JPH0399238A - High resolution spectroscope - Google Patents

High resolution spectroscope

Info

Publication number
JPH0399238A
JPH0399238A JP23576589A JP23576589A JPH0399238A JP H0399238 A JPH0399238 A JP H0399238A JP 23576589 A JP23576589 A JP 23576589A JP 23576589 A JP23576589 A JP 23576589A JP H0399238 A JPH0399238 A JP H0399238A
Authority
JP
Japan
Prior art keywords
diffraction
diffraction grating
light
grating
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23576589A
Other languages
Japanese (ja)
Other versions
JPH076840B2 (en
Inventor
Tetsuo Kobayashi
哲郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP1235765A priority Critical patent/JPH076840B2/en
Publication of JPH0399238A publication Critical patent/JPH0399238A/en
Publication of JPH076840B2 publication Critical patent/JPH076840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating

Abstract

PURPOSE:To improve resolution with a compact, simple structure by providing a constitution wherein a plurality of diffraction gratings are arranged in a near field region and multiple diffractions are performed. CONSTITUTION:A light wave (b) is inputted through a slit S1 at the incident side and made to be the parallel luminous flux with a concave mirror M1. The luminous flux is diffracted through a diffraction grating G1. The light rays having various kinds of wavelengths contained in the light wave (b) are diffracted at diffracting angles corresponding to the wavelengths. The light rays are inputted into a diffraction grating G2 which is arranged in a near field region. The light having each wavelength is diffracted at the diffracting angle corresponding to the wavelength again. The diffracted light is converted to the converged light with a concave mirror M2. The light is converged at the position of a slit S2. When the grating G1 or G2 is turned by a minute angle, only the intended wavelength light can be selectively emitted to the outside from the light rays in the broad wavelength region. At this time, the wavelength of the emitted light can be computed based on the turning angle of the diffraction grating, and spectroscopic measurement can be performed. Thus, a high resolution spectroscope having a compact, simple structure is obtained without using a diffraction grating having a large diameter.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、複数の回折格子を利用した高分解能分光器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-resolution spectrometer that utilizes a plurality of diffraction gratings.

(従来の技術) 光通信や光倫号処理技術の開発に伴ない、光波を高分解
能で周波数分析できる分光装置の開発が強く要請されて
いる。
(Prior Art) With the development of optical communication and optical processing technology, there is a strong demand for the development of a spectroscopic device that can analyze the frequency of light waves with high resolution.

第8図は従来の回折格子を利用した分光器の基本構成を
示す線図である。分光すぺき光波をスリットS1を経て
入射させる。この光波は回折され広がっているため、凹
面鏡恥で平行光束とし、平行光束を回折格子G,に入射
させる。この回折格子は格子溝が紙面と直交する方向に
延在し、紙面内で回動可能に装着されている。入射した
光波は回折格子G,によって波長に応じた回折角方向に
回折され、凹面鏡hで集束されスリットszを経て出射
する。回折されるべき光波は、その波長により回折角も
異なるため、波長に応じて集束位置が格子溝と直交する
紙面の上下方向に偏位して形成される。
FIG. 8 is a diagram showing the basic configuration of a conventional spectrometer using a diffraction grating. A spectroscopic light wave is made to enter through the slit S1. Since this light wave is diffracted and spread, it is made into a parallel light beam by the concave mirror, and the parallel light beam is made incident on the diffraction grating G. This diffraction grating has grating grooves extending in a direction perpendicular to the plane of the paper, and is mounted so as to be rotatable within the plane of the paper. The incident light wave is diffracted by the diffraction grating G in a diffraction angle direction corresponding to the wavelength, focused by the concave mirror h, and exited through the slit sz. Since the diffraction angle of the light wave to be diffracted differs depending on its wavelength, the focusing position is formed to be shifted in the vertical direction of the plane of the paper perpendicular to the grating grooves depending on the wavelength.

この結果特定の波長或分光だけがスリットS2から出射
する。従って、回折格子G,を回動させ回折格子への入
射角を変えることにより特定の波長光だけを選択的に出
射させることができ、この回転角からスリットStを出
射する光波の波長が算出され分光計測を行なうことがで
きる。
As a result, only a certain wavelength of light is emitted from the slit S2. Therefore, by rotating the diffraction grating G and changing the angle of incidence on the diffraction grating, it is possible to selectively emit only light of a specific wavelength, and from this rotation angle, the wavelength of the light wave emitted from the slit St can be calculated. Spectroscopic measurements can be performed.

次に、上述した従来の回折格子分光器の分解能を第9図
に基づいて説明する。回折格子G1のピッチをd、入射
角をθ1とすると波長λの光波の回折角θ2は次式で与
えられる。
Next, the resolution of the conventional diffraction grating spectrometer mentioned above will be explained based on FIG. 9. When the pitch of the diffraction grating G1 is d and the incident angle is θ1, the diffraction angle θ2 of a light wave of wavelength λ is given by the following equation.

θt =sin−’(nλ/d−sinθ,)    
 ・(1)ここで、nは回折の次数±1.±2,±3一
一一(通常はn=±1をとる)。
θt = sin-'(nλ/d-sinθ,)
・(1) Here, n is the order of diffraction ±1. ±2, ±3-11 (usually n=±1).

簡単にするため、最良の波長分解が得られる回折格子の
全幅Dに亘ってビームが照射させているとすると、集束
用の凹面鏡M2がビーム径に対して十分に大きい場合ビ
ーム径はほぼDcosθ2となる。
For simplicity, let us assume that the beam is irradiated over the entire width D of the diffraction grating to obtain the best wavelength resolution.If the focusing concave mirror M2 is sufficiently large compared to the beam diameter, the beam diameter will be approximately D cos θ2. Become.

凹面鏡M2の焦点距離をf2とすると、ビームは焦点位
置で最も細径になり、回折限界においてビーム径は次式
で与えられる。
When the focal length of the concave mirror M2 is f2, the beam has the smallest diameter at the focal position, and the beam diameter at the diffraction limit is given by the following equation.

,d X,...−ft ・λ/ (Dcosθt)・
(2)また、波長がλからAλだけ異なることにより回
折角θ2もAθアだけずれるものとすると、Aθ2は次
式で与えられる。
,dX,. .. .. -ft ・λ/ (Dcosθt)・
(2) Furthermore, if it is assumed that the diffraction angle θ2 also deviates by Aθa because the wavelength differs from λ by Aλ, Aθ2 is given by the following equation.

Zθz ’i n X lλバdcosθz)・(3)
この結果、集束位置も偏位し、この偏位1aXは次式で
与えられる。
Zθz 'in X lλba dcosθz)・(3)
As a result, the focal position also shifts, and this shift 1aX is given by the following equation.

?x=rz・Jθ.=nXf2・,jλ/ (dcos
θ2)・・・(4) 偏位量Axが(2)式で規定される値より小さい場合に
は分解できないため、(2)式で規定される値に等しい
波長差が理論的に可能な波長分解能に相当する。従って
、(2)式及び(4)式より分光可能な最高分解能Aλ
.l (理論限界)が求まり、この最高分解能は次式で
与えられる。
? x=rz・Jθ. =nXf2・,jλ/ (dcos
θ2)...(4) If the deviation amount Ax is smaller than the value specified by equation (2), it cannot be resolved, so a wavelength difference equal to the value specified by equation (2) is theoretically possible. Corresponds to wavelength resolution. Therefore, from equations (2) and (4), the maximum spectroscopic resolution Aλ
.. l (theoretical limit) is determined, and its maximum resolution is given by the following equation.

Aλraw = l X r*s/ ( n X ft
/ (d Cosθ2))=λ(d/n)/D    
  ・・・(5)通常の分光器では、集束部にスリッ}
Szを置き、特定の波長光だけを選択的に検出する。こ
の場合、スリッl−szの幅Wが(2)弐以下の場合(
5)式の理論限界式に近い分解能が得られる。一方、一
般的には、広い幅(例えば10DII1以上)のスリッ
トが用いられるので、分解能Aλ′■3はスリット幅W
で規定され、次式で与えられる。
Aλraw = l X r*s/ (n X ft
/ (dCosθ2))=λ(d/n)/D
...(5) In a normal spectrometer, there is a slit in the focusing part.
Sz is placed to selectively detect only light of a specific wavelength. In this case, if the width W of the slit l-sz is (2)2 or less (
5) A resolution close to the theoretical limit equation can be obtained. On the other hand, generally, a slit with a wide width (for example, 10DII1 or more) is used, so the resolution Aλ'■3 is the slit width W
and is given by the following equation.

Aλ” rat = W/ ( n X f !/ (
a cosθ2))=(dcosθz/n)W/fz ≧λ,..        (6) (6)式より、集束用凹面鏡hの焦点距離f2を大きく
すると分解能が一層高くなることが理解できる。
Aλ” rat = W/ ( n X f !/ (
a cosθ2))=(dcosθz/n)W/fz ≧λ, . .. (6) From equation (6), it can be understood that increasing the focal length f2 of the focusing concave mirror h further increases the resolution.

しかしながら、実際にはf2を大きくしても最終的には
(5)弐で与えられる理論限界より大きくなることはな
い。又、(5)式より、分光器の相対分解能Aλr1.
/λは回折格子の格子数(D/d)及び回折次数nだけ
で定まる。さらに、格子ピッチdはn×λ/2より大き
くなければ回折格子として作用しないから、次式が戒立
する。
However, in reality, even if f2 is increased, it will not ultimately become larger than the theoretical limit given by (5) 2. Also, from equation (5), the relative resolution of the spectrometer Aλr1.
/λ is determined only by the grating number (D/d) of the diffraction grating and the diffraction order n. Furthermore, since the grating pitch d does not function as a diffraction grating unless it is larger than n×λ/2, the following equation holds true.

Aνras l ”: lν(Aλ,.3/λ)=vl
d/nl/D≧νλ/ (2D)= C/ (2D) ・・・(7) ここで、等号はd=nλ/2のとき戒立し、Cは光速で
ある。
Aνras l”: lν(Aλ,.3/λ)=vl
d/nl/D≧νλ/ (2D)=C/ (2D) (7) Here, the equal sign stands when d=nλ/2, and C is the speed of light.

従って、d,nを最適に選択した場合の最良の周波数分
解能は回折格子の全幅を光が1往復する時間の逆数程度
となる。この結果、従来の分光器の可能な分解能は、回
折格子の大きさによって最終的に規定されてしまう。
Therefore, when d and n are optimally selected, the best frequency resolution is approximately the reciprocal of the time it takes for light to make one round trip across the entire width of the diffraction grating. As a result, the possible resolution of conventional spectrometers is ultimately determined by the size of the diffraction grating.

(発明が解決しようとする課題) 上述した検討より、従来の分光器の分解能を決定するも
のは回折格子の格子数と回折次数であり、さらに格子ピ
ッチ及び回折の次数を最適に選択すれば回折格子の口径
(回折格子の全幅D)であると結論できる。
(Problems to be Solved by the Invention) From the above studies, it has been found that what determines the resolution of conventional spectrometers is the number of gratings and the order of diffraction, and if the grating pitch and order of diffraction are optimally selected, the diffraction It can be concluded that the aperture of the grating (total width D of the diffraction grating).

従って、高分解能を得るためには大口径の回折格子が必
要であるが、大口径の回折格子を製造するのは困難であ
り、しかも20〜30cu+のものとなれば極めて高価
になってしまう。このような欠点を解消するものとして
分光器を直列に2段、3段に配列したダブルモノクロメ
ータ、トリップルモノクロメータと称せられている分光
器が提案されている。しかしながら、これらの分光器は
波長フィルタを直列接続したものにすぎず、総合分解能
は増大するが、装置全体が大型化するばかりでなく操作
性にも難点がある。また、分解能の向上の度合も、ダブ
ル、トリップル構造にしてもそれぞれ五倍、 F倍にな
るにすぎず、実用化されている最高級の3mのダブルモ
ノクロメータでも高々0.LA ( 5 〜10GHz
)にすぎない。
Therefore, in order to obtain high resolution, a large-diameter diffraction grating is required, but it is difficult to manufacture a large-diameter diffraction grating, and moreover, if it is 20 to 30 cu+, it becomes extremely expensive. To overcome these drawbacks, spectrometers called double monochromators and triple monochromators, in which spectrometers are arranged in two or three stages in series, have been proposed. However, these spectrometers are just wavelength filters connected in series, and although the overall resolution increases, the overall device size not only increases, but there are also difficulties in operability. In addition, the degree of improvement in resolution is only 5 times and F times, respectively, even with double and triple structures, and even with the highest grade 3m double monochromator in practical use, it is only 0. LA (5~10GHz
).

その他の高分解能分光分析装置として掃引形ファブリ・
ペロー干渉計、フーリエ変換分光光度計があげられる。
As other high-resolution spectrometers, the sweep type Fabry
Examples include Perot interferometer and Fourier transform spectrophotometer.

この掃引形ファブリ・ペロー干渉形は, MHz程度の
高分解能を有し、定常スペクトル観測に適しているが、
1個の波長が無数に近い多数の透過領域を有するため被
測定光源に数波長が混在すると測定不能になるばかりで
なく、絶対波長を測定することができない。従って、狭
いフリースペクトルレンジの測定に限定されてしまう.
しかも、掃引に1ミリ秒以上もかかるため高速実時間計
測できない欠点もある。また、フーリエ変換分光光度計
は、研究段階では1 kHzに近い分解能が得られてい
る。しかし、干渉計のアーム長をゆっくり掃引する必要
があるため測定に長時間かかってしまう。従って、長時
間の時間平均スペクトル測定には適するが、信号の実時
間スペクトル計測には適用できない欠点がある。また、
光源が長時間波長安定性を有していない場合信号スペク
トルの広がりか或いは光源の長期間ふらつきかを区別で
きない欠点もある。
This swept Fabry-Perot interferometer has a high resolution on the order of MHz and is suitable for stationary spectrum observation.
Since one wavelength has an almost infinite number of transmission regions, if several wavelengths coexist in the light source to be measured, it not only becomes impossible to measure, but also makes it impossible to measure the absolute wavelength. Therefore, measurements are limited to a narrow free spectral range.
Furthermore, since it takes more than 1 millisecond to sweep, there is a drawback that high-speed real-time measurement cannot be performed. Furthermore, the Fourier transform spectrophotometer has a resolution close to 1 kHz at the research stage. However, since it is necessary to sweep the arm length of the interferometer slowly, the measurement takes a long time. Therefore, although it is suitable for long-term time-averaged spectrum measurement, it has the disadvantage that it cannot be applied to real-time spectrum measurement of signals. Also,
If the light source does not have long-term wavelength stability, there is also the drawback that it is not possible to distinguish between the broadening of the signal spectrum and the long-term fluctuation of the light source.

従って、本発明の目的は上述した欠点を解消し、高価な
大口径の回折格子やダブルモノクロメータを用いること
なく、小型で簡単な構造で高分解能を達戒できる分光器
を提供するものである。
Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks and provide a spectrometer that can achieve high resolution with a small and simple structure without using expensive large-diameter diffraction gratings or double monochromators. .

(課題を解決するための手段) 本発明による高分解能分光器は、分光すべき光ビームを
平行光束とする第1の光学素子と、多重回折された光束
を集束させる第2の光学素子と、これら光学素子間の光
路中に、格子溝が互いに平行になるように配置されてい
る複数の回折格子とを具え、入射側に位置する回折格子
からの回折光を、この回折格子の近視野内に配置した出
射側に位置する次段の回折格子に順次人射させて多重回
折を行なうように構成したことを特徴とする。
(Means for Solving the Problems) A high-resolution spectrometer according to the present invention includes a first optical element that converts a light beam to be separated into a parallel light beam, a second optical element that focuses a multiple diffracted light beam, The optical path between these optical elements is provided with a plurality of diffraction gratings arranged so that the grating grooves are parallel to each other, and the diffracted light from the diffraction grating located on the incident side is transmitted within the near field of this diffraction grating. The present invention is characterized in that it is configured to perform multiple diffraction by sequentially irradiating the diffraction grating at the next stage located on the exit side.

さらに、本発明による高分解能分光器は、分光すべき光
ビームを平行光束とする光学素子と、この平行光束を回
折する第1の回折格子と、第lの回折格子の近視野像を
形成する結像光学系と、前記近視野像の結像位置又はそ
の近傍に配置され、格子溝が第1の回折格子の格子溝と
平行に延在する第2の回折格子と、第2の回折格子から
の回折光を集束させる光学素子とを具え、前記第1及び
第2の回折格子により多重回折させるように構成したこ
とを特徴とする。
Further, the high-resolution spectrometer according to the present invention includes an optical element that converts the light beam to be separated into a parallel beam, a first diffraction grating that diffracts the parallel beam, and a near-field image of the l-th diffraction grating. an imaging optical system; a second diffraction grating that is disposed at or near the imaging position of the near-field image and whose grating grooves extend parallel to the grating grooves of the first diffraction grating; and a second diffraction grating. and an optical element that focuses the diffracted light from the diffraction grating, and is configured to cause multiple diffraction by the first and second diffraction gratings.

(作 用) 第1図は本発明による高分解能分光器の原理を説明する
ための模式図である。分光すぺき入射ビームbは波長λ
とλ+Aλの光波から威るものとし、このビームbを回
折溝が紙面と直交する方向に延在する第1の回折格子G
1に入射角θ.で入射させ回折させる。波長λの光波と
波長λ+Aλの光波との回折角の差2θ2lは次式で与
えられる.Aθz+=n+Jλ/ (a cosθZ 
+ >      ・(S)これら回折光を、近視野領
域内に配置され回折溝が紙面に垂直に延在する第2の回
折格子Gtで回折させると、第2の回折格子Gtへの入
射角がそれぞれ異なるため、第2の回折格子による回折
角の差Aθ.は波長差2λに直接依存する量と第1の回
折格子の回折角差Aθffi+に起因する第2の回折格
?G2への入射角の差異2θ1■によるものとの和とな
り、次式で与えられる。
(Function) FIG. 1 is a schematic diagram for explaining the principle of a high-resolution spectrometer according to the present invention. Spectroscopic special incident beam b has wavelength λ
and λ+Aλ, and this beam b is passed through a first diffraction grating G whose diffraction grooves extend in a direction perpendicular to the plane of the paper.
1 and the incident angle θ. The beam is incident on the beam and diffracted. The difference in diffraction angles 2θ2l between a light wave with wavelength λ and a light wave with wavelength λ+Aλ is given by the following equation. Aθz+=n+Jλ/ (a cosθZ
+ > ・(S) When these diffracted lights are diffracted by a second diffraction grating Gt arranged in the near-field region and whose diffraction grooves extend perpendicularly to the plane of the paper, the angle of incidence on the second diffraction grating Gt becomes Since they are different, the difference in diffraction angles Aθ. due to the second diffraction grating. is a quantity that directly depends on the wavelength difference 2λ and the second diffraction grating due to the diffraction angle difference Aθffi+ of the first grating? This is the sum of the difference 2θ1■ in the angle of incidence on G2, and is given by the following equation.

1 11 z*=l J:}e zd3A +l fl
 I−fl zz/aθ12=ntXJλ/ (aco
sθ.t) − Jθ, gcOsθ+ t/cosθ
zt””nt/nIAθ.. (cosθ2+/COS
θ0−Cn.lθz+/nzJθ+z)cosθ+ z
/cosθ2z}ここでAθ,2と2θ.は絶対値が等
しく、また、2度の回折は正負の符号は別に同じ次数に
とればnl+ ngの絶対値も等しい。しかもこの符号
は回折格子の設定等で選択できるので(n,aθ+z/
nzJθ21)を−1に設定できる。この場合 Aθ..l=1,6θt+ l (cosθg,+CO
Sθ+ z) /cosθ2■・・・(9) θ,2,θ2.の絶対値 ?なる。したがって、θ2■ を大体同じ程度に選べば Aθzzl〜2xl,dθ.l     ・”00)が
得られ、2重路構成での回折角の差は1回の回折の場合
に比べ、ほぼ2倍になることが分かる。
1 11 z*=l J:}e zd3A +l fl
I-fl zz/aθ12=ntXJλ/ (aco
sθ. t) − Jθ, gcOsθ+ t/cosθ
zt””nt/nIAθ. .. (cosθ2+/COS
θ0−Cn. lθz+/nzJθ+z)cosθ+z
/cosθ2z} where Aθ,2 and 2θ. have the same absolute value, and if the two degrees of diffraction are taken to have the same order, regardless of the positive or negative sign, the absolute values of nl+ng will also be equal. Moreover, this sign can be selected by setting the diffraction grating, etc. (n, aθ+z/
nzJθ21) can be set to -1. In this case Aθ. .. l=1,6θt+l (cosθg,+CO
Sθ+ z) /cosθ2■...(9) θ, 2, θ2. The absolute value of? Become. Therefore, if θ2■ is chosen to be approximately the same, Aθzzl~2xl, dθ. l·”00) is obtained, and it can be seen that the difference in diffraction angles in the double path configuration is approximately twice that in the case of single diffraction.

従って、2回回折のあと、通常の分光器と同様に凹面鏡
で集束すれば、2λだけ波長の異なる先は1回の回折の
場合に比べ空間的に2倍離れて集束される(式(4)で
2θ2が2倍になったと考えれば容易に理解できる)。
Therefore, after two diffraction steps, if the concave mirror is used to focus the spectrometer as in a normal spectrometer, the points with a wavelength difference of 2λ will be focused twice as far apart spatially as in the case of a single diffraction (Equation (4) ), it is easy to understand if you consider that 2θ2 has doubled.

一方、回折格子の口径が同程度ならビームの幅は殆ど変
わらないので集束幅も1回回折の場合と同程度に留まっ
ている。つまり分解可能な波長差は1/2になり、分解
能は2倍に向上することになる。同様にして、3回回折
になれば分解能は3倍向上する。これは時間の滞留時間
を考えれば当然である。他の構成のものも基本的には同
様で、回折の回数に応じて2倍、3倍、4倍−−−と分
解能が向上する。
On the other hand, if the aperture of the diffraction grating is about the same, the width of the beam will hardly change, so the focusing width will also remain about the same as in the case of one-time diffraction. In other words, the resolvable wavelength difference is halved, and the resolution is doubled. Similarly, if the beam is diffracted three times, the resolution will improve three times. This is natural considering the residence time. The other configurations are basically the same, and the resolution improves by 2 times, 3 times, 4 times, etc. depending on the number of times of diffraction.

以下設計数値例について述べる。An example of design numerical values will be described below.

方式:口径12cm回折格子(2400本/InII1
)で41i路使用(第4図b及び第7図に示す4回回折
) 使用波長器=400〜800nII1 分解能:2λ/λ〜Aν/ν〜0.87×1016波長
500nm  (周波数6007Hz )で周波数分解
能〜521M}lz、波長分解能〜0.OO043nm 波長800nm  (周波数375THz)で周波数分
解能〜326MHz,波長分解能〜0.OO069nn
+ 尚波長800nmにおいての方が、波長分解能が大きく
なっているが、実際的な分解能、周波数分解能は高いこ
とに注意されたい。
Method: 12cm diameter diffraction grating (2400 lines/InII1
) using the 41i path (four diffraction steps shown in Figure 4b and Figure 7) Wavelength meter used = 400~800nII1 Resolution: 2λ/λ~Aν/ν~0.87×1016 Wavelength 500nm (frequency 6007Hz) and frequency Resolution ~521M}lz, wavelength resolution ~0. OO043nm Wavelength 800nm (frequency 375THz), frequency resolution ~326MHz, wavelength resolution ~0. OO069nn
+ It should be noted that although the wavelength resolution is higher at a wavelength of 800 nm, the practical resolution and frequency resolution are higher.

絶対波長精度: 0.001nm  (校正光あり)を
用いた。
Absolute wavelength accuracy: 0.001 nm (with calibration light) was used.

出力: CRTモニタ上で光強度の周波数分布表示を用
いた。
Output: Frequency distribution display of light intensity was used on a CRT monitor.

(実施例) 第2図は本発明による高分解能分光器の基本構成を示す
線図である。本例では2個の反射型回折格子G1及びG
2を用いて分光する例について説明する.入射側のスリ
ットSIから分光すべき光波bを入射させ、第1の凹面
鏡M1により平行光束とする。
(Example) FIG. 2 is a diagram showing the basic configuration of a high-resolution spectrometer according to the present invention. In this example, two reflection gratings G1 and G
We will explain an example of spectroscopy using 2. The light wave b to be separated is made incident through the slit SI on the incident side, and is made into a parallel light beam by the first concave mirror M1.

この平行光束を、格子溝が紙面と直交する方向に延在す
る第1の回折格子G1により回折する。光波b中に含ま
れる種々の波長光は、その波長に応じた回折角で回折さ
れ、近視野領域に配置した第2の回折格子G8に入射す
る。これら回折格子G,及びG.の格子溝は互いに平行
に延在する。各波長光は第2の回折格子G2で再度波長
に応じた回折角で回折される。この回折光を第2の凹面
鏡hで集束光束に変換し、出射側のスリットS2の位置
で集束させ外部に出射させる。そして、第1又は第2の
回折格子G,又はG2を微小角回勤させることにより、
広い波長域の光から所望の波長光だけを選択的に外部に
向けて出射させることができる。この場合、回折格子の
回転角から出射光の波長を算出することができ、分光計
測を行なうこともできる。なお、集束部には回折方向に
沿って波長差に応じて偏位したスポットが形戒されるか
ら、集束用凹面鏡H,の集束位置にスリットS2の代り
にTVカメラ、CCDアレイ、フォトダイオードアレイ
のような空間分解イメージセンサを配置して空間的光強
度分布を測定することにより分光計測を行うことも可能
である。スリットStO代りに空間分解イメージセンサ
を用いることにより比較的狭い波長域の光について高速
実時間スペクトル計測を行なうことができる。従って、
出射スリット及びイメージセンサの両方を設けることに
より、広い波長域についての計測及び狭い波長域につい
ての実時間計測の両方を行なうことができる。
This parallel light beam is diffracted by a first diffraction grating G1 whose grating grooves extend in a direction perpendicular to the plane of the paper. The various wavelengths contained in the light wave b are diffracted at diffraction angles corresponding to the wavelengths, and are incident on the second diffraction grating G8 arranged in the near-field region. These diffraction gratings G and G. The lattice grooves of the lattice grooves extend parallel to each other. Each wavelength light is diffracted again by the second diffraction grating G2 at a diffraction angle corresponding to the wavelength. This diffracted light is converted into a convergent beam by the second concave mirror h, converged at the position of the slit S2 on the exit side, and emitted to the outside. Then, by rotating the first or second diffraction grating G or G2 by a minute angle,
Only desired wavelength light can be selectively emitted to the outside from light in a wide wavelength range. In this case, the wavelength of the emitted light can be calculated from the rotation angle of the diffraction grating, and spectroscopic measurement can also be performed. In addition, since a spot is formed in the focusing part according to the wavelength difference along the diffraction direction, a TV camera, CCD array, or photodiode array is placed at the focusing position of the concave focusing mirror H in place of the slit S2. It is also possible to perform spectroscopic measurements by arranging a spatially resolved image sensor such as the one shown in FIG. By using a spatially resolved image sensor instead of the slit StO, high-speed real-time spectral measurement can be performed for light in a relatively narrow wavelength range. Therefore,
By providing both the exit slit and the image sensor, it is possible to perform both measurement over a wide wavelength range and real-time measurement over a narrow wavelength range.

第3図は本発明による高分解能分光器の回折部分の変形
例の構成を示す線図である。本例では、互いに近視野領
域内に配置した3個の回折格子G.Gt, Gxを用い
て3回に亘って回折させて多重回折させる例を示す。こ
のように多数回回折させることにより一層分解能を向上
させることができる。
FIG. 3 is a diagram showing the configuration of a modified example of the diffraction section of the high-resolution spectrometer according to the present invention. In this example, three diffraction gratings G. An example is shown in which multiple diffraction is performed by diffracting three times using Gt and Gx. By performing diffraction multiple times in this way, the resolution can be further improved.

第4図a及びbは別の変形例の構成を示す線図である.
本例では、分光すべきビームを格子溝の延在方向と直交
する方向に広がった偏平ビームとし、回折格子G,に対
して斜めに入射させて多重回折させる。この偏平なビー
ムはシリンドリカルレンズ、シリンドリカルよラー等を
用いることにより簡単に形戒できる。第4図aに示す実
施例では、偏平の入射ビームbを回折格子G1に入射さ
せ、その反射回折光を対向配置した平面ミラー肝に入射
させ、その反射光を再度回折格子G,に入射させて再度
回折させて多重回折させる。第4図bに示す実施例では
、平面ミラー12の代りに第2の回折格子G2を用いて
4回回折させる。このように構成すれば、2個の回折格
子を用いるだけで多重回折できる大きな利点が達戒でき
、分光器の構造を一層コンパクトな構造とすることがで
きる。さらに、回折格子と回折格子又は平面ξラーとの
間で交互に反射を繰り返すことにより2回又は4回だけ
でなく、多数回多重回折させることができる。
Figures 4a and 4b are diagrams showing the configuration of another modification.
In this example, the beam to be separated is a flat beam that spreads in a direction perpendicular to the extending direction of the grating grooves, and is made obliquely incident on the diffraction grating G for multiple diffraction. This flat beam can be easily shaped by using a cylindrical lens, cylindrical mirror, etc. In the embodiment shown in FIG. 4a, a flat incident beam b is made incident on the diffraction grating G1, its reflected diffracted light is made incident on a plane mirror placed opposite to it, and the reflected light is made incident on the diffraction grating G again. and then diffract it again for multiple diffraction. In the embodiment shown in FIG. 4b, a second diffraction grating G2 is used instead of the plane mirror 12 to cause the light to be diffracted four times. With this configuration, the great advantage of multiple diffraction can be achieved by just using two diffraction gratings, and the structure of the spectrometer can be made even more compact. Furthermore, by repeating the reflection alternately between the diffraction grating and the diffraction grating or the plane ξ beam, it is possible to perform multiple diffraction not only two or four times but many times.

第5図a − cはレンズや凹面鏡の組み合せから或る
結像光学系を用いてほぼ完全な近視野領域を形威して多
重回折させる構成を示す。第8図に示すように、回折格
子Gから距離fIだけ離間させて焦点距離f,の凸レン
ズL1を配置し、さらに凸レンズL+から距離f,+f
!だけ離間させて焦点距離f2の第2の凸レンズL2を
配置する。この場合、第2の凸レンズL2から距離ft
だけ離れた位置に回折格子G.の倒立実像が形威され、
しかも回折格子G1近傍での平行な光線はこの倒立実像
の形成位置において上下関係が反転して平行光線となる
。つまり、倒立実線が形戒される位置及びその近傍は回
折格子G,の上下関係が反転したほぼ完全な近視野領域
となる。従って、レンズL+及びし!は結像光学系を構
成し、第2の回折格子をこの倒立実像の結像位置に配置
すれば、ずれがほとんど生じないほぼ完全な多重回折を
実現できる。この場合、第1及び第2の凸レンズし,及
びL2の焦点距離をf,=f,に設定すれば、倍率が1
となり構成が容易になる。第5図bには、f.=f2=
 fとした例を示す。第5図Cには凸レンズの代りに凹
面鏡から或る結像光学系を用いて完全な近視野領域を形
成する例を示す。
FIGS. 5a to 5c show a configuration in which an almost complete near-field region is formed using a certain imaging optical system from a combination of lenses and concave mirrors to perform multiple diffraction. As shown in FIG. 8, a convex lens L1 with a focal length f is arranged at a distance fI from the diffraction grating G, and further distances f, +f from the convex lens L+.
! A second convex lens L2 having a focal length f2 is disposed with a distance of f2 from the second convex lens L2. In this case, the distance ft from the second convex lens L2
A diffraction grating G. The inverted real image of
Moreover, the parallel light rays near the diffraction grating G1 become parallel light rays with their vertical relationship reversed at the formation position of this inverted real image. In other words, the position where the inverted solid line is formed and its vicinity is a nearly complete near-field region where the vertical relationship of the diffraction grating G is reversed. Therefore, lenses L+ and ! constitutes an imaging optical system, and by arranging the second diffraction grating at the imaging position of this inverted real image, almost perfect multiple diffraction with almost no deviation can be realized. In this case, if the first and second convex lenses and the focal length of L2 are set to f,=f, the magnification is 1.
This makes the configuration easier. FIG. 5b shows f. =f2=
An example where f is shown. FIG. 5C shows an example in which a complete near-field region is formed using an imaging optical system using a concave mirror instead of a convex lens.

尚、一般にレンズ媒質は波長分散効果を有し分光器の性
能に影響を及ぼすため、広い波長域の光波を分光する場
合凸レンズよりも凹面鏡を用いる方が望ましい。分光す
ぺき平行ビームを第1の回折格子G,に入射させ、その
回折方向に配置した焦点距離fの第1の凹面鏡MCIに
入射させる。この第1の凹面鏡の反射方向に距離2fだ
け離間させて焦点距離fの第2の凹面鏡MCzを配置し
、第lの凹面鏡からの反射光を入射させる。そして、第
2の凹面鏡の反射方向に距離fだけ離間して第2の回折
格子G2を配置する。第2の凹面鏡MCzからの反射光
は平行光束となって第2の回折格子Gtに入射し、再び
回折される。このように構成すれば、簡単な構成でほぼ
完全な近視野に配置した回折格子により多重回折させる
ことができ、従ってずれのないほぼ完全な多重回折を行
なうことができる。
In addition, since lens media generally have a wavelength dispersion effect and affect the performance of a spectrometer, it is preferable to use a concave mirror rather than a convex lens when dispersing light waves in a wide wavelength range. A perfectly parallel beam of spectroscopy is made incident on a first diffraction grating G, and is made incident on a first concave mirror MCI having a focal length f arranged in the direction of diffraction. A second concave mirror MCz having a focal length f is arranged at a distance of 2f in the reflection direction of the first concave mirror, and the reflected light from the l-th concave mirror is made incident thereon. Then, the second diffraction grating G2 is arranged at a distance f in the reflection direction of the second concave mirror. The reflected light from the second concave mirror MCz becomes a parallel light beam, enters the second diffraction grating Gt, and is diffracted again. With this configuration, multiple diffraction can be performed using a diffraction grating arranged in an almost perfect near field with a simple configuration, and therefore, almost perfect multiple diffraction without deviation can be performed.

尚、2個の回折格子と結像光学系とから或る光学系を複
数組直列に配置することにより一層分解能の高い分光器
を実現することができる。
Note that a spectrometer with even higher resolution can be realized by arranging a plurality of optical systems in series, each consisting of two diffraction gratings and an imaging optical system.

第6図は第5図Cに示す実施例の変形例を示すものであ
り、第lの凹面鏡から距離fだけ離間させて平面;IM
Fを配置した例を示す。このように構成すれば、光路空
間を一層小さ《することができる。
FIG. 6 shows a modification of the embodiment shown in FIG. 5C, in which a plane; IM
An example of arranging F is shown. With this configuration, the optical path space can be further reduced.

さらに、第7図は完全な近視野位置関係に配置した1組
の光学系を用い往復光路を形戒して多重回折させる分光
器の全体構成を示す線図である。
Furthermore, FIG. 7 is a diagram showing the overall configuration of a spectrometer that uses a set of optical systems arranged in perfect near-field positional relationship to form a round trip optical path and perform multiple diffraction.

スリットS,を経て分光すべき光ビームを入射させ、第
1の平面鏡MF+で反射し、シリンドリカルレンズL3
及び第1の凹面鏡M1を経て断面が偏平な平行光束とす
る。この偏平な平行光束を第1の回折格子G,で回折し
、その回折光を距離fだけ離間して配置した第2の凹面
鏡(焦点距離f ) MC.に入射させる。第2の凹面
鏡から距離2fだけ離間して第3の凹面鏡(焦点距離f
 ) Mczを配置する。この第2の凹面鏡からの反射
光を距離fだけ離間して配置した第2の回折格子G2に
入射させ、その回折光を再度第3の凹面鏡MC.に入射
させる。その反射光を再び第2の凹面鏡MC+に入射さ
せ、その反射光を第1の回折格子G,に入射させ、さら
に凹面鏡MCI及びMC.を経て第2の回折格子Ctに
再び入射させる。さらに、その回折光を第4の凹面鏡M
2で集束し平面鏡MP.を経てスリットStを通過させ
る。この場合、往復光路は互いにオーバラツプしないよ
うに光路を互いにずらしてジグザグ状の光路を設定する
必要がある。このように往復光路を利用することにより
4回回折させて分光することができる。尚、本例は一例
であり、さらにジグザグ状の往復光路を多数組形戒する
ことにより6,8回と多数回折させることも可能である
。尚、回折格子G., G,又は他の光学素子を微小角
回動させることにより特定の波長光を順次選択的に取り
出すことができる。
A light beam to be separated is made incident through the slit S, reflected by the first plane mirror MF+, and is reflected by the cylindrical lens L3.
The light beam passes through the first concave mirror M1 and becomes a parallel light beam with a flat cross section. This flat parallel light beam is diffracted by the first diffraction grating G, and the diffracted light is reflected by a second concave mirror (focal length f) MC. Inject it into the A third concave mirror (focal length f
) Place Mcz. The reflected light from this second concave mirror is made incident on the second diffraction grating G2 arranged at a distance f, and the diffracted light is again transmitted to the third concave mirror MC. Inject it into the The reflected light is made to enter the second concave mirror MC+ again, the reflected light is made to enter the first diffraction grating G, and then the concave mirrors MCI and MC. The light is then made incident on the second diffraction grating Ct again. Furthermore, the diffracted light is transferred to a fourth concave mirror M.
2 to focus the plane mirror MP. and then passes through the slit St. In this case, it is necessary to set a zigzag-shaped optical path by shifting the optical paths from each other so that the round-trip optical paths do not overlap with each other. By using the round trip optical path in this way, it is possible to diffract the light four times and perform spectroscopy. Note that this example is just an example, and it is also possible to diffract the light a large number of times, such as 6 or 8 times, by forming multiple sets of zigzag-like reciprocating optical paths. In addition, the diffraction grating G. , G, or other optical elements by a small angle, light of specific wavelengths can be sequentially and selectively extracted.

尚、回折には種々の次数光が発生し、回折の次数により
回折角がそれぞれ異なる。本発明のように多重回折によ
る波数差に暴く回折角の差を加算して分光する場合、異
なる次数の回折光が出射側に漏洩しないように(迷光と
ならないように)光路設定や光遮蔽部を設けることが望
ましい。
Note that various orders of light are generated during diffraction, and the diffraction angles differ depending on the orders of diffraction. When performing spectroscopy by adding the difference in diffraction angles revealed to the wavenumber difference due to multiple diffraction as in the present invention, the optical path must be set or a light shielding unit must be used to prevent diffracted light of different orders from leaking to the output side (so that it does not become stray light). It is desirable to provide

本発明は上述した実施例だけに限定されず種々の変更や
変形が可能である。例えば上述した実施例では反射型回
折格子を用いたが、勿論透過型回折格子を用いることも
可能であり、さらに反射型回折格子と透過型回折格子と
を組み合せて多重回折させることもできる。この場合、
光路がループを形戒するように光路設定することが望ま
しい。
The present invention is not limited to the embodiments described above, and various changes and modifications are possible. For example, in the embodiments described above, a reflection type diffraction grating was used, but it is of course possible to use a transmission type diffraction grating, and it is also possible to perform multiple diffraction by combining a reflection type diffraction grating and a transmission type diffraction grating. in this case,
It is desirable to set the optical path so that the optical path forms a loop.

(発明の効果) 以上説明したように本発明によれば、複数個の回折格子
を近視野領域に配置して多重回折させる構成としている
から、大口径の回折格子を用いることなく小型で簡単な
構造で高分解能の分光器を実現することができる。
(Effects of the Invention) As explained above, according to the present invention, since a plurality of diffraction gratings are arranged in the near-field region to perform multiple diffraction, it is possible to achieve a compact and simple structure without using a large-diameter diffraction grating. A high-resolution spectrometer can be realized with this structure.

また、スペクトル計測する場合、回折格子又はミラー等
の光学素子を回動させることにより広い波長域に亘って
計測することができ、一方、狭い波長域について計測す
る場合出射スリットの代りに空間イメージセンサを配置
することにより高分解能な高速実時間スペクトル計測を
行なうことができる。
In addition, when performing spectrum measurements, it is possible to measure over a wide wavelength range by rotating optical elements such as diffraction gratings or mirrors.On the other hand, when measuring a narrow wavelength range, a spatial image sensor is used instead of the exit slit. High-resolution, high-speed real-time spectral measurement can be performed by arranging .

さらに、第1の回折格子の結像位置に第2の回折格子を
配置して多重回折させれば、ほとんどずれのない高精度
な多重回折を実現することができる。
Furthermore, by arranging a second diffraction grating at the imaging position of the first diffraction grating and performing multiple diffraction, highly accurate multiple diffraction with almost no deviation can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による高分解能分光器の原理を説明する
ための模式図、 第2図は本発明による分光器の一例の構成を示す線図、 第3図及び第4図は本発明による分光器の変形例を示す
線図、 第5図〜第7図は本発明による分光器の別の実施例の構
成を示す線図、 第8図は従来の分光器の基本構成を示す線図、第9図は
分光器の分解能を説明するための模式図である。 GI+ GZI G!・・・回折格子 M+, Mz,MC.MC1・・凹面鏡S,, St・
・・スリット 第2図 第l図 第4図 a
FIG. 1 is a schematic diagram for explaining the principle of a high-resolution spectrometer according to the present invention, FIG. 2 is a diagram showing the configuration of an example of a spectrometer according to the present invention, and FIGS. 3 and 4 are according to the present invention. Diagrams showing modified examples of the spectrometer; FIGS. 5 to 7 are diagrams showing the configuration of other embodiments of the spectrometer according to the present invention; FIG. 8 is a diagram showing the basic configuration of a conventional spectrometer. , FIG. 9 is a schematic diagram for explaining the resolution of the spectrometer. GI+ GZI G! ...Diffraction grating M+, Mz, MC. MC1...Concave mirror S,, St...
...Slit figure 2 figure l figure 4 figure a

Claims (1)

【特許請求の範囲】 1、分光すべき光ビームを平行光束とする第1の光学素
子と、多重回折された光束を集束させる第2の光学素子
と、これら光学素子間の光路中に、格子溝が互いに平行
になるように配置されている複数の回折格子とを具え、
入射側に位置する回折格子からの回折光を、この回折格
子の近視野内に配置した出射側に位置する次段の回折格
子に順次入射させて多重回折を行なうように構成したこ
とを特徴とする高分解能分光器。 2、前記分光すべき光ビームを、長手軸線が格子溝と直
交する方向に延在する偏平な平行光ビームとし、前記回
折格子間で交互に複数回反射させて多重回折を行なうよ
うに構成したことを特徴とする請求項1に記載の高分解
能分光器。 3、分光すべき光ビームを断面が偏平な平行光束とする
光学素子と、この平行光束を回折する回折格子と、この
回折方向に近視野限界の半分の距離より小さい距離だけ
離間して配置されている平面鏡と、多重回折した光束を
集束させる光学素子とを具え、前記回折格子と平面鏡と
の間で交互に複数回反射させて多重回折を行なうように
構成したことを特徴とする高分解能分光器。 4、分光すべき光ビームを平行光束とする光学素子と、
この平行光束を回折する第1の回折格子と、第1の回折
格子の近視野像を形成する結像光学系と、前記近視野像
の結像位置又はその近傍に配置され、格子溝が第1の回
折格子の格子溝と平行に延在する第2の回折格子と、第
2の回折格子からの回折光を集束させる光学素子とを具
え、前記第1及び第2の回折格子により多重回折させる
ように構成したことを特徴とする高分解能分光器。 5、前記第1及び第2の回折格子と結像光学系とから成
る光学系を複数組有し、これら複数組の光学系により多
重回折させるように構成したことを特徴とする請求項4
に記載の高分解能分光器。 6、前記分光すべき光ビームを、長手軸線が格子溝と直
交する方向に延在する偏平な平行光ビームとし、前記第
1の回折格子と第2の回折格子との間で結像光学系を介
して交互に複数回反射させて多重回折させるように構成
したことを特徴とする請求項4に記載の高分解能分光器
。 7、前記光学系が、対向配置した2個の凹面鏡で構成さ
れていることを特徴とする請求項4、5又は6に記載の
高分解能分光器。
[Claims] 1. A first optical element that converts the light beam to be separated into a parallel light beam, a second optical element that focuses the multiple diffracted light beam, and a grating in the optical path between these optical elements. a plurality of diffraction gratings arranged such that the grooves are parallel to each other;
The diffraction light from the diffraction grating located on the input side is sequentially incident on the next stage diffraction grating located on the output side located within the near field of this diffraction grating to perform multiple diffraction. High-resolution spectrometer. 2. The light beam to be separated is a flat parallel light beam whose longitudinal axis extends in a direction perpendicular to the grating grooves, and is configured to be reflected multiple times alternately between the diffraction gratings to perform multiple diffraction. The high-resolution spectrometer according to claim 1, characterized in that: 3. An optical element that converts the light beam to be separated into a parallel beam with a flat cross section, a diffraction grating that diffracts this parallel beam, and an optical element that is arranged at a distance smaller than half the distance of the near-field limit in the direction of this diffraction. A high-resolution spectroscopy system comprising: a plane mirror that has a flat mirror; and an optical element that focuses the multiple diffracted beam, and is configured to perform multiple diffraction by alternately reflecting the beam multiple times between the diffraction grating and the plane mirror. vessel. 4. An optical element that converts the light beam to be separated into parallel light beams;
A first diffraction grating that diffracts this parallel light beam; an imaging optical system that forms a near-field image of the first diffraction grating; a second diffraction grating that extends parallel to the grating grooves of the first diffraction grating; and an optical element that focuses diffracted light from the second diffraction grating, and the first and second diffraction gratings perform multiple diffraction. A high-resolution spectrometer characterized in that it is configured to 5. Claim 4 characterized in that it has a plurality of optical systems each including the first and second diffraction gratings and an imaging optical system, and is configured to perform multiple diffraction using these plurality of optical systems.
High-resolution spectrometer described in . 6. The light beam to be separated is a flat parallel light beam whose longitudinal axis extends in a direction perpendicular to the grating grooves, and an imaging optical system is used between the first diffraction grating and the second diffraction grating. 5. The high-resolution spectrometer according to claim 4, wherein the high-resolution spectrometer is configured to alternately reflect a plurality of times to cause multiple diffraction. 7. The high-resolution spectrometer according to claim 4, 5 or 6, wherein the optical system is composed of two concave mirrors arranged opposite to each other.
JP1235765A 1989-09-13 1989-09-13 High resolution spectrometer Expired - Lifetime JPH076840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1235765A JPH076840B2 (en) 1989-09-13 1989-09-13 High resolution spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235765A JPH076840B2 (en) 1989-09-13 1989-09-13 High resolution spectrometer

Publications (2)

Publication Number Publication Date
JPH0399238A true JPH0399238A (en) 1991-04-24
JPH076840B2 JPH076840B2 (en) 1995-01-30

Family

ID=16990905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235765A Expired - Lifetime JPH076840B2 (en) 1989-09-13 1989-09-13 High resolution spectrometer

Country Status (1)

Country Link
JP (1) JPH076840B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717731B2 (en) 1999-12-14 2004-04-06 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US6786611B2 (en) 2000-05-23 2004-09-07 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
JP2012163534A (en) * 2011-02-09 2012-08-30 Anritsu Corp Optical spectrum analyzer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414254A (en) * 1977-07-02 1979-02-02 Nippon Bunko Kogyo Kk Wide range spectrometer
JPS566126A (en) * 1979-06-26 1981-01-22 Ritsuo Hasumi Multiple diffraction type spectroscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414254A (en) * 1977-07-02 1979-02-02 Nippon Bunko Kogyo Kk Wide range spectrometer
JPS566126A (en) * 1979-06-26 1981-01-22 Ritsuo Hasumi Multiple diffraction type spectroscope

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717731B2 (en) 1999-12-14 2004-04-06 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US6947216B2 (en) 1999-12-14 2005-09-20 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US7075723B2 (en) 1999-12-14 2006-07-11 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US7158304B2 (en) 1999-12-14 2007-01-02 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US6786611B2 (en) 2000-05-23 2004-09-07 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US7193778B2 (en) 2000-05-23 2007-03-20 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
JP2012163534A (en) * 2011-02-09 2012-08-30 Anritsu Corp Optical spectrum analyzer

Also Published As

Publication number Publication date
JPH076840B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
CN102656431B (en) Spectrometer arrangement
US11307096B2 (en) Spectral resolution enhancement device
JP2000283847A (en) Double pulse etalon spectrometer
CN1650151B (en) Optical spectrometer
JPH04220537A (en) Dual spectrometer
US4690559A (en) Optical system for spectral analysis devices
US6646739B2 (en) Four-stage type monochromator
US5305077A (en) High-resolution spectroscopy system
US5973780A (en) Echelle spectroscope
EP1451541A2 (en) Compact littrow-type scanning spectrograph
JPH061217B2 (en) Spectral analysis direction indicator
US11293803B2 (en) Coma-elimination broadband high-resolution spectrograph
JP3429589B2 (en) Image spectrometer
JPH0399238A (en) High resolution spectroscope
JP2002365592A (en) Depolarizing plate and optical device using depolarizing plate
JPH02108929A (en) Double spectrographic device
US20040145744A1 (en) Measuring array
JP5176937B2 (en) Optical spectrum analyzer
JP3141106B2 (en) Convergent light incidence type spectrometer using spherical diffraction grating
CN106017682A (en) Quarter-wave-plate-included depolarization spectrograph
KR101884118B1 (en) Spectrometer based on transmission diffraction grating
JPS58727A (en) Fourier transform spectrum device
JPH01126519A (en) High speed scanning spectroscope
JPH083445B2 (en) Optical spectrum detector
KR20040030066A (en) Spectrometric method and device for carrying out said method (variants)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term