JPH08110312A - Radiation spectroscope - Google Patents

Radiation spectroscope

Info

Publication number
JPH08110312A
JPH08110312A JP6270380A JP27038094A JPH08110312A JP H08110312 A JPH08110312 A JP H08110312A JP 6270380 A JP6270380 A JP 6270380A JP 27038094 A JP27038094 A JP 27038094A JP H08110312 A JPH08110312 A JP H08110312A
Authority
JP
Japan
Prior art keywords
radiation
rays
incident
ray
spectroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6270380A
Other languages
Japanese (ja)
Other versions
JP3323670B2 (en
Inventor
Hisamasa Kono
久征 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP27038094A priority Critical patent/JP3323670B2/en
Publication of JPH08110312A publication Critical patent/JPH08110312A/en
Application granted granted Critical
Publication of JP3323670B2 publication Critical patent/JP3323670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To provide a radiation spectroscope wherein, even if secondary radiation generated from a sample is long wavelength, intensity of the secondary radiation which is made incident on a radiation detector is enough, so that, accurate analysis is possible. CONSTITUTION: Multiple spectral elements 7 and 8, spacing of lattice planes different each other, which are assigned parallel to each other on the pathes of secondary radiation 5 and 6 generated by a sample 3 irradiated with primary radiation 2 from a radiation source 1, are provided, and, these spectral elements 7 and 8 are so set as to diffract the secondary radiation 14 and 15 of the same wave length, for them to enter into a single radiation detector 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料から発生する放射
線を有効に集束させる放射線分光器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation spectroscope that effectively focuses radiation emitted from a sample.

【0002】[0002]

【従来の技術】例えば、従来の蛍光X線分析装置におい
ては、試料に1次X線を照射し、試料から発生する2次
X線のうち特定の蛍光X線の波長に応じて、適切な格子
面間隔をもつ単一の分光素子を適切な分光角度で設置
し、その蛍光X線を分光してX線検出器に入射させてい
る。
2. Description of the Related Art For example, in a conventional X-ray fluorescence analyzer, a sample is irradiated with primary X-rays and an appropriate X-ray is emitted from the sample in accordance with the wavelength of a specific fluorescent X-ray. A single spectroscopic element having a lattice spacing is installed at an appropriate spectroscopic angle, and the fluorescent X-rays are dispersed and made incident on the X-ray detector.

【0003】[0003]

【発明が解決しようとする課題】ところが、前記従来の
技術では、特に軽元素から発生する長波長の蛍光X線に
おいて、X線検出器に入射される蛍光X線の強度が十分
でなく、正確な分析が困難になる場合がある。
However, in the above-mentioned conventional technique, particularly in the case of long wavelength fluorescent X-rays generated from light elements, the intensity of the fluorescent X-rays incident on the X-ray detector is not sufficient, and the accuracy is high. Analysis may be difficult.

【0004】本発明は、前記従来の問題に鑑みてなされ
たもので、試料から発生する2次放射線が長波長であっ
ても、放射線検出器に入射される2次放射線の強度が十
分で、正確な分析が可能となる放射線分光器を提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned conventional problems. Even if the secondary radiation generated from the sample has a long wavelength, the intensity of the secondary radiation incident on the radiation detector is sufficient. It is an object of the present invention to provide a radiation spectrometer that enables accurate analysis.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の分光器は、放射線源から発生する1次放
射線を照射された試料から発生する2次放射線の通路に
互いに並列に配置されて、格子面間隔が相異なる複数の
分光素子を備え、これら分光素子は、同一波長の2次放
射線を回折して単一の放射線検出器に入射させるように
設定されている放射線分光器である。
In order to achieve the above object, a spectroscope according to claim 1 is arranged in parallel with each other in a path of secondary radiation generated from a sample irradiated with primary radiation generated from a radiation source. A radiation spectroscope provided with a plurality of spectroscopic elements having different lattice plane intervals, and the spectroscopic elements are set to diffract secondary radiation of the same wavelength to be incident on a single radiation detector. Is.

【0006】[0006]

【作用および効果】請求項1の分光器では、格子面間隔
が相異なる複数の分光素子によって、試料から発生する
同一波長の2次放射線が回折され、単一の放射線検出器
に入射されるので、単一の分光素子によって分光する場
合よりも、放射線検出器に入射される2次放射線の強度
が増加する。これにより、感度向上が計られ、2次放射
線が長波長であっても、正確な分析が可能となる。
In the spectroscope according to the first aspect of the present invention, the secondary radiation of the same wavelength generated from the sample is diffracted by a plurality of spectroscopic elements having different lattice plane intervals, and is incident on a single radiation detector. The intensity of the secondary radiation incident on the radiation detector is increased as compared with the case where the light is dispersed by a single dispersive element. As a result, the sensitivity is improved, and accurate analysis is possible even if the secondary radiation has a long wavelength.

【0007】[0007]

【実施例】以下、本発明の実施例を図面にしたがって説
明する。まず、第1実施例について説明する。図1にお
いて、X線源1から発生する1次X線2が試料3に照射
され、その試料3から発生する2次X線が発散スリット
4により絞られている。ここで、X線分光器である第1
実施例の放射線分光器20は、この発散スリット4を通
過した2条の2次X線5,6のそれぞれの通路に互いに
格子面11,12が平行になるように配置され、前記2
次X線5,6がそれぞれ入射角度θ1 ,θ2で入射され
て、特定の同一波長の蛍光X線14,15を分光する人
工格子からなる湾曲した第1および第2分光素子7,8
を備えている。その蛍光X線14,15以外のX線は受
光スリット9により排除され、その受光スリット9を通
過した前記蛍光X線14,15は単一のX線検出器10
に入射される。前記湾曲した第1および第2分光素子
7,8としては、例えば、ヨハン型、ヨハンソン型、ま
たはログ・スパイラル型を用いることができる。
Embodiments of the present invention will be described below with reference to the drawings. First, the first embodiment will be described. In FIG. 1, the primary X-ray 2 generated from the X-ray source 1 is irradiated on the sample 3, and the secondary X-ray generated from the sample 3 is narrowed down by the divergence slit 4. Here, the first X-ray spectrometer
The radiation spectroscope 20 of the embodiment is arranged such that the lattice planes 11 and 12 are parallel to each other in the passages of the two secondary X-rays 5 and 6 that have passed through the divergence slit 4.
Next X-rays 5 and 6 are incident at incident angles θ 1 and θ 2 , respectively, and the curved first and second spectroscopic elements 7 and 8 made of an artificial lattice that disperse the fluorescent X-rays 14 and 15 having the same specific wavelength.
It has. The X-rays other than the fluorescent X-rays 14 and 15 are excluded by the light receiving slit 9, and the fluorescent X-rays 14 and 15 that have passed through the light receiving slit 9 are the single X-ray detector 10.
Is incident on. As the curved first and second spectroscopic elements 7 and 8, for example, a Johan type, a Johansson type, or a log spiral type can be used.

【0008】ここで、入射角度θ2 は入射角度θ1 より
も大きいものとし、相異なる第1分光素子7の格子面間
隔d1 と第2分光素子8の格子面間隔d2 とは、以下の
ような関係がある。まず、ブラッグの条件から、分光し
ようとする蛍光X線14,15の波長をλとすると、 2d1 × sinθ1 =λ …(1) 2d2 × sinθ2 =λ …(2) また、発散スリット4を通過した2条の2次X線5,6
のなす角度をφとし、その2次X線5,6の分光素子
7,8へのそれぞれの入射点、すなわち分光素子7,8
それぞれの下面中央の点A,Bを通る格子面11,12
に対する法線13を考えると、幾何学的な関係から、 θ1 =θ2 −φ …(3)
[0008] Here, the incident angle theta 2 is made larger than the incident angle theta 1, the phase lattice spacing d 1 of the different first spectral element 7 and the lattice spacing d 2 of the second spectral element 8, below There is such a relationship. First, from the Bragg conditions, if the wavelength of the fluorescent X-rays 14 and 15 to be dispersed is λ, then 2d 1 × sin θ 1 = λ (1) 2d 2 × sin θ 2 = λ (2) 2 secondary X-rays 5, 6 that passed 4
Is defined as φ, and the respective incident points of the secondary X-rays 5 and 6 on the spectroscopic elements 7 and 8, that is, the spectroscopic elements 7 and 8
Lattice planes 11 and 12 passing through the points A and B at the center of each bottom surface
Considering the normal line 13 to, from the geometrical relation, θ 1 = θ 2 −φ (3)

【0009】以上の関係から、以下のように、第1分光
素子7における格子面間隔d1 および入射角度θ1 なら
びに第2分光素子8における格子面間隔d2 および入射
角度θ2 を適切に設定できる。仮にある格子面間隔d1
の第1分光素子7を採用したとすると、第1分光素子7
における入射角度θ1 は、分光しようとする蛍光X線1
4の波長λから、(1)式を変形した次の(4)式で決
定される。 θ1 = sin-1(λ/2d1 ) …(4) 第1分光素子7における入射角度θ1 が決定されると、
第2分光素子8における入射角度θ2 は、発散スリット
4を通過した2条の2次X線5,6のなす角度φを決め
れば、(3)式を変形した次の(5)式で決定される。 θ2 =θ1 +φ …(5) 第2分光素子8における入射角度θ2 が決定されると、
第2分光素子8の格子面間隔d2 は、(2)式を変形し
た次の(6)式で決定される。 d2 =λ/2 sinθ2 …(6)
From the above relationships, the lattice plane spacing d 1 and the incident angle θ 1 in the first spectroscopic element 7 and the lattice plane spacing d 2 and the incident angle θ 2 in the second spectroscopic element 8 are appropriately set as follows. it can. If there is a lattice spacing d 1
If the first spectroscopic element 7 is adopted, the first spectroscopic element 7
The incident angle θ 1 at is the fluorescent X-ray 1
The wavelength λ of 4 is determined by the following equation (4) which is a modification of the equation (1). θ 1 = sin −1 (λ / 2d 1 ) ... (4) When the incident angle θ 1 in the first spectroscopic element 7 is determined,
The incident angle θ 2 in the second spectroscopic element 8 can be calculated by the following formula (5), which is a modification of the formula (3), if the angle φ formed by the two secondary X-rays 5 and 6 that have passed through the divergence slit 4 is determined. It is determined. θ 2 = θ 1 + φ (5) When the incident angle θ 2 in the second spectroscopic element 8 is determined,
The lattice spacing d 2 of the second spectroscopic element 8 is determined by the following equation (6) which is a modification of the equation (2). d 2 = λ / 2 sin θ 2 (6)

【0010】なお、第1実施例では、湾曲した分光素子
7,8を用いるので、例えば、発散スリット4を通過し
た一方の2次X線5は、第1分光素子7の下面への入射
点に係わらず、下面中央の点Aでなくても同様に入射角
度θ1 をもって回折する。すなわち、図1においては、
簡単のため、発散スリット4を通過した一方の2次X線
5については、第1分光素子7の下面中央の点Aに入射
する2次X線5を代表例として図示したが、実際には2
次X線5が発散スリット4を通過した点P1 から第1分
光素子7の下面全体へ広がる2次X線である。
Since the curved spectroscopic elements 7 and 8 are used in the first embodiment, for example, one secondary X-ray 5 which has passed through the divergence slit 4 is incident on the lower surface of the first spectroscopic element 7. Regardless of the above, even if it is not the point A at the center of the lower surface, the light is diffracted at the incident angle θ 1 . That is, in FIG.
For simplicity, one of the secondary X-rays 5 that has passed through the divergence slit 4 is illustrated as a representative example of the secondary X-ray 5 that is incident on the point A at the center of the lower surface of the first spectroscopic element 7. Two
The next X-ray 5 is a secondary X-ray that spreads from the point P 1 that has passed through the divergence slit 4 to the entire lower surface of the first spectroscopic element 7.

【0011】回折された一方の蛍光X線14について
も、第1分光素子7の下面中央の点Aから受光スリット
9への入射点Q1 に入射する蛍光X線14を代表例とし
て図示したが、実際には、第1分光素子7の下面全体か
ら、受光スリット9への入射点Q1 に集束する蛍光X線
である。この状況は、第2分光素子8に入射する他方の
2次X線5および回折された蛍光X線15についても同
様である。
Regarding the one diffracted fluorescent X-ray 14 as well, the fluorescent X-ray 14 incident on the incident point Q 1 to the light receiving slit 9 from the point A at the center of the lower surface of the first spectroscopic element 7 is shown as a representative example. Actually, the fluorescent X-rays are focused from the entire lower surface of the first spectroscopic element 7 to the incident point Q 1 on the light receiving slit 9. This situation is the same for the other secondary X-rays 5 incident on the second spectroscopic element 8 and the diffracted fluorescent X-rays 15.

【0012】次に、第1実施例の作用について説明す
る。X線源1から発生した1次X線2は試料3に照射さ
れ、試料3から発生した2次X線は発散スリット4によ
って2条の2次X線5,6に絞られ、この発散スリット
4を通過した2条の2次X線5,6はそれぞれX線分光
器20の第1および第2分光素子7,8に入射されて、
所望の同一波長の蛍光X線14,15にそれぞれに分光
され、受光スリット9を通過して単一のX線検出器10
へ入射される。これにより、X線検出器10へ入射され
る蛍光X線強度が高くなる。
Next, the operation of the first embodiment will be described. The primary X-ray 2 generated from the X-ray source 1 is applied to the sample 3, and the secondary X-ray generated from the sample 3 is narrowed down to two secondary X-rays 5 and 6 by the divergence slit 4, and this divergence slit The two secondary X-rays 5 and 6 that have passed through 4 are incident on the first and second spectroscopic elements 7 and 8 of the X-ray spectrometer 20, respectively,
The fluorescent X-rays 14 and 15 of a desired identical wavelength are separated into each, pass through the light-receiving slit 9, and pass through a single X-ray detector 10.
Is incident on. As a result, the intensity of the fluorescent X-rays incident on the X-ray detector 10 becomes high.

【0013】ここで、X線分光器20において、第1分
光素子7を図1の左右方向に長い大きなものにし、第2
分光素子8に入射されている2次X線6をも第1分光素
子7に入射されるようにして、第1分光素子7のみで第
1実施例と同等の強度の蛍光X線を分光しX線検出器1
0へ入射させることも考えられる。しかし、そのような
大型の湾曲した分光素子は製造が困難であり、また製造
できたとしても、その分光素子の回折面の中央部と端部
に入射して回折したX線の集光点がずれることは避けら
れず、X線検出器10への集束性が悪い。これに対し、
本発明ではそのような欠点がない。
Here, in the X-ray spectroscope 20, the first spectroscopic element 7 is made large to be long in the left-right direction in FIG.
The secondary X-rays 6 incident on the spectroscopic element 8 are also incident on the first spectroscopic element 7, and the fluorescent X-rays having the same intensity as in the first embodiment are spectrally separated only by the first spectroscopic element 7. X-ray detector 1
It is also possible to make it enter 0. However, it is difficult to manufacture such a large curved spectroscopic element, and even if it is possible to manufacture the spectroscopic element, the condensing points of the X-rays that are diffracted by entering the central portion and the end portion of the diffraction surface of the spectroscopic element are It is inevitable that the X-ray detector 10 deviates, and the focusing property on the X-ray detector 10 is poor. In contrast,
The present invention does not have such drawbacks.

【0014】ところで、一般に、分光素子で分光されて
X線検出器へ入射される蛍光X線の強度は、そのX線の
光路が長いほど、また分光素子の格子面間隔が狭いほ
ど、弱くなる。第1実施例では、第2分光素子8で分光
されてX線検出器10へ入射される蛍光X線15は、第
1分光素子7で分光される蛍光X線15に比べ、試料3
から発してからX線検出器10へ入射されるまでの光路
が長く、また、格子面間隔d2 の狭い第2分光素子8で
分光されるので、X線検出器10へ入射される蛍光X線
強度は弱くなる。
By the way, in general, the intensity of the fluorescent X-rays which are split by the spectroscopic element and are incident on the X-ray detector becomes weaker as the optical path of the X-ray becomes longer and as the lattice plane spacing of the spectroscopic element becomes narrower. . In the first embodiment, the fluorescent X-rays 15 that are split by the second spectroscopic element 8 and enter the X-ray detector 10 are compared with the fluorescent X-rays 15 that are split by the first spectroscopic element 7 in the sample 3
Since the optical path from the light emitted from the light source to the X-ray detector 10 is long and the light is dispersed by the second light-splitting element 8 having a small lattice spacing d 2 , the fluorescent light X incident on the X-ray detector 10 is separated. The line strength becomes weak.

【0015】しかし、第1および第2分光素子7,8で
分光される同一波長の蛍光X線14,15を合わせて単
一のX線検出器10へ入射すれば、単一の第1分光素子
7で分光される蛍光X線14のみの場合の1.5倍以上
の強度が得られる。これにより、試料3から発生する2
次X線5,6が長波長であっても、X線検出器10に入
射される蛍光X線14,15の強度が十分で、正確な分
析が可能となる。
However, if the fluorescent X-rays 14 and 15 of the same wavelength, which are separated by the first and second spectroscopic elements 7 and 8 are combined and incident on a single X-ray detector 10, a single first spectroscopic spectrum is obtained. Intensity of 1.5 times or more of the intensity obtained by only the fluorescent X-rays 14 dispersed by the element 7 can be obtained. As a result, 2 generated from the sample 3
Even if the next X-rays 5 and 6 have a long wavelength, the intensity of the fluorescent X-rays 14 and 15 incident on the X-ray detector 10 is sufficient and accurate analysis can be performed.

【0016】次に、第2実施例について説明する。第1
実施例では、第1および第2分光素子7,8を、それら
の格子面11,12が平行になるように配置したが、本
発明は、格子面11,12が平行であることに限定され
ない。例えば、図2に示した第2実施例では、受光スリ
ット29に間隙Q3 が1つだけある場合で、1次X線2
の試料3への入射点Oと発散スリット24の下側の間隙
3 とを結ぶ直線5と、その間隙P3 と受光スリット2
9の間隙Q3 とを結ぶ線分31の垂直2等分線23との
交点Dを第1分光素子27の下面中央の点とし、第1分
光素子27の入射角度θ3 は、格子面21を前記垂直2
等分線23に垂直に設定することで決められる。
Next, a second embodiment will be described. First
In the embodiment, the first and second spectroscopic elements 7 and 8 are arranged such that their lattice planes 11 and 12 are parallel, but the present invention is not limited to the lattice planes 11 and 12 being parallel. . For example, in the second embodiment shown in FIG. 2, when the light receiving slit 29 has only one gap Q 3 , the primary X-ray 2
Straight line 5 connecting the incident point O to the sample 3 and the gap P 3 below the divergence slit 24, the gap P 3 and the light receiving slit 2
The intersection D of the line segment 31 connecting the gap Q 3 of 9 with the vertical bisector 23 is defined as the center point of the lower surface of the first spectroscopic element 27, and the incident angle θ 3 of the first spectroscopic element 27 is equal to the lattice plane 21. The vertical 2
It is determined by setting the line equally to the bisector 23.

【0017】同様に、1次X線2が試料3へ入射する点
Oと発散スリット24の上側の間隙P4 とを結ぶ直線6
と、その間隙P4 と受光スリット29の間隙Q3 とを結
ぶ線分32の垂直2等分線25との交点Eを求めること
で、第2分光素子28の配置と入射角度θ4 が決められ
る。第1および第2分光素子27,28の格子面間隔d
3 ,d4 は、前記(6)式から求められる。これによっ
て構成されるX線分光器30も、第1実施例のX線分光
器20と同様の作用がある。
Similarly, a straight line 6 connecting the point O where the primary X-ray 2 enters the sample 3 and the gap P 4 above the divergence slit 24.
And the intersection point E of the vertical bisector 25 of the line segment 32 connecting the gap P 4 and the gap Q 3 of the light receiving slit 29, the arrangement of the second spectroscopic element 28 and the incident angle θ 4 are determined. To be Lattice plane spacing d of the first and second spectroscopic elements 27 and 28
3 , d 4 can be obtained from the equation (6). The X-ray spectroscope 30 configured by this has the same operation as the X-ray spectroscope 20 of the first embodiment.

【0018】第1および第2実施例以外に、例えば図1
において、発散スリット4の間隙を1つだけとすること
もできる。1次X線2の試料3への入射点は、実際には
1点Oのみでなく、試料3の表面に分布しており、異な
った入射点から発生した2次X線を発散スリット4の単
一の間隙を通過させることにより、第1実施例と同様
に、複数条の2次X線5,6をそれぞれ複数の分光素子
7,8へ入射させることができるからである。また、例
えば図1において、格子面11,12が平行でなく、第
1分光素子7の下面中央の点Aから出た蛍光X線14
が、受光スリット9の上側の間隙Q2 に入射し、第2分
光素子8の下面中央の点Bから出た蛍光X線15が、受
光スリット9の下側の間隙Q1 に入射するように配置す
ることもできる。
In addition to the first and second embodiments, for example, FIG.
In, the divergence slit 4 may have only one gap. The incident points of the primary X-rays 2 on the sample 3 are actually distributed not only at one point O but also on the surface of the sample 3, so that the secondary X-rays generated from different incident points are emitted from the divergence slit 4. This is because a plurality of secondary X-rays 5 and 6 can be made incident on a plurality of spectroscopic elements 7 and 8, respectively, by passing through a single gap, as in the first embodiment. In addition, for example, in FIG. 1, the lattice planes 11 and 12 are not parallel, and the fluorescent X-ray 14 emitted from the point A at the center of the lower surface of the first spectroscopic element 7.
Enters the gap Q 2 on the upper side of the light receiving slit 9 and the fluorescent X-rays 15 emitted from the point B at the center of the lower surface of the second spectroscopic element 8 enters the gap Q 1 on the lower side of the light receiving slit 9. It can also be arranged.

【0019】なお、例えば第1実施例では、格子面間隔
1 ,d2 の相異なる2つの湾曲した分光素子7,8を
用いたが、本発明に用いる分光素子は湾曲したものに限
られず、格子面間隔の相異なる2つの平板の分光素子を
用いてもよい。この場合には、発散スリット4および受
光スリット9にソーラースリットを用いて、平行光の状
態で分光素子7,8またはX線検出器10に入射させ
る。また、本発明に用いる分光素子は2つに限られず、
3つ以上の複数の分光素子を用いることもできる。
In the first embodiment, for example, two curved spectroscopic elements 7 and 8 having different lattice spacings d 1 and d 2 are used, but the spectroscopic element used in the present invention is not limited to the curved one. Alternatively, two flat plate dispersive elements having different lattice spacings may be used. In this case, solar slits are used as the divergence slit 4 and the light-receiving slit 9, and the light is incident on the spectroscopic elements 7 and 8 or the X-ray detector 10 in the state of parallel light. Further, the spectroscopic element used in the present invention is not limited to two,
It is also possible to use a plurality of three or more spectroscopic elements.

【0020】また、第1および第2実施例では、分光す
る放射線をX線としたが、本発明で分光できる放射線は
X線に限定されず、X線以外の放射線、例えばシンクロ
トロン放射光等にも本発明を用いることができる。
Further, in the first and second embodiments, the radiation to be dispersed is X-rays, but the radiation that can be dispersed in the present invention is not limited to X-rays, and radiation other than X-rays, such as synchrotron radiation, etc. The present invention can also be used for

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の側面図である。FIG. 1 is a side view of a first embodiment of the present invention.

【図2】本発明の第2実施例の側面図である。FIG. 2 is a side view of the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…放射線源、2…1次放射線、3…試料、5,6…試
料から発生する2次放射線7,8…分光素子、10…放
射線検出器、14,15…回折された同一波長の2次放
射線、20…放射線分光器。
1 ... Radiation source, 2 ... Primary radiation, 3 ... Sample, 5, 6 ... Secondary radiation generated from sample 7, 8 ... Spectroscopic element, 10 ... Radiation detector, 14, 15 ... Diffracted 2 of the same wavelength Next radiation, 20 ... Radiation spectrometer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 放射線源から発生する1次放射線を照射
された試料から発生する2次放射線の通路に互いに並列
に配置されて、格子面間隔が相異なる複数の分光素子を
備え、 これら分光素子は、同一波長の2次放射線を回折して単
一の放射線検出器に入射させるように設定されている放
射線分光器。
1. A spectroscopic element comprising a plurality of spectroscopic elements which are arranged in parallel to each other in a passage of secondary radiation generated from a sample irradiated with primary radiation generated from a radiation source and have different lattice plane intervals. Is a radiation spectroscope set to diffract secondary radiation of the same wavelength and make it incident on a single radiation detector.
JP27038094A 1994-10-07 1994-10-07 Radiation spectrometer Expired - Lifetime JP3323670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27038094A JP3323670B2 (en) 1994-10-07 1994-10-07 Radiation spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27038094A JP3323670B2 (en) 1994-10-07 1994-10-07 Radiation spectrometer

Publications (2)

Publication Number Publication Date
JPH08110312A true JPH08110312A (en) 1996-04-30
JP3323670B2 JP3323670B2 (en) 2002-09-09

Family

ID=17485456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27038094A Expired - Lifetime JP3323670B2 (en) 1994-10-07 1994-10-07 Radiation spectrometer

Country Status (1)

Country Link
JP (1) JP3323670B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160094A (en) * 2009-01-09 2010-07-22 Jeol Ltd X-ray spectral information acquisition method and x-ray spectrometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160094A (en) * 2009-01-09 2010-07-22 Jeol Ltd X-ray spectral information acquisition method and x-ray spectrometer

Also Published As

Publication number Publication date
JP3323670B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
CA1229897A (en) Optics system for emission spectrometer
US6023496A (en) X-ray fluorescence analyzing apparatus
JP3729203B2 (en) X-ray fluorescence analyzer
CN1650151B (en) Optical spectrometer
US5251007A (en) Dual-beam spectrometer
US5343289A (en) Spectrometer assembly with post disperser assembly
JPH08110312A (en) Radiation spectroscope
JP3411705B2 (en) X-ray analyzer
US6850593B1 (en) Fluorescent X-ray analysis apparatus
JPS63229351A (en) X-ray analyzer and crystal for analysis used for said device
EP1193482B1 (en) Spectroscope
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
DE4223211C2 (en) Double-beam lattice polychromator
JPH0772298A (en) X-ray spectroscope and x-ray spectroscopic element
JP2511225Y2 (en) X-ray spectrometer
JP2666871B2 (en) X-ray monochromator
JPH1038823A (en) Fluorescent x-ray spectrometer
JP2675737B2 (en) Total reflection X-ray fluorescence analysis method and analyzer
JPH04140619A (en) Spectroscope
SU1170335A1 (en) Dispersing agent for x-ray spectrometry of substance element composition
JP2561312Y2 (en) X-ray spectrometer
JPH06109662A (en) X-ray analyzer
JPH01180439A (en) X-ray spectroscopic device
JPS631220Y2 (en)
JPH0399238A (en) High resolution spectroscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8