flux component, compared barium titanate based 100 parts by weight of the composition, Al 2 O 3 is 0.2 to 1.6 parts by weight, TiO 2 is from 0.14 to 2.8
8 parts by weight, SiO 2 is 0.1 to 1.6 parts by weight and the lithium compound is 100 mol of the barium titanate-based composition, and the lithium content is 0.04 to 2.0 in terms of lithium contained.
It is a mole. It is necessary that each of the flux components be added within the above range, and it is not preferable if the added amount is less than the above range or too much. Furthermore, as the amount of the flux component added increases, the specific resistance of the PTC semiconductor ceramic tends to increase. In order to solve this problem, the flux component is 0.2 to 0.4 parts by weight of Al 2 O 3 , TiO 2 with respect to 100 parts by weight of the barium titanate-based composition.
Is 0.14 to 1.15 parts by weight, and SiO 2 is 0.2 to 0.8 parts by weight, and 100 parts of a barium titanate-based composition as a lithium compound.
In the case of molar amount, it is desirable that the lithium content is 0.1 to 0.8 mol in terms of lithium contained. If each component is within this content range, the specific resistance of the positive-characteristic semiconductor porcelain obtained will be 80Ω · cm or less, which is suitable for application to automobile parts.

上記フラックス成分の一つであるリチウム化合物は、通
常酸化リチウム(Li2O)であるが、これにより限定され
るものではなく、所定の焼結条件下においてリチウム化
合物として本発明の正特性半導体磁器に含まれるもので
あればよい。該リチウム化合物の原料としては、Li2Oで
もよいし、炭酸リチウム(Li2CO3)、硝酸リチウム(Li
NO3)、塩化リチウム(LiCl)、水酸化リチウム(LiO
H)等であってもよいし、またそれらの混合物であって
もよい。該原料は多くは仮焼又は焼成等の製造工程で多
くはLi2Oになると思われるが、原料の種類、焼成条件等
によりLi2Oにならないものでもよいし、その一部がLi2O
とならないものでもよい。
The lithium compound, which is one of the above-mentioned flux components, is usually lithium oxide (Li 2 O), but is not limited thereto, and as a lithium compound under a predetermined sintering condition, the positive temperature coefficient semiconductor porcelain of the present invention is used. As long as it is included in. The raw material of the lithium compound may be Li 2 O, lithium carbonate (Li 2 CO 3 ), lithium nitrate (Li
NO 3 ), lithium chloride (LiCl), lithium hydroxide (LiO
H) or the like, or a mixture thereof. Raw material is much in calcination or firing in manufacturing processes often seems to be a Li 2 O, kinds of raw materials, may be one which does not become Li 2 O by firing conditions and the like, a part of Li 2 O
It does not have to be

該原料としては、通常、Li2CO3又はLi2Oを用いる。Li 2 CO 3 or Li 2 O is usually used as the raw material.

上記フラックス成分のAl2O3、TiO2又はSiO2おいても、
焼成後の正特性半導体磁器中に含まれる成分が、各々Al
2O3、TiO2又はSiO2であればよく、その原料としては酸
化物に限定されない。従って、該原料としはAl等の各金
属の水酸化物等であってもよい。
Even in the above-mentioned flux components Al 2 O 3 , TiO 2 or SiO 2 ,
The components contained in the positive temperature coefficient semiconductor porcelain after firing are Al
2 O 3 , TiO 2 or SiO 2 may be used, and the raw material thereof is not limited to the oxide. Therefore, the raw material may be a hydroxide of each metal such as Al.

上記フラックス成分はチタン酸バリウムの主剤となるBa
CO3及びTiO2等と共に混合され、焼成される。上記フラ
ックス成分は、上記4成分を上記範囲内で添加する事に
よって極めて良好な耐還元性を有する焼特性半導体機器
を得ることができるものである。また、上記範囲内で上
記各成分の比率、又はフラックス成分全体としての添加
量を変化させることにより、正特性半導体機器の結晶粒
子の成長度合等の調整が可能となり、種々の性能を有す
る正特性半導体機器を得ることが可能となる。
The above flux component is Ba, which is the main agent of barium titanate.
It is mixed with CO 3 and TiO 2, etc. and fired. By adding the above-mentioned four components within the above range, it is possible to obtain a baking characteristic semiconductor device having extremely good reduction resistance. Further, by changing the ratio of each of the above components within the above range, or by changing the addition amount of the flux component as a whole, it becomes possible to adjust the growth degree of the crystal particles of the positive characteristic semiconductor device, and the positive characteristic having various performances. It is possible to obtain a semiconductor device.

本発明の正特性半導体磁器には上記の成分以外に、チタ
ン酸ストロンチウム又はハチタン酸鉛等のチタン酸塩、
ジルコン酸バリウム等のジルコン酸塩、錫酸バリウム等
の錫酸塩、等を含んでもよい。なお、鉛成分について
は、PbTiO3にて仮焼後に添加して仮焼時にBaTiO3と固溶
させるよりも、酸化鉛(PbO)にて仮焼前に添加し、仮
焼時に固溶させた方が、耐還元性に有効である。
In addition to the above components, the positive temperature coefficient semiconductor porcelain of the present invention includes titanates such as strontium titanate or lead hatitanate,
A zirconate such as barium zirconate or a stannate such as barium stannate may be contained. The lead component was added before calcination with lead oxide (PbO) and dissolved during calcination, rather than added after calcination with PbTiO 3 and solid solution with BaTiO 3 during calcination. Is more effective in reducing resistance.

また、キュリー点制御剤としてPb、Sr、Zr、Sn等の元素
を添加することも好ましく、PTC特性を向上させる添加
剤としてMn、Fe、Co等の元素を微量添加することも好ま
しい。
It is also preferable to add elements such as Pb, Sr, Zr and Sn as Curie point control agents, and it is also preferable to add a trace amount of elements such as Mn, Fe and Co as additives for improving PTC characteristics.

本発明の正特性半導体磁器は従来と同様の方法で混合、
成形及び焼成して得られる。その半導体化の過程は次の
通りである。
The positive temperature coefficient semiconductor porcelain of the present invention is mixed in the same manner as in the conventional method,
It is obtained by molding and firing. The process of making the semiconductor is as follows.

まず800〜1100℃の温度にてチタン酸バリウムが生成す
るが、この状態ではまだ結晶格子が乱れている。1200〜
1280℃になるとフラックス成分の一部が溶融し始め、チ
タン酸バリウムは急激に成長しながら半導体化する。そ
しフラックス成分が完全に溶融し、チタン酸バリウム粒
子はフラックス成分の液相内にて半導体化する。このよ
うにして焼成された後冷却行程に入ると、フラックス成
分の液相はチタン酸バリウム半導体粒子を被覆しながら
固化し、一体化する。
First, barium titanate is produced at a temperature of 800 to 1100 ° C, but the crystal lattice is still disordered in this state. 1200 ~
At 1280 ° C, part of the flux component begins to melt, and barium titanate rapidly grows into a semiconductor. Then, the flux component is completely melted, and the barium titanate particles are converted into a semiconductor in the liquid phase of the flux component. In the cooling process after firing in this way, the liquid phase of the flux component is solidified while covering the barium titanate semiconductor particles, and is integrated.

本発明の正特性半導体磁器が耐還元性を有する機構につ
いては明確ではないが、フラクス成分がチタン酸バリウ
ム半導体粒界を被覆し、還元性雰囲気から保護している
為であると推察される。また、従来の正特性半導体機器
では吸水率が約0.5重量%であったのに対し、本発明の
正特性半導体磁器の吸水率は約0.01重量%とほとんど0
%に近く、吸水率が著しく低下している。この理由によ
って還元性物質の侵入が少なくなっていることも耐還元
性を有する一因と考えられる。
Although the mechanism by which the positive-characteristic semiconductor porcelain of the present invention has resistance to reduction is not clear, it is presumed that the flux component covers the barium titanate semiconductor grain boundary and protects it from the reducing atmosphere. Further, the water absorption rate of the conventional positive temperature characteristic semiconductor device was about 0.5% by weight, whereas the water absorption rate of the positive temperature characteristic semiconductor porcelain of the present invention was about 0.01% by weight, which was almost zero.
%, The water absorption rate is significantly reduced. For this reason, it is considered that the reduction substance invasion is reduced, which is one of the reasons for the reduction resistance.

[発明の効果] 本発明の正特性半導体磁器は還元性雰囲気中で使用され
てもR−T劣化がほとんど生じず、またキュリー温度が
高くなっても還元劣化が生じず、優れたPTC特性を有し
ている。従って窒素、炭酸ガス等の中性雰囲気のみなら
ず水素ガス又はガソリン等の還元性雰囲気中において
も、樹脂や金属で密封する必要はなく、露出構造にて使
用することが可能であるので、ヒーター性能が向上する
とともに、製品設計の自由度が拡大する他、コストの低
減等に対し特に効果がある。
EFFECTS OF THE INVENTION The positive temperature coefficient semiconductor porcelain of the present invention hardly causes RT deterioration even when it is used in a reducing atmosphere, and does not cause reduction deterioration even when the Curie temperature becomes high, and has excellent PTC characteristics. Have Therefore, not only in a neutral atmosphere such as nitrogen or carbon dioxide, but also in a reducing atmosphere such as hydrogen gas or gasoline, it is not necessary to seal with resin or metal, and it can be used in an exposed structure. The performance is improved, the degree of freedom in product design is expanded, and it is particularly effective for cost reduction.

また、本発明の生特性半導体磁器は、不純物、焼成条
件、及び半導体化剤の添加量等の影響を受けにくい為、
安価な工業用原料が使用できるなど、従来に比べ製造が
はるかに容易となる。
Further, since the raw characteristic semiconductor porcelain of the present invention is not easily affected by impurities, firing conditions, and the amount of addition of the semiconducting agent,
It is much easier to manufacture than in the past, because cheap industrial raw materials can be used.

以上により、本発明の耐還元性を有する生特性半導体磁
器は、特に比抵抗が小さなもの例えば100Ω・cm以下の
ものについては、例えば、自動車用部品として吸気加熱
ヒータ、燃料ヒータ又は温度センサ等と種々の製品への
応用が可能である。
From the above, the raw characteristic semiconductor porcelain having reduction resistance of the present invention, especially those having a small specific resistance, for example, 100 Ω · cm or less, for example, as an automobile part, an intake heating heater, a fuel heater or a temperature sensor, etc. It can be applied to various products.

[試験例] 以下試験例により本発明の正特性半導体磁器の性能を説
明する。
[Test Example] The performance of the positive temperature coefficient semiconductor porcelain of the present invention will be described below with reference to test examples.

(試験例1)−水素ガス中における体還元性の検討 本試験例においてねBaCO3、TiO2、Al2O3、SiO2、酸化イ
ットリウム(Y2O3)、Li2CO3又はLi2OおよびPbO又はPbT
iO3を原料とした。なおこれらは全て工業用原料を用い
た。これらの原料をそれぞれ第1〜3表に示した55種類
の組成に配合し、それぞれメノウ石と共にボールミルに
て湿式で20時間粉砕混合を行なった。なお第1〜3表に
おいて、フラックス原料であるLi2CO3又はLi2Oの添加割
合を示す値は、*2で示すように、BaおよびPbに対す
る、この原料のモル%を表わす。そして、これらの混合
物を乾燥した後約1100℃の温度で4時間仮焼した。こう
して得られた仮焼物に耐電圧(R、T、特性)を向上さ
せるため二酸化マンガン(MnO2)を微量添加し、再び メノイ玉石とボールミルにて湿式で20時間粉砕混合を行
なった。乾燥後それぞれの混合粉末に結合剤として10%
のポリビニルアルコール水溶液を1重量%添加混合し、
80kg/cm2の圧力でプレス成形した。これらの成形物を空
気中で約1320℃にて約1時間焼成し、直径25mm、厚さ2.
5mmの円板状正特性半導体磁器を製造した。
(Test Example 1) - I in the discussion this test example of the body reducing the hydrogen gas BaCO 3, TiO 2, Al 2 O 3, SiO 2, yttrium oxide (Y 2 O 3), Li 2 CO 3 or Li 2 O and PbO or PbT
Made from iO 3 . All of these were industrial raw materials. Each of these raw materials was blended into 55 types of compositions shown in Tables 1 to 3, and each was pulverized and mixed with agate stone by a ball mill for 20 hours in a wet manner. In addition, in Tables 1 to 3, the value showing the addition ratio of Li 2 CO 3 or Li 2 O as the flux raw material represents the mol% of this raw material with respect to Ba and Pb, as indicated by * 2. Then, these mixtures were dried and then calcined at a temperature of about 1100 ° C. for 4 hours. A small amount of manganese dioxide (MnO 2 ) was added to the thus obtained calcined product in order to improve the withstand voltage (R, T, characteristics), and It was pulverized and mixed by wet milling with Menoi cobbles for 20 hours in a ball mill. 10% as binder in each mixed powder after drying
1% by weight of polyvinyl alcohol aqueous solution is added and mixed,
Press molding was performed at a pressure of 80 kg / cm 2 . These molded products were fired in air at about 1320 ° C for about 1 hour to give a diameter of 25 mm and a thickness of 2.
A disc-shaped positive-characteristic semiconductor porcelain of 5 mm was manufactured.

なお試験例No.24に係わる正特性半導体磁器の比抵抗は2
6Ω・cm、キュリー点は200℃、耐電圧は150Vであり、
又、吸水率は0.01wt%とほとんど零に近く従来素子(0.
5wt%)に比べ極めて低くかった。
The specific resistance of the positive-characteristic semiconductor porcelain related to Test Example No. 24 is 2
6Ω ・ cm, Curie point is 200 ℃, withstand voltage is 150V,
In addition, the water absorption rate is 0.01 wt%, which is almost zero and the conventional element (0.
5 wt%) was extremely low.

得られた55種類の正特性半導体磁器の特性を調べるた
め、各正特性半導体磁器の両面にNi−Ag電極(Ni無電解
メッキ、Agペースト)を付与し、大気中25℃における電
気抵抗値(比抵抗R0)を測定し、結果を第1表、第2
表、第3表に示す。また水素ガス雰囲気中に各正特性半
導体磁器を投入し、300℃にて、各正特性半導体磁器の
投入直後の電気抵抗値(R1)及び30分後の電気抵抗値
(R2)を測定し、次式(3)より抵抗変化率(ΔR)を
測定した。
In order to investigate the characteristics of the 55 types of positive-characteristic semiconductor porcelain thus obtained, Ni-Ag electrodes (Ni electroless plating, Ag paste) were applied to both sides of each positive-characteristic semiconductor porcelain, and the electrical resistance value at 25 ° C in the atmosphere ( The specific resistance R 0 ) was measured, and the results are shown in Table 1 and Table 2.
The results are shown in Tables and Table 3. Also, put each PTC semiconductor porcelain in a hydrogen gas atmosphere, and measure the electrical resistance (R 1 ) immediately after putting each PTC semiconductor porcelain and the electrical resistance (R 2 ) after 30 minutes at 300 ° C. Then, the resistance change rate (ΔR) was measured by the following equation (3).

ΔR=100×(R2−R1)/R1 ……(3) ここでR2がR1近い程、すなわちΔRが0に近い程、耐還
元性に優れている。
ΔR = 100 × (R 2 −R 1 ) / R 1 (3) Here, the closer R 2 is to R 1 , that is, the closer ΔR is to 0, the better the reduction resistance.

各正特性半導体磁器の評価はΔRが0〜−10%を
(○)、−10〜−50%を(△)、−50%未満を(×)と
して第1表、第2表及び第3表に示す。
Evaluation of each positive-characteristic semiconductor porcelain is as follows: Table 1, Table 2, and Table 3 show that ΔR is 0 to -10% (○), -10 to -50% is (△), and less than -50% is (x). Shown in the table.

第1表において、チタン酸バリウム系組成物100重量部
に対しフラックス成分としAlO3が0.2〜1.6重量部(以下
重量%という。)TiO2が0.14〜2.88重量%、SiO2が0.1
〜1.6重量%およびリチウム化合物がチタン酸バリウム
系組成物100モルに対しリチウム原子に換算して該リチ
ウム含量が0.04〜2.0モル(以下モル%という。なお、
第1表に示すようにLi2CO3等の原料化合物の添加量を示
す場合には原料モル%という。)含まれる正特性半導体
磁器(N18〜27、29、30、34〜55)は、これ以外のフラ
ックスの4成分系の正特性半導体磁器(No.17、28、31
〜33)に比べΔRは−0.2〜−9.4と小さく(比較例では
−12〜−41)、明らかに耐還元性に優れている。そして
No.31〜33、No.34〜37、No.38〜41を見ると、比抵抗はS
iO2が0.1〜0.16重量%の間にあるときに最小値をもつこ
とがわかる。そしてSiO2が0.1重量%又は1.6重量%のと
きに比抵抗が80Ω・cmを越える場合があるので、この範
囲がSiO2量の下限及び上限であることがわかる。また、
特に望ましい範囲であるAl2O3が0.2〜0.4重量%、TiO2
が0.41〜1.15重量%、SiO2が0.2〜0.8重量%およびリチ
ウム化合物中のリチウム含量004〜0.8モル%含まれる正
特性半導体磁器(NO.18〜22、24〜27、29、35、36、3
9、40、49〜51)は、比抵抗(R0)が80Ω・cm以下と小
さく、かつΔRも小さく耐還元性にさらに優れているの
で、自動車用部品への応用に最適である。
In Table 1, 0.2 to 1.6 parts by weight of AlO 3 (hereinafter referred to as “weight%”) as a flux component is 0.14 to 2.88 weight% of TiO 2 and 0.1 of SiO 2 as a flux component with respect to 100 parts by weight of the barium titanate-based composition.
~ 1.6 wt% and the lithium compound is 0.04 to 2.0 mol (hereinafter referred to as mol%) in terms of lithium atom based on 100 mol of the barium titanate-based composition.
As shown in Table 1, when the addition amount of a raw material compound such as Li 2 CO 3 is shown, it is referred to as raw material mol%. ) The positive characteristic semiconductor porcelain (N18 to 27, 29, 30, 34 to 55) included is a four-component positive characteristic semiconductor porcelain (No. 17, 28, 31) other than this flux.
.About.33), .DELTA.R is as small as -0.2 to -9.4 (-12 to -41 in Comparative Example), and is clearly excellent in reduction resistance. And
Looking at No. 31 to 33, No. 34 to 37, and No. 38 to 41, the specific resistance is S
It can be seen that it has a minimum when iO 2 is between 0.1 and 0.16% by weight. When the SiO 2 content is 0.1% by weight or 1.6% by weight, the specific resistance may exceed 80 Ω · cm, so it can be seen that this range is the lower limit and the upper limit of the amount of SiO 2 . Also,
Particularly desirable range of Al 2 O 3 is 0.2 to 0.4% by weight, TiO 2
Is 0.41 to 1.15% by weight, SiO 2 is 0.2 to 0.8% by weight, and the lithium content in the lithium compound is 004 to 0.8% by mole. Positive characteristic semiconductor porcelain (NO. 18 to 22, 24 to 27, 29, 35, 36, 3
9, 40, 49 to 51) have a small specific resistance (R 0 ) of 80 Ω · cm or less, a small ΔR, and further excellent resistance to reduction, and are therefore most suitable for application to automobile parts.

(試験例2)−サワーガソリン中における耐還元性の検
討 次に試験例1に用いたものと同一の組成の原料を使用
し、試験例1と同様に混合、成形、焼成行なって、直径
25mm、厚さ2.5mmの円板状正特性半導体磁器を製造し
た。得られた正特性半導体磁器は試験例1と同様に表面
にNi−Ag電極が付与され、大気中において、各正特性半
導体磁器の電気抵抗地を室温から300℃までの間ほぼ連
続的に測定して、第2図の概念図に示す実線(イ)のPT
C特性を表わす曲線を求めた。次に各正特性半導体磁器
をサワーガソリン中に浸漬し、30Vの電圧を200時間以上
付与する浸漬通電耐久試験を行なった。ここでサワーガ
ソリンとは、酸化が進んで過酸化物や酸が生成したガソ
リンのことであり、促進試験用として使用されるもので
ある。浸漬通電耐久試験後の正特性半導体磁器は大気中
において、電気抵抗地を室温から300℃までの間ほぼ連
続的に測定され、第2図の破線(ロ)のPTC特性を表わ
す曲線を得た。得られた2つの曲線の差から第2図に示
すR−T劣化(A)を求め、結果を、第1〜3表に示
す。なお、R−T劣化(A)は次式により求められる。
(Test Example 2) -Study on reduction resistance in sour gasoline Next, using a raw material having the same composition as that used in Test Example 1, mixing, molding and firing were performed in the same manner as in Test Example 1 to obtain a diameter.
A disc-shaped positive-characteristic semiconductor porcelain having a thickness of 25 mm and a thickness of 2.5 mm was manufactured. The obtained positive-characteristic semiconductor porcelain was provided with a Ni-Ag electrode on the surface in the same manner as in Test Example 1, and the electric resistance of each positive-characteristic semiconductor porcelain was measured substantially continuously in the air from room temperature to 300 ° C. Then, the PT of the solid line (a) shown in the conceptual diagram of FIG.
A curve representing the C characteristic was obtained. Next, each positive-characteristic semiconductor porcelain was immersed in sour gasoline, and an immersion current durability test was performed in which a voltage of 30 V was applied for 200 hours or more. Here, sour gasoline is gasoline that has been oxidized to generate peroxides and acids, and is used for accelerated tests. After the immersion current durability test, the positive resistance semiconductor porcelain was measured for the electrical resistance in the atmosphere from room temperature to 300 ° C almost continuously, and the curve showing the PTC characteristic of the broken line (b) in Fig. 2 was obtained. . The RT deterioration (A) shown in FIG. 2 was obtained from the difference between the two obtained curves, and the results are shown in Tables 1 to 3. The RT deterioration (A) is obtained by the following equation.

log(R′max/R′min)−log(Rmax/Rmin) =R−T劣化(A) (R…耐久試験前の抵抗値、R′…耐久試験後の抵抗
値、max…最大値、min…最小値) 第1〜3表において、測定結果の記載が無い箇所がある
が、これは比抵抗が100Ω・cm以上の正特性半導体磁器
については、浸漬通電耐久試験で十分な発熱が得られ
ず、信頼性のあるデータとならない為測定しなかったも
のである。また、結果の判定は(A)の度合が1以内を
(○)、1〜2を(△)、2以上を(×)とした。
log (R'max / R'min) -log (Rmax / Rmin) = RT deterioration (A) (R ... resistance value before endurance test, R '... resistance value after endurance test, max ... maximum value, min… Minimum value) In Tables 1 to 3, there is a part where the measurement result is not described, but this is because the positive resistance semiconductor porcelain with a specific resistance of 100 Ω · cm or more shows sufficient heat generation in the immersion current durability test. It was not measured because it was not possible to obtain reliable data. In addition, in the determination of the result, the degree of (A) is within 1 (o), 1-2 is (Δ), and 2 or more is (x).

第1〜3表において、本発明正特性半導体磁器(No.18
〜22、24〜27、29、34〜37、39〜41、43、44、49〜51)
はこれ以外の正特性半導体磁器(例えばNo.17)に比べ
R−T劣化は対数値で+0.1〜−0.9であり、(No.17で
は−1.8)明らかに還元性に優れている。なお、上記本
発明の試験例のうち時に望ましい範囲であるAl2O3が0.2
〜0.4重量%TiO2が0.4〜1.15重量%、SiO2が0.2〜0.8重
量%およびリチウム化合物中のリチウム含量が0.1〜0.8
モル%の範囲の場合(No.19〜22、24〜27、2935、36、3
9、40、49〜51)は、R−T劣化は+0.2〜−0.7と小さ
く、しかも比抵抗が80Ω・cm以下と小さい。
In Tables 1 to 3, the positive temperature coefficient semiconductor porcelain of the present invention (No. 18
~ 22, 24-27, 29, 34-37, 39-41, 43, 44, 49-51)
Has a logarithmic value of +0.1 to -0.9 compared to other positive-characteristic semiconductor porcelains (for example, No. 17), and (No. 17 has -1.8) is clearly excellent in reducibility. In the test examples of the present invention, Al 2 O 3 which is a desirable range is 0.2
0.4 wt% TiO 2 is 0.4 to 1.15 wt% lithium content of SiO 2 is in the 0.2 to 0.8 wt% and the lithium compound is 0.1 to 0.8
In the case of mol% range (No. 19-22, 24-27, 2935, 36, 3
9, 40, 49 to 51), the RT deterioration is as small as +0.2 to -0.7 and the specific resistance is as small as 80 Ω · cm or less.

(試験例1および2の結果の検討) (1)原料リチウム化合物の検討 原料リチウム化合物は、Li2CO3でもLi2Oでもほぼ同等の
性能を示した(No.24と25、No、26と27)。
(Study of Results of Test Examples 1 and 2) (1) Investigation of Raw Material Lithium Compound The raw material lithium compound showed almost the same performance in both Li 2 CO 3 and Li 2 O (No. 24 and 25, No, 26). And 27).

(2)各フラックス成分の組成割合の検討リチウム原料
化合物(Li2O)が、0.02、0.05、0.1、0.3、0.4、1.0原
料モル%の場合(各々No.18〜23、これらにおいてリチ
ウム含量はこれらの各値の2倍値を示す。)には、耐還
元性に優れる。なお特にリチウム含量が0.1、0.2、0.
6、0.8モル%(No.19〜22)についてはR−T劣化もさ
らに小さく、かつ、比抵抗が約80Ω・cm以下となり、よ
り好ましい。しかしそれが0.02、モル%(No.17)の場
合には、水素およびサワーガソリン両者に対する性能判
定は△となり、両者に対する耐還元性は不十分である。
(2) Examination of composition ratio of each flux component When the lithium raw material compound (Li 2 O) is 0.02, 0.05, 0.1, 0.3, 0.4, 1.0 raw material mol% (No. 18 to 23, respectively, the lithium content is The value is twice as high as each of these values). In particular, the lithium content is 0.1, 0.2, 0.
6, 0.8 mol% (Nos. 19 to 22) is more preferable because the RT deterioration is further small and the specific resistance is about 80 Ω · cm or less. However, when it is 0.02 and mol% (No. 17), the performance judgment for both hydrogen and sour gasoline is Δ, and the reduction resistance for both is insufficient.

Al2O3の組成割合が、0.1重量%の場合(No.28、31〜3
3)、水素又はサワーガソリンに対する耐還元性は△又
は×であり、耐還元性は良くない。
When the composition ratio of Al 2 O 3 is 0.1% by weight (No. 28, 31 to 3
3), Reduction resistance to hydrogen or sour gasoline is △ or ×, and reduction resistance is not good.

第1〜3表の試験例において、フラックス成分がAl
2O3、TiO2、SiO2およびリチウム化合物の4成分の場
合、本発明の正特性半導体磁器における各フラックス成
分の割合は、Al2O3が0.2〜1.6重量%、TiOが0.14〜2.88
重量%、SiO2が0.1〜1.6重量%およびリチウム化合物中
のリチウム含量が0.04〜2.0モル%のとき(No.17〜55の
うちNo.17、28、31〜33を除く全試験例)、水素又はサ
ワーガソリンに対する耐還元性は優れる。
In the test examples of Tables 1 to 3, the flux component was Al.
In the case of 4 components of 2 O 3 , TiO 2 , SiO 2 and lithium compound, the proportion of each flux component in the positive temperature coefficient semiconductor porcelain of the present invention is 0.2 to 1.6% by weight of Al 2 O 3 and 0.14 to 2.88 of TiO.
% By weight, 0.1 to 1.6% by weight of SiO 2 and 0.04 to 2.0 mol% of lithium in the lithium compound (all test examples except No. 17, 28, 31 to 33 of No. 17 to 55), Excellent reduction resistance to hydrogen or sour gasoline.

Al2O3、TiO2およびSiO2の3成分系フラックスのもの
(例えばNo.11、12)はキュリー温度が150℃以上(各々
160℃、180℃)になると、還元劣化するのに対し、本発
明については(例えばNo.24)、キュリー温度が200℃に
おいても問題はなく、リチウム化合物を添加することに
より高キュリー温度のPTC半導体磁器に対しても耐還元
性は良好となる。
The Curie temperature of the three-component flux of Al 2 O 3 , TiO 2 and SiO 2 (eg No. 11 and 12) is 150 ℃ or higher (each
In contrast to the present invention (for example, No. 24), there is no problem even when the Curie temperature is 200 ° C., and by adding a lithium compound, PTC with a high Curie temperature is obtained. The reduction resistance is also good for semiconductor porcelain.

(3)鉛の添加方法 キューリー点の高い正特性半導体磁器については、仮焼
後にPbTiO3を添加する(No.10〜12、24、25)よりも、P
bOを仮焼前に添加し、仮焼時にBaTiO3と固溶させた方
(No.13〜15、26、27)がPbの飛散が少なく吸水率も低
くなり耐耐還元性に対し有効である。
(3) Lead addition method For positive-characteristic semiconductor porcelain with a high Curie point, it is better to add P rather than PbTiO 3 after calcination (No. 10-12, 24, 25).
BO added before calcination and solid solution with BaTiO 3 during calcination (No. 13 to 15, 26, 27) is effective for reduction resistance because Pb is less scattered and the water absorption rate is lower. is there.

(試験例3) 試験例1に使用した正特性半導体磁器のうち比較例の組
成としてNo.12を、本発明の組成としてNo.27を選び、試
験例1と同様に混合、成形、焼成を行なって、直径25m
m、厚さ2.5mmの円板状正特性半導体磁器を製造した。得
られた2種類の正特性半導体磁器の両面にNi−Ag電極を
付与し、還元性雰囲気である水素ガス中において、300
℃で30分間放置した。その30分の間の各正特性半導体磁
器の電気抵抗値をほぼ連続的に測定し、還元性雰囲気へ
投入した直後の、電気抵抗値を基準として抵抗変化率を
求め、結果を第1図に示す。第1図より明らかに、フラ
ックス成分が3成分系の組成の正特性半導体磁器(従来
公知の正特性半導体磁器よりも高性能のもの)No.12は
水素ガス中において68%の抵抗変化率(ΔR)の減少を
示しているが、本発明の正特性半導体磁器No.27は水素
ガス中で抵抗変化率(ΔR)は9.1%減少しているにす
ぎず、ほとんど変化はなかった。すなわち、本発明の正
特性半導体磁器は水素ガスの還元性雰囲気中でも電気抵
抗値がほとんど変化せず、耐還元性に極めて優れてい
る。
(Test Example 3) Of the positive temperature coefficient semiconductor porcelain used in Test Example 1, No. 12 was selected as the composition of the comparative example and No. 27 was selected as the composition of the present invention, and mixing, molding and firing were performed in the same manner as in Test Example 1. Going, diameter 25m
A disc-shaped positive-characteristic semiconductor porcelain having a thickness of 2.5 mm and a thickness of 2.5 mm was manufactured. Ni-Ag electrodes were applied on both sides of the obtained two types of positive-characteristic semiconductor porcelain, and 300% was set in hydrogen gas in a reducing atmosphere.
It was left at ℃ for 30 minutes. The electric resistance value of each positive-characteristic semiconductor porcelain during the 30 minutes was measured almost continuously, and the resistance change rate was calculated based on the electric resistance value immediately after being put into the reducing atmosphere. The results are shown in Fig. 1. Show. As is clear from FIG. 1, the positive characteristic semiconductor ceramics having a three-component flux composition (higher performance than the conventionally known positive characteristic semiconductor ceramics) No. 12 has a resistance change rate of 68% in hydrogen gas ( Although the ΔR) is decreased, in the positive temperature coefficient semiconductor porcelain No. 27 of the present invention, the resistance change rate (ΔR) in hydrogen gas is decreased only by 9.1%, and there is almost no change. That is, the positive temperature coefficient semiconductor porcelain of the present invention has very little change in electric resistance even in a reducing atmosphere of hydrogen gas, and is extremely excellent in reduction resistance.

尚、耐還元性が向上した機構については明確ではない
が、Al2O3、TiO2、SiO2及びリチウム化合物のフラック
ス成分の添加により給水率が著しく低下し、還元物質の
侵入が減少したことも一因であると考えられる。
Although the mechanism of improvement in reduction resistance is not clear, the addition of Al 2 O 3 , TiO 2 , SiO 2 and the flux component of the lithium compound significantly reduced the water supply rate and reduced the penetration of reducing substances. Is also considered to be a factor.

(試験例4) 本発明に係わる正特性半導体磁器(No.24)を第3図に
示すような露出構造とした場合又は第4図に示すような
密封構造とした場合の各エンジンのトルク性能を評価
し、両者を比較した結果を第5図に示した。この場合の
エンジン条件は、1600rpm(1500cc)、4.5kg・m、W/チ
ョーク、A/F:11〜12とした。
(Test Example 4) Torque performance of each engine when the positive temperature coefficient semiconductor porcelain (No. 24) according to the present invention has an exposed structure as shown in FIG. 3 or a sealed structure as shown in FIG. FIG. 5 shows the results of evaluating the above and comparing both. The engine conditions in this case were 1600 rpm (1500 cc), 4.5 kgm, W / choke, and A / F: 11-12.

この結果によれば本発明に係わる正特性半導体磁器を露
出構造で用いれば、従来の密封構造の場合と比べてエン
ジントルク性能は良好となった。
According to this result, when the positive temperature coefficient semiconductor porcelain according to the present invention is used in the exposed structure, the engine torque performance becomes better than that in the case of the conventional sealed structure.

【図面の簡単な説明】[Brief description of drawings]

第1図は水素ガス中での電気抵抗値の変化を表わす線
図、第2図はサワーガソリン中でのR−T劣化を示す線
図である。 第3図は本発明の耐還元性を有する正特性半導体磁器
を、露出構造で吸気加熱ヒータに応用した説明図であ
る。第4図は従来の正特性半導体磁器を、密封構造で吸
気加熱ヒータに応用した説明図である。第5図は第3図
および第4図に示した吸気加熱ヒータを用いた場合のエ
ンジントルク性能を示す線図である。 1、11……正特性半導体磁器 2、21……カソリンエンジンのヒートインシュレータ 3、31……ばね、4……ケース (A)……R−T劣化 (イ)……初期状態 (ロ)……耐久試験後
FIG. 1 is a diagram showing changes in electric resistance value in hydrogen gas, and FIG. 2 is a diagram showing RT deterioration in sour gasoline. FIG. 3 is an explanatory diagram in which the positive-characteristic semiconductor porcelain having reduction resistance of the present invention is applied to an intake air heater with an exposed structure. FIG. 4 is an explanatory diagram in which a conventional positive temperature coefficient semiconductor porcelain is applied to an intake air heater with a sealed structure. FIG. 5 is a diagram showing the engine torque performance when the intake air heaters shown in FIGS. 3 and 4 are used. 1, 11 …… Positive characteristic semiconductor porcelain 2, 21 …… Heat insulator of Casolin engine 3, 31 …… Spring, 4 …… Case (A) …… RT deterioration (a) …… Initial state (b)… … After durability test

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹羽 準 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 三輪 直人 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (56)参考文献 特公 昭48−6352(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Jun-Ichi, 1-1, Showa-machi, Kariya, Aichi Prefecture, Nihon Denso Co., Ltd. (72) Inventor, Naoto Miwa, 1-1, Showa-machi, Kariya, Aichi Prefecture, Nippon Denso Incorporated (56) References Japanese Patent Publication Sho 48-6352 (JP, B1)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】還元性雰囲気中で密封されることなく該還
元性雰囲気に晒されて用いられる正特性半導体磁器であ
って、 チタン酸バリウム系組成物と、 該チタン酸バリウム系組成物100重量部に対し、0.2〜1.
6重量部のアルミナ(Al2O3)、0.14〜2.88重量部の二酸
化チタン(TiO2)、0.1〜1.6重量部の二酸化珪素(Si
O2)、および上記チタン酸バリウム系組成物100モルに
対し、含まれるリチウム原子に換算して該リチウム含量
が0.04〜2.0モルであるリチウム化合物とから構成され
るフラックス成分と、 からなることを特徴とする耐還元性を有する正特性半導
体磁器。
1. A positive-characteristic semiconductor porcelain used by being exposed to a reducing atmosphere without being sealed in a reducing atmosphere, comprising: a barium titanate-based composition; and 100 parts by weight of the barium titanate-based composition. 0.2 to 1.
6 parts by weight of alumina (Al 2 O 3 ), 0.14 to 2.88 parts by weight of titanium dioxide (TiO 2 ), 0.1 to 1.6 parts by weight of silicon dioxide (Si
O 2 ), and a flux component composed of a lithium compound having a lithium content of 0.04 to 2.0 mol in terms of lithium atoms contained with respect to 100 mol of the barium titanate-based composition. A positive-characteristic semiconductor porcelain having reduction resistance.
【請求項2】フラックス成分は、チタン酸バリウム系組
成物100重量部に対し、0.2〜0.4重量部のアルミナ(Al2
O3)、0.14〜1.15重量部の二酸化チタン(TiO2)、0.2
〜0.8重量部の二酸化珪素(SiO2)、および上記チタン
酸バリウム系組成物100モルに対し、含まれるリチウム
原子に換算して該リチウム含量が0.1〜0.8モルであるリ
チウム化合物とから構成される特許請求の範囲第1項記
載の耐還元性を有する正特性半導体磁器。
2. The flux component is 0.2 to 0.4 parts by weight of alumina (Al 2 per 100 parts by weight of the barium titanate-based composition).
O 3), 0.14~1.15 parts by weight of titanium dioxide (TiO 2), 0.2
To 0.8 parts by weight of silicon dioxide (SiO 2 ), and a lithium compound having a lithium content of 0.1 to 0.8 mol in terms of lithium atoms contained with respect to 100 mol of the barium titanate-based composition. A positive-characteristic semiconductor porcelain having reduction resistance according to claim 1.
【請求項3】リチウム化合物は、酸化リチウム(Li2O)
である特許請求の範囲第1項記載の耐還元性を有する正
特性半導体磁器。
3. The lithium compound is lithium oxide (Li 2 O).
The positive-characteristic semiconductor porcelain having reduction resistance according to claim 1.
【請求項4】チタン酸バリウム系組成物は一般式Ba1-xM
3 xTiO3あるいはBaTi1-yM5 yO3(ただしM3はY、La、Sm、
Ce、Ga等の希土類元素、M5はNb、Ta等の遷移元素、xは
0.001〜0.005、yは0.0005〜0.005をそれぞれ示す)な
る組成を有する特許請求の範囲第1項記載の耐還元性を
有する正特性半導体磁器。
4. A barium titanate-based composition has the general formula Ba 1-x M
3 x TiO 3 or BaTi 1-y M 5 y O 3 (M 3 is Y, La, Sm,
Rare earth elements such as Ce and Ga, M 5 is a transition element such as Nb and Ta, x is
The positive-characteristic semiconductor porcelain having reduction resistance according to claim 1, which has a composition of 0.001 to 0.005 and y is 0.0005 to 0.005, respectively.
JP60193643A 1984-12-26 1985-09-02 Positive characteristic semiconductor porcelain with reduction resistance Expired - Lifetime JPH0788250B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60193643A JPH0788250B2 (en) 1985-09-02 1985-09-02 Positive characteristic semiconductor porcelain with reduction resistance
EP85116071A EP0186095B1 (en) 1984-12-26 1985-12-17 Anti-reducing semiconducting porcelain having a positive temperature coefficient of resistance
AU51364/85A AU572013B2 (en) 1984-12-26 1985-12-17 Anti-reducing semi conducting porcelain with a positive temperature coefficient of resistance
DE8585116071T DE3579427D1 (en) 1984-12-26 1985-12-17 REDUCTION RESISTANT SEMICONDUCTOR PORCELAIN WITH POSITIVE TEMPERATURE COEFFICIENT OF THE RESISTANCE.
CA000498513A CA1272589A (en) 1984-12-26 1985-12-23 Anti-reducing semiconducting porcelain having a positive temperature coefficient of resistance
US07/096,242 US4834052A (en) 1984-12-26 1987-09-08 Internal combustion engine having air/fuel mixture with anti-reducing semiconducting porcelain having a positive temperature coefficient of resistance and method for using such porcelain for heating air/fuel mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60193643A JPH0788250B2 (en) 1985-09-02 1985-09-02 Positive characteristic semiconductor porcelain with reduction resistance

Publications (2)

Publication Number Publication Date
JPS6256360A JPS6256360A (en) 1987-03-12
JPH0788250B2 true JPH0788250B2 (en) 1995-09-27

Family

ID=16311352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60193643A Expired - Lifetime JPH0788250B2 (en) 1984-12-26 1985-09-02 Positive characteristic semiconductor porcelain with reduction resistance

Country Status (1)

Country Link
JP (1) JPH0788250B2 (en)

Also Published As

Publication number Publication date
JPS6256360A (en) 1987-03-12

Similar Documents

Publication Publication Date Title
JP3822798B2 (en) Voltage nonlinear resistor and porcelain composition
JP5327556B2 (en) Semiconductor ceramic and positive temperature coefficient thermistor
JP5327555B2 (en) Semiconductor ceramic and positive temperature coefficient thermistor
JPH0141241B2 (en)
EP0437613B1 (en) Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same
US4096098A (en) Semiconductor ceramic composition
EP0412167B1 (en) Laminated type grain boundary insulated semiconductor ceramic capacitor and method of producing the same
EP0186095A2 (en) Anti-reducing semiconducting porcelain having a positive temperature coefficient of resistance
WO1990011606A1 (en) Laminated and grain boundary insulated type semiconductive ceramic capacitor and method of producing the same
EP0221696A2 (en) Dielectric compositions
JPH0788250B2 (en) Positive characteristic semiconductor porcelain with reduction resistance
JPH06199570A (en) Composite perovskite type ceramic body
JPH10316467A (en) Piezoelectric ceramic composition and its production
JPH0811709B2 (en) Positive characteristic semiconductor porcelain with reduction resistance
JPH078744B2 (en) Positive characteristic semiconductor porcelain with reduction resistance
JPH0311081B2 (en)
JP3598177B2 (en) Voltage non-linear resistor porcelain
JPS61251563A (en) High permittivity ceramic composition
JP3111630B2 (en) Barium titanate-based semiconductor porcelain and method of manufacturing the same
JPH0255921B2 (en)
JP2990626B2 (en) Varistor manufacturing method
JP2725406B2 (en) Voltage-dependent nonlinear resistor element and method of manufacturing the same
KR100246298B1 (en) Semiconductive Ceramic
JPH08306509A (en) Positive temperature coefficient thermistor and its manufacturing method
JPH1070009A (en) Positive temperature coefficient thermistor and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term