JP2012163534A - Optical spectrum analyzer - Google Patents

Optical spectrum analyzer Download PDF

Info

Publication number
JP2012163534A
JP2012163534A JP2011026243A JP2011026243A JP2012163534A JP 2012163534 A JP2012163534 A JP 2012163534A JP 2011026243 A JP2011026243 A JP 2011026243A JP 2011026243 A JP2011026243 A JP 2011026243A JP 2012163534 A JP2012163534 A JP 2012163534A
Authority
JP
Japan
Prior art keywords
light
polarization
incident
wavelength
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011026243A
Other languages
Japanese (ja)
Other versions
JP5711561B2 (en
Inventor
Hideyuki Sakamoto
英之 坂本
Tatsuyuki Maki
達幸 牧
Takao Tanimoto
隆生 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2011026243A priority Critical patent/JP5711561B2/en
Publication of JP2012163534A publication Critical patent/JP2012163534A/en
Application granted granted Critical
Publication of JP5711561B2 publication Critical patent/JP5711561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost and compact optical spectrum analyzer capable of measuring, with high resolution, the intensity of each set of orthogonal polarized lights of incident light.SOLUTION: In an optical spectrum analyzer, light Px to be measured is make into parallel light by a first lens 22 and directed to a polarized light separating part 23 to separate orthogonal polarized light elements. Then, the polarization direction of one of the separated light elements is turned 90 degrees by a half wavelength plate 24 so as to be matched with that of the other separated light element, and directed to a diffraction grating 30 of a wavelength selecting part 29. A single second lens 40 is used both as a lens for focusing each of the polarized light elements each and directing the elements to polarized light preserving optical fibers 41 and 42 and as a lens for changing each of the polarized light elements returned by the polarized light preserving optical fibers 41 and 42 into parallel beams and directing the beams to the diffraction grating 30 again. Further, selected lights of final order (the fourth-order selected lights in this example) are focused by third and fourth lenses 45 and 46, directed to pass through slits 47 and 48, and received by optical receivers 50 and 51.

Description

本発明は、入射光の直交する偏光毎の強度測定が行え、且つ高分解能、低コスト、小型な光スペクトラムアナライザを実現するための技術に関する。   The present invention relates to a technique for realizing an optical spectrum analyzer that can measure the intensity of each orthogonal polarization of incident light and that has high resolution, low cost, and a small size.

昨今、インターネットの急激な進歩による光通信の大容量化に伴い、WDM(Wavelength Division Multiplexing)の波長高密度化が進み、それらのスペクトラムを評価する光スペクトラムアナライザの性能として、より高分解能が要求されてきた。   With the recent increase in optical communication capacity due to the rapid advancement of the Internet, the wavelength density of WDM (Wavelength Division Multiplexing) has progressed, and higher resolution is required as the performance of optical spectrum analyzers that evaluate these spectra. I came.

また、ROADM(Reconfigurable Optical
Add/Drop Multiplexer)ベースのネットワークにおいては、従来の信号品質評価法である隣接ピーク間のノイズレベルがフラットであることを前提したOSNR(Optical
Signal-to-Noise Ratio 光信号対雑音比)を測定するOut Band OSNR法だけでなく、信号帯域内におけるIn Band OSNR法が要求されてきている。
ROADM (Reconfigurable Optical
In a network based on Add / Drop Multiplexer (OSNR), it is assumed that the noise level between adjacent peaks, which is a conventional signal quality evaluation method, is flat.
In addition to the Out Band OSNR method for measuring a Signal-to-Noise Ratio (optical signal-to-noise ratio), an In Band OSNR method within a signal band has been required.

In Band OSNRの測定では、WDM信号光の波長について、直交する偏光毎の信号強度を測定する必要がある。そのための構成として、入力光を互いに直交する偏光成分に偏光分離し、回折格子とミラーとからなるリトマン型の分光部に入射し、回折格子で特定波長帯について2回の波長選択処理を受けた各偏光成分の光を偏光保存型光ファイバ(PMF)によって取り出し、再び分光部に入射してさらに2回の波長選択処理を行い、出射用光ファイバで取り出して受光器にそれぞれ入射させている。   In the measurement of In Band OSNR, it is necessary to measure the signal intensity of each orthogonal polarization with respect to the wavelength of the WDM signal light. As a configuration for this, the input light is polarized and separated into polarization components orthogonal to each other, incident on a Litman-type spectroscopic unit composed of a diffraction grating and a mirror, and subjected to wavelength selection processing twice for a specific wavelength band by the diffraction grating. The light of each polarization component is extracted by a polarization preserving optical fiber (PMF), is incident again on the spectroscopic unit, is subjected to wavelength selection processing twice more, is extracted by the output optical fiber, and is incident on the light receiver.

なお、上記構成の光スペクトラムアナライザの例は、次の特許文献1に開示されている。   An example of the optical spectrum analyzer having the above configuration is disclosed in the following Patent Document 1.

米国特許 US6930776 B2US patent US6930776 B2

しかしながら、前記した特許文献1の従来構成の光スペクトラムアナライザでは、偏光保存型光ファイバが4本、出射用光ファイバが2本、レンズが6個必要であり、そのために大型で、コスト高になるという問題があった。   However, the conventional optical spectrum analyzer disclosed in Patent Document 1 requires four polarization-preserving optical fibers, two outgoing optical fibers, and six lenses, which makes it large and expensive. There was a problem.

本発明は、この問題を解決し、入射光の直交する偏光毎の強度測定が行え、且つ高分解能、低コスト、小型な光スペクトラムアナライザを提供することを目的としている。   An object of the present invention is to solve this problem and to provide a small optical spectrum analyzer that can measure the intensity of each polarization of incident light orthogonal to each other and that has high resolution, low cost, and small size.

前記目的を達成するために、本発明の請求項1の光スペクトラムアナライザは、
被測定光を入射させるための光入射端子(20a)と、
前記光入射端子に入射された被測定光を平行光にする第1レンズ(22)と、
前記第1レンズから出射された平行光を受けて、互いに直交する偏光成分に分離する偏光分離部(23)と、
前記偏光分離部から出射された偏光成分の一方を受けてその偏光方向を90度回転させ、他方の偏光成分の偏光方向に合わせる1/2波長板(24)と、
一面側に刻線が平行に設けられた少なくとも一つの回折格子(30、31)を有し、前記偏光方向が合わされた各偏光成分を、前記刻線の長さ方向にずれた位置に同一入射角で受けて、特定波長帯の光を特定方向に選択的に出射する波長選択部(29)と、
前記波長選択部の前記回折格子の前記刻線に直交する平面上で互いに直交する2つの反射面(35a、35b)をもち、前記波長選択部から前記特定方向に出射される前記特定波長帯の選択光を一方の反射面で受けて他方の反射面へ反射させ、該他方の反射面でさらに反射させて、入射時と平行で前記刻線方向にずれた光軸で折り返す直交ミラー(35)と、
前記直交ミラーまたは前記波長選択部の回折格子を前記刻線と平行な軸で所定角度範囲回動させて、前記直交ミラーから前記波長選択部に折り返される前記特定波長帯の光の中心波長を掃引させる回動装置(36)と、
前記波長選択部に対する入射光軸と平行で且つ前記刻線方向にずれた光軸上にそれぞれ配置された集光用の第2、第3、第4のレンズ(40、45、46)と、
前記第2レンズで集光された光を一端側で受けて所定距離伝搬させ、他端側から入射時と同一の偏光状態で前記第2レンズへ折り返す第1、第2の偏光保存型光ファイバ(41、42)と、
前記第3、第4のレンズによって集光された光の前記刻線に直交する方向の幅をそれぞれ制限して波長選択度を高くするための第1、第2のスリット(47、48)と、
前記第1、第2のスリットを通過した光を受けてその強度を検出する第1、第2の受光器(50、51)とを備え、
前記偏光方向が合わされた各偏光成分に対して前記波長選択部が前記特定方向に出射する第1次選択光を前記直交ミラーにより前記刻線方向にずれた光軸で前記波長選択部に折り返し、
該折り返し光に対して前記波長選択部が示す入射時と可逆な波長選択作用によって選択される前記特定波長帯の第2次選択光を前記第2レンズに入射して、その各偏光成分を前記第1、第2の偏光保存型光ファイバに入射させ、
該第1、第2の偏光保存型光ファイバで折り返されて前記第2レンズを介して入射された光に対して前記波長選択部が前記特定方向に出射する前記特定波長帯の第3次選択光を前記直交ミラーにより再度折り返し、
該直交ミラーにより再度折り返された光に対して前記波長選択部が出射する前記特定波長帯の第4次選択光の各偏光成分を前記第3、第4のレンズにより集光し、前記第1、第2のスリットを通過させて、前記第1、第2の受光器に入射させ、該第1、第2の受光器の出力に基づいて、前記被測定光の直交する偏光成分のスペクトラム特性を求めることを特徴とする。
In order to achieve the object, an optical spectrum analyzer according to claim 1 of the present invention comprises:
A light incident terminal (20a) for making the light to be measured incident;
A first lens (22) that collimates the light to be measured incident on the light incident terminal;
A polarization separation unit (23) that receives the parallel light emitted from the first lens and separates the parallel light components into orthogonal polarization components;
A half-wave plate (24) that receives one of the polarization components emitted from the polarization separation unit, rotates the polarization direction by 90 degrees, and matches the polarization direction of the other polarization component;
It has at least one diffraction grating (30, 31) in which engraving lines are provided in parallel on one surface side, and each polarization component whose polarization direction is matched is incident on the position shifted in the length direction of the engraving line. A wavelength selection unit (29) that receives light at a corner and selectively emits light in a specific wavelength band in a specific direction;
It has two reflection surfaces (35a, 35b) orthogonal to each other on a plane orthogonal to the score line of the diffraction grating of the wavelength selection unit, and the specific wavelength band emitted from the wavelength selection unit in the specific direction. Orthogonal mirror (35) that receives the selective light on one reflecting surface, reflects it to the other reflecting surface, reflects it further on the other reflecting surface, and folds it along the optical axis that is parallel to the incident and shifted in the direction of the engraving When,
The orthogonal mirror or the diffraction grating of the wavelength selection unit is rotated by a predetermined angle range about an axis parallel to the score line, and the center wavelength of the light in the specific wavelength band that is folded back from the orthogonal mirror to the wavelength selection unit is swept. A rotating device (36) for causing;
Second, third, and fourth condensing lenses (40, 45, 46) respectively disposed on optical axes that are parallel to the incident optical axis with respect to the wavelength selection unit and shifted in the score direction;
First and second polarization-preserving optical fibers that receive light collected by the second lens on one end side, propagate a predetermined distance, and return to the second lens in the same polarization state as incident from the other end side. (41, 42),
First and second slits (47, 48) for increasing the wavelength selectivity by limiting the width of the light collected by the third and fourth lenses in the direction perpendicular to the score line, respectively. ,
First and second light receivers (50, 51) that receive light that has passed through the first and second slits and detect the intensity thereof,
For each polarization component with the polarization direction matched, the wavelength selection unit folds the primary selection light emitted in the specific direction to the wavelength selection unit with an optical axis shifted in the engraving direction by the orthogonal mirror,
The second selective light of the specific wavelength band selected by the wavelength selective action that is reversible with the time indicated by the wavelength selection unit with respect to the folded light is incident on the second lens, and each polarization component is Incident first and second polarization preserving optical fibers,
Third-order selection of the specific wavelength band that the wavelength selection unit emits in the specific direction with respect to the light that is turned back by the first and second polarization preserving optical fibers and enters through the second lens The light is turned back again by the orthogonal mirror,
The first and fourth lenses condense each polarization component of the fourth-order selection light in the specific wavelength band emitted by the wavelength selection unit with respect to the light refolded by the orthogonal mirror, and the first lens Then, the light passes through the second slit, is incident on the first and second light receivers, and based on the outputs of the first and second light receivers, the spectral characteristics of the orthogonal polarization components of the measured light It is characterized by calculating | requiring.

また、本発明の請求項2の光スペクトラムアナライザは、請求項1記載の光スペクトラムアナライザにおいて、
前記波長選択部が単一の回折格子によって構成されていることを特徴とする。
An optical spectrum analyzer according to claim 2 of the present invention is the optical spectrum analyzer according to claim 1,
The wavelength selection unit is constituted by a single diffraction grating.

また、また、本発明の請求項2の光スペクトラムアナライザは、請求項1記載の光スペクトラムアナライザにおいて、
前記波長選択部が、互いに対向する二つの回折格子によって構成されており、
前記波長選択部に入射された光は、前記特定波長帯について前記二つの回折格子による2度の波長選択作用を受けて出射されることを特徴とする。
The optical spectrum analyzer according to claim 2 of the present invention is the optical spectrum analyzer according to claim 1,
The wavelength selector is composed of two diffraction gratings facing each other;
The light incident on the wavelength selection unit is emitted after receiving the wavelength selection action twice by the two diffraction gratings for the specific wavelength band.

また、本発明の請求項3の光スペクトラムアナライザは、請求項1または請求項2記載の光スペクトラムアナライザにおいて、
前記光入射端子と前記偏光分離部の間に、前記偏光分離部に入射される被測定光の偏光を制御するための偏光コントローラ(70)を配置したことを特徴とする。
An optical spectrum analyzer according to claim 3 of the present invention is the optical spectrum analyzer according to claim 1 or 2,
A polarization controller (70) for controlling the polarization of the light to be measured incident on the polarization separation unit is disposed between the light incident terminal and the polarization separation unit.

このように、本発明の光スペクトラムアナライザは、被測定光を第1レンズで平行光にして偏光分離部に入射して直交偏光成分を分離し、その一方の偏光方向を1/2波長板で90度回転させて、他方の偏光方向に合わせて、波長選択部の回折格子に入射させている。また、第1、第2の偏光保存型光ファイバへ各偏光成分を集光入射するためのレンズと、第1、第2の偏光保存型光ファイバでそれぞれ折り返された各偏光成分を平行ビームにして波長選択部へ再入射させるためのレンズとを単一の第2レンズによって共通化している。さらに、最終選択光を、第3、第4レンズで集光し第1、第2のスリットを通過させて受光器でそれぞれ受光している。   As described above, the optical spectrum analyzer of the present invention converts the light to be measured into parallel light by the first lens and enters the polarization separation unit to separate the orthogonal polarization component, and the polarization direction of one of the light is analyzed by the half-wave plate. It is rotated by 90 degrees and is incident on the diffraction grating of the wavelength selection unit in accordance with the other polarization direction. In addition, a lens for condensing and injecting each polarization component into the first and second polarization preserving optical fibers and each polarization component folded back by the first and second polarization preserving optical fibers are made into parallel beams. Thus, a single second lens is used in common with the lens for re-incident on the wavelength selection section. Further, the final selection light is condensed by the third and fourth lenses, passed through the first and second slits, and received by the light receiver.

このため、従来装置に比べて、偏光保存型ファイバが2本で済み、出射用光ファイバが不要となり、さらにレンズが4個で構成でき、格段に小型化、低コスト化できる。   For this reason, as compared with the conventional apparatus, only two polarization-preserving fibers are required, no outgoing optical fiber is required, and four lenses can be formed, and the size and cost can be significantly reduced.

本発明の第1の実施形態の構成図Configuration diagram of the first embodiment of the present invention 第1実施形態の光経路を平面的に表した模式図Schematic diagram representing the optical path of the first embodiment in a plane 偏光分離部の構成例を示す図The figure which shows the structural example of a polarization separation part ビームエキスパンダの構成例を示す図The figure which shows the structural example of a beam expander 第2レンズと偏光保存型光ファイバの位置関係を表す図The figure showing the positional relationship of a 2nd lens and a polarization preserving optical fiber 本発明の第2の実施形態の構成図Configuration diagram of second embodiment of the present invention 第2実施形態の光経路を平面的に表した模式図Schematic diagram representing the optical path of the second embodiment in a plane 二つの回折格子の配置に関する説明図Illustration of the arrangement of two diffraction gratings 光入射部に偏光コントローラを設けた例を示す図The figure which shows the example which provided the polarization controller in the light entrance part

(第1の実施形態)
以下、図面に基づいて本発明の第1の実施の形態を説明する。
図1は、本発明を適用した光スペクトラムアナライザ20の構成を示し、図2は、その光学系を平面的に示した模式図である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows the configuration of an optical spectrum analyzer 20 to which the present invention is applied, and FIG. 2 is a schematic diagram showing the optical system in a plan view.

これらの図において、光スペクトラムアナライザ20は、光入射端子20a(光コネクタ)から入射された被測定光Px(偏光多重信号光)を、ファイバ21を介して第1レンズ(コリメータ)22に入射させ、平行光に変換して偏光分離部23に入射し、直交する二つの偏光成分Pp、Psに分離し、平行な光軸で出射する。   In these figures, the optical spectrum analyzer 20 causes the measured light Px (polarized multiplexed signal light) incident from the light incident terminal 20 a (optical connector) to be incident on the first lens (collimator) 22 via the fiber 21. The light is converted into parallel light, enters the polarization separation unit 23, is separated into two orthogonal polarization components Pp and Ps, and is emitted along parallel optical axes.

なお、ここで、実施形態の光学系に対して、xyzの3次元直交座標空間を定義し、第1レンズ22の光軸(偏光分離部23の入射光軸)の方向をx軸方向、被測定光Pxの一方の偏光成分Psの偏光方向がz軸方向(光軸に直交し且つ鉛直方向に沿った方向)、他方の偏光成分Ppの偏光がy軸方向(光軸に直交しかつ水平方向に沿った方向)とする。   Here, for the optical system of the embodiment, a three-dimensional orthogonal coordinate space of xyz is defined, and the direction of the optical axis of the first lens 22 (incident optical axis of the polarization separation unit 23) is the x-axis direction. The polarization direction of one polarization component Ps of the measurement light Px is in the z-axis direction (direction perpendicular to the optical axis and along the vertical direction), and the polarization of the other polarization component Pp is in the y-axis direction (perpendicular to the optical axis and horizontal). Direction along the direction).

偏光分離部23は、図3に示しているように、被測定光Pxの偏光成分Psを入射光軸を延長した光軸で出射し、他方の偏光成分Ppを入射光軸と直交する方向に出射する偏光ビームスプリッタ23aと、偏光ビームスプリッタ23aから出射された他方の偏光成分Ppの光軸に対して45度の傾きをもち、偏光成分Ppを一方の偏光成分Psと平行な光軸で出射させる平面ミラー23bとで構成されている(なお、図3に示した偏光方向は、光の進行方向x軸側から見た図である)。   As shown in FIG. 3, the polarization separation unit 23 emits the polarization component Ps of the light to be measured Px along the optical axis obtained by extending the incident optical axis, and the other polarization component Pp in a direction orthogonal to the incident optical axis. The outgoing polarization beam splitter 23a and the other polarization component Pp emitted from the polarization beam splitter 23a have an inclination of 45 degrees with respect to the optical axis of the polarization component Pp, and the polarization component Pp is emitted with an optical axis parallel to the one polarization component Ps. (The polarization direction shown in FIG. 3 is a view seen from the light traveling direction x-axis side).

偏光分離部23で分離された偏光成分Pp、Psのうち、偏光方向が水平の成分Ppは、1/2波長板24に入射され、その偏光方向が90度回転されて、偏光成分Psと同じようにz軸に沿った方向に合わされて、偏光成分Pp′として出射される。   Of the polarization components Pp and Ps separated by the polarization separation unit 23, the component Pp whose polarization direction is horizontal is incident on the half-wave plate 24, and the polarization direction is rotated by 90 degrees to be the same as the polarization component Ps. In this way, it is aligned in the direction along the z-axis and emitted as a polarization component Pp ′.

これら二つの偏光成分Pp′、Psは、z軸方向に離間した平行な光軸でビームエキスパンダ25に入射され、それぞれのビーム幅が拡げられた状態で、この実施形態の波長選択部29を構成する回折格子30に入射される。   These two polarization components Pp ′ and Ps are incident on the beam expander 25 along parallel optical axes that are separated in the z-axis direction, and in the state where the respective beam widths are expanded, the wavelength selection unit 29 of this embodiment is used. The light is incident on the diffraction grating 30 constituting the structure.

ビームエキスパンダ25は、例えば、図4に示すように、z軸方向に延びた2つの三角柱状のレンズ25a、25bによって、入射する偏光成分Pp′、Psのy軸方向のビーム幅WaをWbに拡げる。なお、ここではビームエキスパンダ25を用い、狭い間隔をもってz軸方向に延びた回折格子30の一面側に微細な間隔で平行に設けられた刻線(回折溝)に対する入射光のスポット幅を広くすることで回折効率を高くしているが、このビームエキスパンダ25を省略し、二つの偏光成分Pp′、Psを直接回折格子30に入射させてもよい。   For example, as shown in FIG. 4, the beam expander 25 uses the two triangular prism-like lenses 25a and 25b extending in the z-axis direction to change the beam width Wa in the y-axis direction of the incident polarization components Pp ′ and Ps to Wb. Expand to. Here, the beam expander 25 is used, and the spot width of the incident light with respect to the engraving line (diffraction groove) provided in parallel at fine intervals on one surface side of the diffraction grating 30 extending in the z-axis direction with a narrow interval is widened. In this case, the diffraction efficiency is increased. However, the beam expander 25 may be omitted and the two polarization components Pp ′ and Ps may be directly incident on the diffraction grating 30.

ビームエキスパンダ25からz軸方向に離間した平行な光軸で出射された偏光成分Pp(0)(=Pp′)、Ps(0)(=Ps)は、回折格子30の刻線の長さ方向(z軸方向)にずれた位置に同一入射角でそれぞれ入射され、その光に含まれる波長成分が回折格子30の回折作用により波長に応じた角度(xy平面上において)で出射される。   The polarization components Pp (0) (= Pp ′) and Ps (0) (= Ps) emitted from the beam expander 25 along the parallel optical axes separated in the z-axis direction are the lengths of the engraving lines of the diffraction grating 30. The light beams are incident on the positions shifted in the direction (z-axis direction) at the same incident angle, and the wavelength components included in the light are emitted at an angle (on the xy plane) according to the wavelength by the diffraction action of the diffraction grating 30.

なお、この実施形態では波長選択部29が単一の回折格子30で構成された例を示すが、後述のように波長選択部29を二つの回折格子で構成することも可能でである。   In this embodiment, an example in which the wavelength selection unit 29 is configured by a single diffraction grating 30 is shown, but the wavelength selection unit 29 can also be configured by two diffraction gratings as will be described later.

回折格子30の一面側には直交ミラー35が配置されている。直交ミラー35は、回折格子30の刻線に直交する平面上で互いに直交する2つの反射面35a、35bを有し、それらの反射面35a、35bを、回折格子30の刻線に対して45度傾けた状態でその刻線が設けられた面に向けて配置されている。なお、二つの反射面35a、35bがなす角度は90度であるが、反射面35a、35bの刻線に対する角度は等しい(45度)必要はなく、その和が90度であれば、例えば30度と60度、40度と50度等のように異なっていてもよい。   An orthogonal mirror 35 is disposed on one side of the diffraction grating 30. The orthogonal mirror 35 has two reflection surfaces 35 a and 35 b that are orthogonal to each other on a plane orthogonal to the engraving line of the diffraction grating 30, and the reflection surfaces 35 a and 35 b are 45 to the engraving line of the diffraction grating 30. It is arranged toward the surface on which the score line is provided in a tilted state. The angle formed by the two reflecting surfaces 35a and 35b is 90 degrees, but the angles of the reflecting surfaces 35a and 35b with respect to the score line need not be equal (45 degrees), and if the sum is 90 degrees, for example, 30 It may be different such as 60 degrees and 40 degrees and 50 degrees.

この直交ミラー35は、回動装置36によって回折格子30の刻線に平行な軸(z軸に平行な軸)で所定角度範囲回動駆動される。   The orthogonal mirror 35 is driven to rotate within a predetermined angle range with an axis parallel to the score line of the diffraction grating 30 (an axis parallel to the z axis) by the rotation device 36.

ここで、各偏光成分Pp(0)、Ps(0)に対して回折格子30が回折した光のうち、直交ミラー35の反射面35a、35bの境界線35cに直交する向き(特定方向)に、特定波長帯(中心波長λ1とする)の光が第1次選択光Pp(1)、Ps(1)として出射され、直交ミラー35の一方の反射面(ここでは下側の反射面35bとする)に45度の角度で入射し、z軸に沿って上方に反射され、上側の反射面35aに45度の角度で入射して、回折格子30に対してz軸方向にずれた平行な光軸で折り返される。   Here, out of the light diffracted by the diffraction grating 30 with respect to the respective polarization components Pp (0) and Ps (0), in a direction (specific direction) orthogonal to the boundary line 35c of the reflecting surfaces 35a and 35b of the orthogonal mirror 35. , Light in a specific wavelength band (having a center wavelength λ1) is emitted as primary selection light Pp (1), Ps (1), and one of the reflecting surfaces of the orthogonal mirror 35 (here, the lower reflecting surface 35b) ) At an angle of 45 degrees, reflected upward along the z-axis, incident on the upper reflecting surface 35a at an angle of 45 degrees, and shifted parallel to the diffraction grating 30 in the z-axis direction. It is folded at the optical axis.

この折り返し光Pp(1)′、Ps(1)′は、第1次選択光Pp(1)、Ps(1)の出射角と同じ入射角で回折格子30に再入射される。   The folded lights Pp (1) ′ and Ps (1) ′ are reincident on the diffraction grating 30 at the same incident angle as the outgoing angles of the primary selection lights Pp (1) and Ps (1).

したがって、回折格子30の回折特性の可逆性から、再入射した光Pp(1)′、Ps(1)′に対する回折光のうち、最初の入射光Pp(0)、Ps(0)の入射光軸に平行でz軸に沿って上方にシフトした方向には、前記特定波長帯の光が第2次選択光Pp(2)、Ps(2)として選択的に出射され、その第2次選択光Pp(2)、Ps(2)がビームエキスパンダ25に入射されて、ビーム幅が元の幅に狭められて第2レンズ40に入射される。   Accordingly, the incident light of the first incident light Pp (0) and Ps (0) among the diffracted light with respect to the re-incident light Pp (1) ′ and Ps (1) ′ due to reversibility of the diffraction characteristics of the diffraction grating 30. In the direction parallel to the axis and shifted upward along the z-axis, the light of the specific wavelength band is selectively emitted as the second-order selection light Pp (2) and Ps (2), and the second-order selection. Lights Pp (2) and Ps (2) are incident on the beam expander 25, the beam width is reduced to the original width, and incident on the second lens 40.

ここで、図5に示すように、第2レンズ40に入射された第2次選択光Pp(2)、Ps(2)の光軸は、第2レンズ40の中心軸よりz軸方向(ここでは下方とする)に僅かにずれていて、第2レンズ40の焦点距離の位置の近傍でその光軸のずれ分だけz軸方向にずれた位置に集光され、その位置に配置された偏光保存型光ファイバ(PMF)41、42の一端41a、42aに入射される。   Here, as shown in FIG. 5, the optical axes of the secondary selection lights Pp (2) and Ps (2) incident on the second lens 40 are in the z-axis direction (here, from the central axis of the second lens 40). In this case, the light is condensed at a position shifted in the z-axis direction by an amount corresponding to the shift of the optical axis in the vicinity of the position of the focal length of the second lens 40, and the polarized light arranged at that position. The light is incident on one end 41 a and 42 a of the storage type optical fiber (PMF) 41 and 42.

偏光保存型光ファイバ41、42の他端41b、42bは、第2レンズ40の焦点距離の位置で且つレンズ中心軸から前記一端41a、42aと同じ距離z軸方向の上方側にずれた位置に配置されており、一端41a、42aで受けた光を所定距離伝搬させ、他端41b、42b側から入射時と同一の偏光状態で第2レンズ40へ折り返す。   The other ends 41b and 42b of the polarization preserving optical fibers 41 and 42 are positioned at the focal length of the second lens 40 and shifted upward from the lens center axis in the same z-axis direction as the one ends 41a and 42a. The light received at one end 41a, 42a is propagated for a predetermined distance, and is folded back to the second lens 40 from the other end 41b, 42b side in the same polarization state as that upon incidence.

偏光保存型光ファイバ41、42からの折り返し光Pp(2)′、Ps(2)′は、第2レンズ40によって平行光に変換され、ビームエキスパンダ25によりそのビーム幅が拡げられて、再び回折格子30に入射される。   The folded lights Pp (2) ′ and Ps (2) ′ from the polarization preserving optical fibers 41 and 42 are converted into parallel light by the second lens 40, and their beam width is expanded by the beam expander 25. Incident on the diffraction grating 30.

ここで、回折格子30に再入射される折り返し光Pp(2)′、Ps(2)′の光軸は、最初の入射光Pp(0)、Ps(0)の光軸と平行でz軸方向にずれており、また、第2次選択光Pp(2)、Ps(2)の光軸に対してもz軸方向にずれている。   Here, the optical axes of the folded lights Pp (2) ′ and Ps (2) ′ re-entering the diffraction grating 30 are parallel to the optical axes of the first incident lights Pp (0) and Ps (0) and are z-axis. It is also shifted in the z-axis direction with respect to the optical axes of the secondary selection light Pp (2) and Ps (2).

したがって、最初の入射光Pp(0)、Ps(0)に対する2回の波長選択動作と同様の動作が、折り返し光Pp(2)′、Ps(2)′に対しても互いの動作を妨げることなく行われる。   Therefore, the same operation as the two wavelength selection operations for the first incident light Pp (0) and Ps (0) hinders the mutual operations for the return lights Pp (2) ′ and Ps (2) ′. Done without.

即ち、折り返し光Pp(2)′、Ps(2)′が回折格子30に入射され、その回折光のうち特定波長帯の偏光成分Pp(3)、Ps(3)が、第3次選択光として直交ミラー35に入射されて、その折り返し光Pp(3)′、Ps(3)′が回折格子30に再入射され、特定波長帯について4度目の選択処理を受けた第4次選択光Pp(4)、Ps(4)が、折り返し光Pp(2)′、Ps(2)′の光軸に対してz軸方向に平行にずれた光軸でビームエキスパンダ25に入射され、元のビーム幅に狭められて出射される。   That is, the folded lights Pp (2) ′ and Ps (2) ′ are incident on the diffraction grating 30. Among the diffracted lights, the polarization components Pp (3) and Ps (3) in a specific wavelength band are the third-order selection lights. , And the reflected light Pp (3) ′, Ps (3) ′ is re-incident on the diffraction grating 30 and subjected to the fourth selection process for the specific wavelength band. (4), Ps (4) is incident on the beam expander 25 with an optical axis shifted parallel to the z-axis direction with respect to the optical axes of the folded lights Pp (2) ′ and Ps (2) ′. The beam is narrowed and emitted.

第4次選択光Pp(4)、Ps(4)は、それぞれ第3レンズ45、第4レンズ46によって集光され、その焦点位置にz軸方向に延びた第1スリット47、第2スリット48により、その通過する光の幅方向(刻線と直交する方向)が制限されて、余分な波長成分がさらに除去されて、第1の受光器50と第2の受光器51にそれぞれ入射される。   The fourth selection light Pp (4) and Ps (4) are condensed by the third lens 45 and the fourth lens 46, respectively, and the first slit 47 and the second slit 48 extending in the z-axis direction at the focal positions. Therefore, the width direction (direction perpendicular to the score line) of the light passing therethrough is limited, and excess wavelength components are further removed and incident on the first light receiver 50 and the second light receiver 51, respectively. .

したがって、第1の受光器50と第2の受光器51には、入射光Pxの直交する二つの偏光成分のうち、回折格子30への光入射角、回折格子30に対する直交ミラー35の角度によって決まる特定波長帯の成分が、4回の波長選択処理を受けてそれぞれ入射され、その強度が検出されることになる。そして、直交ミラー35の回動に伴い、選択される特定波長帯が掃引され、その被測定光の波長毎の偏光成分の強度を表す信号PDp(λ)、PDs(λ)が出力される。   Accordingly, the first light receiver 50 and the second light receiver 51 have a light incident angle on the diffraction grating 30 and an angle of the orthogonal mirror 35 with respect to the diffraction grating 30 out of two orthogonal polarization components of the incident light Px. Components of the determined specific wavelength band are incident upon receiving the wavelength selection process four times, and the intensity is detected. As the orthogonal mirror 35 rotates, the selected specific wavelength band is swept, and signals PDp (λ) and PDs (λ) representing the intensity of the polarization component for each wavelength of the light to be measured are output.

これらの信号PDp(λ)、PDs(λ)は、A/D変換器52、53により、デジタル値に変換されて、演算処理部60に入力される。   These signals PDp (λ) and PDs (λ) are converted into digital values by the A / D converters 52 and 53 and input to the arithmetic processing unit 60.

演算処理部60は、二つの偏光成分についての波長対強度の情報(スペクトラム情報)を求めるとともに、入射光Pxの特性、品質などを評価するための種々の演算処理を行い、その結果を表示部61に出力するが、ここでは、WDM信号光のIn Band OSNRを求める場合の処理について説明する。   The arithmetic processing unit 60 obtains wavelength-to-intensity information (spectrum information) for two polarization components, performs various arithmetic processes for evaluating the characteristics and quality of the incident light Px, and displays the results. In this example, a process for obtaining the In Band OSNR of the WDM signal light will be described.

所定の波長領域の掃引によって得られたスペクトラムデータPDp(λ1)〜PDp(λN)、PDs(λ1)〜PDs(λN)について、WDMスペクトラムデータ、つまり両偏光成分の強度の和のスペクトラムデータを、
PD(λ1)=PDp(λ1)+PDs(λ1)
PD(λ2)=PDp(λ2)+PDs(λ2)
……
PD(λN)=PDp(λN)+PDs(λN)
によって求める。
With respect to spectrum data PDp (λ1) to PDp (λN) and PDs (λ1) to PDs (λN) obtained by sweeping in a predetermined wavelength region, WDM spectrum data, that is, spectrum data of the sum of the intensities of both polarization components,
PD (λ1) = PDp (λ1) + PDs (λ1)
PD (λ2) = PDp (λ2) + PDs (λ2)
......
PD (λN) = PDp (λN) + PDs (λN)
Ask for.

次にこのWDMスペクトラムから、信号光のセンター波長(またはピーク波長)、信号光レベルPsignalを求める。この信号光レベルPsignalは、スペクトラムのピークレベル、またはそれを含む波長範囲の信号光の強度を積分したレベルとする。   Next, the center wavelength (or peak wavelength) of the signal light and the signal light level Psignal are obtained from the WDM spectrum. The signal light level Psignal is a level obtained by integrating the peak level of the spectrum or the intensity of signal light in the wavelength range including the spectrum peak level.

次に、WDMの各チャンネルの信号光毎に、センタ波長から任意の波長範囲のデータを用いて、複数のデータグループを作成する。   Next, for each signal light of each channel of WDM, a plurality of data groups are created using data in an arbitrary wavelength range from the center wavelength.

例えば、
PDp(λ1)→PD1(λa1)
PDs(λ1)→PD2(λa1)
PDp(λ2)→PD3(λa2)
PDs(λ2)→PD4(λa2)
……
……
PDp(λ[N−1])→PD1(λm1)
PDs(λ[N−1])→PD2(λm1)
PDp(λN)→PD3(λm2)
PDs(λN)→PD4(λm2)
For example,
PDp (λ1) → PD1 (λa1)
PDs (λ1) → PD2 (λa1)
PDp (λ2) → PD3 (λa2)
PDs (λ2) → PD4 (λa2)
......
......
PDp (λ [N−1]) → PD1 (λm1)
PDs (λ [N−1]) → PD2 (λm1)
PDp (λN) → PD3 (λm2)
PDs (λN) → PD4 (λm2)

各データグループ、
{PD1(λa1),PD2(λa1),PD3(λa2),PD4(λa2)}
……
{PD1(λm1),PD2(λm1),PD3(λm2),PD4(λm2)}
について、Pase(λa)、…、Pase(λm)を算出する。
Each data group,
{PD1 (λa1), PD2 (λa1), PD3 (λa2), PD4 (λa2)}
......
{PD1 (λm1), PD2 (λm1), PD3 (λm2), PD4 (λm2)}
Pase (λa),..., Pase (λm) is calculated.

そして、上記求めた複数のPase(λa)、…、Pase(λm)を、任意のフィッティング関数(例えば、1次〜5次までの関数、ガウス関数など)を用いてフィッティング処理し、Pase関数を求める。   Then, the plurality of Pase (λa),..., Pase (λm) obtained above are subjected to a fitting process using an arbitrary fitting function (for example, first to fifth order functions, Gaussian functions, etc.) Ask.

Pase関数からスペクトラムのセンタ波長(もしくはピーク波長)におけるASEノイズレベル(Amplified Spontaneous Emission noise :増幅された自然放出ノイズレベル)Paseを算出し、そのPaseと信号光レベル(Psignal)からOSNRを算出する。   The ASE noise level (Amplified Spontaneous Emission Noise) Pase at the center wavelength (or peak wavelength) of the spectrum is calculated from the Pase function, and the OSNR is calculated from the Pase and the signal light level (Psignal).

ここで、ASEノイズレベルPaseの演算について詳しく説明する。
異なる波長における光スペクトラムPDs、PDpの検出レベルのデータグループを、PD1(λm1)、PD2(λm1)、PD3(λm2)、PD4(λm2)とすると、伝送路のAdd/Dropのフィルタの帯域内においては、信号光レベルは光スペクトラムアナライザの波長掃引位置によって異なるが、ASEノイズレベルについては、偏光分離された直交成分の分離比率αは変わらない。
Here, the calculation of the ASE noise level Pase will be described in detail.
If the data groups of the detection levels of the optical spectra PDs and PDp at different wavelengths are PD1 (λm1), PD2 (λm1), PD3 (λm2), and PD4 (λm2), within the band of the Add / Drop filter of the transmission line However, the signal light level differs depending on the wavelength sweep position of the optical spectrum analyzer, but the separation ratio α of the orthogonal component separated by polarization does not change for the ASE noise level.

したがって、検出データPD1(λm1)、PD2(λm1)、PD3(λm2)、PD4(λm2)は、ASEノイズパワーをPase、信号光パワーをPs、OSNRをPs/Pase、光スペクトラムアナライザの光バンドパスフィルタの帯域幅をB0、偏光成分の光分離比率をαとすると、以下のように表される。   Therefore, the detection data PD1 (λm1), PD2 (λm1), PD3 (λm2), and PD4 (λm2) have ASE noise power Pase, signal light power Ps, OSNR Ps / Pase, and optical bandpass of the optical spectrum analyzer. If the bandwidth of the filter is B0 and the light separation ratio of the polarization component is α, it is expressed as follows.

PD1(λm1)=Ps(λm1)(1−α)+Pase・B0/2 ……(1)
PD2(λm1)=Ps(λm1)・α+Pase・B0/2 ……(2)
PD3(λm2)=Ps(λm2)(1−α)+Pase・B0/2 ……(3)
PD4(λm2)=Ps(λm2)・α+Pase・B0/2 ……(4)
PD1 (λm1) = Ps (λm1) (1-α) + Pase · B0 / 2 (1)
PD2 (λm1) = Ps (λm1) · α + Pase · B0 / 2 (2)
PD3 (λm2) = Ps (λm2) (1-α) + Pase · B0 / 2 (3)
PD4 (λm2) = Ps (λm2) · α + Pase · B0 / 2 (4)

式(1)−式(3)から、
PD1(λm1)−PD3(λm2)
=(1−α)[Ps(λm1)−Ps(λm2)]……(5)
From formula (1) -formula (3),
PD1 (λm1) -PD3 (λm2)
= (1-α) [Ps (λm1) −Ps (λm2)] (5)

式(2)−式(4)から、
PD2(λm1)−PD4(λm2)
=α[Ps(λm1)−Ps(λm2)]……(6)
From formula (2) -formula (4),
PD2 (λm1) -PD4 (λm2)
= Α [Ps (λm1) −Ps (λm2)] (6)

式(5)/式(6)の演算により、
α=[PD2(λm1)−PD4(λm2)]
/[PD1(λm1)−PD3(λm2)+PD2(λm1)−PD4(λm2)]
……(7)
が得られる。
By the calculation of Expression (5) / Expression (6),
α = [PD2 (λm1) −PD4 (λm2)]
/ [PD1 (λm1) −PD3 (λm2) + PD2 (λm1) −PD4 (λm2)]
...... (7)
Is obtained.

一方、式(1)×α−式(2)×(1−α)の演算から、
Pase=2×[α・PD1(λm1)−(1−α)PD2(λm1)]
/[B0(2α−1)] ……(8)
となり、この式の演算により、Paseが求められる。
On the other hand, from the calculation of Formula (1) × α−Formula (2) × (1-α),
Pase = 2 × [α · PD1 (λm1) − (1-α) PD2 (λm1)]
/ [B0 (2α-1)] (8)
Thus, Pase is obtained by the calculation of this equation.

そして、前記したように、
OSNR=(Psignal−Pase)/Pase
の演算により、In BandのOSNRが得られる。ただし、Psignalは、トータルスペクトラム(各偏光成分の和)を任意の範囲で積分したパワーもしくはピークパワーとする。また、Paseは、平均化処理あるいはフィッティング処理によって求めたASEノイズレベルである。
And as mentioned above,
OSNR = (Psignal−Pase) / Pase
In Band OSNR can be obtained by the above calculation. However, Psignal is a power or peak power obtained by integrating the total spectrum (sum of each polarization component) in an arbitrary range. Pase is an ASE noise level obtained by averaging processing or fitting processing.

このように、第1の実施形態の光スペクトラムアナライザ20は、被測定光Pxを第1レンズ22で平行光にして偏光分離部23に入射して直交偏光成分を分離し、その一方の偏光方向を1/2波長板24で90度回転させて、他方の偏光方向に合わせて、波長選択部29の回折格子30に入射させている。また、偏光保存型光ファイバ41、42へ各偏光成分を集光入射するためのレンズと、偏光保存型光ファイバ41、42で折り返された各偏光成分を平行ビームにして回折格子30へ再入射させるためのレンズとを単一の第2レンズ40によって共通化している。さらに、最終次選択光(この例では第4次選択光)を、第3、第4レンズ45、46で集光しスリット47、48を通過させて受光器50、51で受光している。   As described above, the optical spectrum analyzer 20 according to the first embodiment converts the light to be measured Px into parallel light by the first lens 22 and enters the polarization separation unit 23 to separate the orthogonal polarization component, and one polarization direction thereof. Is rotated 90 degrees with the half-wave plate 24 and is incident on the diffraction grating 30 of the wavelength selection unit 29 in accordance with the other polarization direction. Further, a lens for condensing and injecting each polarization component into the polarization preserving optical fibers 41 and 42 and each polarization component folded back by the polarization preserving optical fibers 41 and 42 are converted into parallel beams and reentered into the diffraction grating 30. A single second lens 40 is used as a common lens. Further, the final order selection light (fourth order selection light in this example) is collected by the third and fourth lenses 45 and 46, passed through the slits 47 and 48, and received by the light receivers 50 and 51.

このため、従来装置に比べて、偏光保存型光ファイバが2本で済み、出射用光ファイバが不要となり、さらにレンズが4個で構成でき、格段に小型化、低コスト化できる。   For this reason, as compared with the conventional apparatus, only two polarization-preserving optical fibers are required, no outgoing optical fiber is required, and four lenses can be formed, and the size and cost can be significantly reduced.

(第2の実施形態)
前記実施形態の波長選択部29は単一の回折格子30で構成され、特定波長帯について回折格子30による4回の波長選択処理を行っていたが、さらに高い波長選択性が求められる場合には、図4、図5に示す光スペクトラムアナライザ20′のように、波長選択部29を二つの対向する回折格子30、31で構成し、波長選択部29に入射する光に対し、特定波長帯について回折格子30、31による波長選択処理をそれぞれ行って出射することで、計8回の波長選択処理がなされた光を得ることができる。
(Second Embodiment)
The wavelength selection unit 29 of the above embodiment is composed of a single diffraction grating 30 and performs wavelength selection processing four times by the diffraction grating 30 for a specific wavelength band. However, when higher wavelength selectivity is required. 4 and 5, the wavelength selection unit 29 is configured by two opposing diffraction gratings 30 and 31, and the light incident on the wavelength selection unit 29 has a specific wavelength band. By performing the wavelength selection processing by the diffraction gratings 30 and 31 and emitting the light, it is possible to obtain light that has been subjected to the wavelength selection processing eight times in total.

この場合、二つの回折格子30、31は同一特性(刻線間隔が等しい)でその刻線がz軸と平行となり、後述する所定の位置関係を満たした状態で対向配置されている。   In this case, the two diffraction gratings 30 and 31 have the same characteristics (same engraving interval), and the engraving lines are parallel to the z axis, and are opposed to each other while satisfying a predetermined positional relationship described later.

ここで、回折格子30は、偏光方向が合わされた各偏光成分Pp(0)、Ps(0)を刻線の方向(z軸方向)にずれた位置に同一入射角で受け、その回折光を第2の回折格子31に出射する。   Here, the diffraction grating 30 receives the respective polarization components Pp (0) and Ps (0), whose polarization directions are matched, at the same incident angle at positions shifted in the direction of the score line (z-axis direction), and receives the diffracted light. The light is emitted to the second diffraction grating 31.

また、回折格子31は、回折格子30から出射される回折光のうち、特定波長帯の回折光Pp(1)、Ps(1)を所定入射角で受け、直交ミラー35の反射面35a、35bの境界線35cに直交する向き(特定方向)に特定波長帯の光を第1次選択光Pp(2)、Ps(2)として出射する。なお、以下の説明では、前記第1の実施形態と対応させるために、波長選択部29から出射される光を第n次選択光と称し、回折格子30、31間の光を単に回折光と称す。   The diffraction grating 31 receives diffracted lights Pp (1) and Ps (1) in a specific wavelength band among the diffracted lights emitted from the diffraction grating 30 at a predetermined incident angle, and the reflecting surfaces 35a and 35b of the orthogonal mirror 35. Light in a specific wavelength band is emitted as primary selection light Pp (2) and Ps (2) in a direction (specific direction) orthogonal to the boundary line 35c. In the following description, in order to correspond to the first embodiment, light emitted from the wavelength selection unit 29 is referred to as n-th order selection light, and light between the diffraction gratings 30 and 31 is simply referred to as diffracted light. Call it.

直交ミラー35は、回折格子31の刻線に直交する平面上で互いに直交する2つの反射面35a、35bを有し、回折格子31から出射される第1次選択光Pp(2)、Ps(2)を、前記同様に、入射時と平行で刻線方向にずれた光軸で回折格子31に折り返す。なお、回動装置36は、回折格子30、31のいずれか一方(ここでは回折格子30)の角度を他方に対して所定範囲内で変化させて、特定波長を掃引する。   The orthogonal mirror 35 has two reflecting surfaces 35a and 35b orthogonal to each other on a plane orthogonal to the engraving line of the diffraction grating 31, and the first-order selection light Pp (2) and Ps ( 2) is folded back to the diffraction grating 31 with an optical axis that is parallel to the incident time and shifted in the direction of the marking, as described above. The rotation device 36 sweeps a specific wavelength by changing the angle of one of the diffraction gratings 30 and 31 (here, the diffraction grating 30) within a predetermined range with respect to the other.

この折り返し光を受けた回折格子31から特定波長帯の回折光Pp(3)、Ps(3)が、回折光Pp(1)、Ps(1)の光軸に対してz軸方向にずれた状態で回折格子30に再入射され、その回折光Pp(3)、Ps(3)に対して回折格子30が入射光Pp(0)、Ps(0)の光軸と平行な光軸で前記特定波長帯の第2次選択光Pp(4)、Ps(4)を出射する。   The diffracted lights Pp (3) and Ps (3) in the specific wavelength band are shifted in the z-axis direction with respect to the optical axes of the diffracted lights Pp (1) and Ps (1) from the diffraction grating 31 that has received the folded light. The diffraction grating 30 is re-incident on the diffraction grating 30 in the state, and the diffraction grating 30 has an optical axis parallel to the optical axis of the incident light Pp (0) and Ps (0) with respect to the diffracted lights Pp (3) and Ps (3). Secondary selection light Pp (4), Ps (4) in a specific wavelength band is emitted.

この第2次選択光Pp(4)、Ps(4)は、前記同様に、ビームエキスパンダ25を介して第2レンズ40に入射され、偏光保存型光ファイバ41、42の一端41a、42a側に集光され、折り返されて他端41b、42b側から同一の偏光状態で第2レンズ40に出射される。   The secondary selection lights Pp (4) and Ps (4) are incident on the second lens 40 via the beam expander 25 and are on the one end 41a and 42a side of the polarization preserving optical fibers 41 and 42, as described above. The light is condensed and folded, and emitted from the other end 41b, 42b side to the second lens 40 in the same polarization state.

その折り返し光Pp(4)′、Ps(4)′は、ビームエキスパンダ25を介して回折格子30に、最初の入射光Pp(0)、Ps(0)と同一入射角で入射され、その回折格子30の波長選択処理で特定波長帯の回折光Pp(5)、Ps(5)が得られ、この回折光Pp(5)、Ps(5)に対する回折格子31の波長選択処理により特定波長帯の第3次選択光Pp(6)、Ps(6)が得られ、それが直交ミラー35によって再度折り返され、その折り返し光Pp(6)′、Ps(6)′に対する回折格子31の波長選択処理により特定波長帯の回折光Pp(7)、Ps(7)が得られ、その回折光Pp(7)、Ps(7)に対する回折格子30の波長選択処理で特定波長帯の第4次選択光Pp(8)、Ps(8)が得られる。   The folded lights Pp (4) ′ and Ps (4) ′ are incident on the diffraction grating 30 via the beam expander 25 at the same incident angle as the first incident lights Pp (0) and Ps (0). Diffraction light Pp (5), Ps (5) in a specific wavelength band is obtained by the wavelength selection processing of the diffraction grating 30, and the specific wavelength is obtained by the wavelength selection processing of the diffraction grating 31 for the diffraction light Pp (5), Ps (5). Band third-order selection lights Pp (6) and Ps (6) are obtained, which are folded back by the orthogonal mirror 35, and the wavelength of the diffraction grating 31 with respect to the folded lights Pp (6) ′ and Ps (6) ′. The diffracted light Pp (7) and Ps (7) in the specific wavelength band is obtained by the selection process, and the fourth order of the specific wavelength band is obtained by the wavelength selection process of the diffraction grating 30 for the diffracted light Pp (7) and Ps (7). Selection lights Pp (8) and Ps (8) are obtained.

このようにして最終的に得られた第4次選択光Pp(8)、Ps(8)は、前記同様に、入射光Pp(0)、Ps(0)の光軸と平行でz軸方向にずれた光軸に沿ってそれぞれ第3レンズ45、第4レンズ46に入射されて、第1のスリット47、第2のスリット48を通過してさらに高い波長選択度でそれぞれ第1の受光器50、第2の受光器51に入射される。   The fourth-order selection lights Pp (8) and Ps (8) finally obtained in this way are parallel to the optical axes of the incident lights Pp (0) and Ps (0) and in the z-axis direction, as described above. Are incident on the third lens 45 and the fourth lens 46, respectively, along the optical axis deviated from each other, pass through the first slit 47 and the second slit 48, and the first light receiver with higher wavelength selectivity. 50 is incident on the second light receiver 51.

したがって、第1の受光器50と第2受光器51には、入射光Pxの直交する二つの偏光成分のうち、回折格子30への光入射角、回折格子30、31および直交ミラー35の角度、位置によって決まる特定波長帯の成分が、8回の波長選択処理を受けてそれぞれ入射され、その強度が検出されることになる。そして、一方の回折格子30の回動に伴い、選択される特定波長帯が掃引され、その被測定光の波長毎の偏光成分の強度を表す信号PDp(λ)、PDs(λ)が出力される。   Accordingly, the first light receiver 50 and the second light receiver 51 include the light incident angle on the diffraction grating 30 and the angles of the diffraction gratings 30 and 31 and the orthogonal mirror 35 among the two orthogonal polarization components of the incident light Px. The components in the specific wavelength band determined by the position are incident upon receiving eight wavelength selection processes, and the intensity thereof is detected. As the one diffraction grating 30 rotates, the selected specific wavelength band is swept, and signals PDp (λ) and PDs (λ) representing the intensity of the polarization component for each wavelength of the light to be measured are output. The

そして、この信号PDp(λ)、PDs(λ)に対する処理が前記同様に行われて、各偏光成分毎のスペクトラム特性やIn Band OSNRが求められる。   Then, the processing for the signals PDp (λ) and PDs (λ) is performed in the same manner as described above, and the spectrum characteristics and In Band OSNR for each polarization component are obtained.

次に、上記動作を実現するための二つの回折格子30、31の配置について説明する。図8に示すように、測定波長範囲のセンタ波長における回折格子30への入射角をi1、回折角をβ1、入射角と回折角のなす角を2・γ1とし、回折格子31の入射角をi2、回折角をβ2、入射角と回折角のなす角を2・γ2とする。   Next, the arrangement of the two diffraction gratings 30 and 31 for realizing the above operation will be described. As shown in FIG. 8, the incident angle to the diffraction grating 30 at the center wavelength in the measurement wavelength range is i1, the diffraction angle is β1, the angle formed by the incident angle and the diffraction angle is 2 · γ1, and the incident angle of the diffraction grating 31 is i2, the diffraction angle is β2, and the angle between the incident angle and the diffraction angle is 2 · γ2.

ここで、図8に示しているように、回折格子30と架空の回折格子31′とを、2つの等しい角が(90−β1)となる2等辺三角形EBFの頂点B、Fに対称配置する。また、回折格子30の入射光の光軸が線分ABに一致し、回折光の光軸が線分BFに一致するものとする。ただし、点Aは、頂点Eから辺BFに引いた2等分線上の点である。   Here, as shown in FIG. 8, the diffraction grating 30 and the imaginary diffraction grating 31 ′ are arranged symmetrically at the vertices B and F of the isosceles triangle EBF in which two equal angles are (90−β1). . Further, it is assumed that the optical axis of the incident light of the diffraction grating 30 coincides with the line segment AB, and the optical axis of the diffracted light coincides with the line segment BF. However, the point A is a point on the bisector drawn from the vertex E to the side BF.

回折格子30と架空の回折格子31′の入射角と回折角について考えると、図の対称性から明らかなように、A→Bへ向かって入射角i1で入射される光に対して回折格子30は、回折角β1でB→Fへ向かって回折光を出射し、回折格子31′に対してβ1と等しい入射角i2で入射させ、その入射光に対して回折格子31′はi1と等しい回折角β2でF→Aへ向かって回折光を出射する。   Considering the incident angle and the diffraction angle of the diffraction grating 30 and the imaginary diffraction grating 31 ', as is clear from the symmetry of the figure, the diffraction grating 30 is incident on the light incident at an incident angle i1 from A to B. Emits diffracted light from B → F at a diffraction angle β1 and makes it incident on the diffraction grating 31 ′ at an incident angle i2 equal to β1, and the diffraction grating 31 ′ is equal to i1 with respect to the incident light. Diffracted light is emitted from F → A at the bending angle β2.

続いて、このF→Aへ出射された回折光が、その光軸と平行で刻線方向にずれた光軸で折り返されて、A→Fへβ2と等しい入射角i3で回折格子31′に入射され、i2と等しい回折角β3でF→Bへ出射される。   Subsequently, the diffracted light emitted from F → A is folded back along the optical axis that is parallel to the optical axis and shifted in the engraving direction, and enters A → F at the diffraction grating 31 ′ at an incident angle i3 equal to β2. Incident light is emitted from F → B at a diffraction angle β3 equal to i2.

この回折光は、回折格子30に対してβ1と等しい入射角i4で入射され、i1と等しい回折角β4でB→A方向に出射される。   The diffracted light is incident on the diffraction grating 30 at an incident angle i4 equal to β1, and is emitted in the B → A direction at a diffraction angle β4 equal to i1.

したがって、架空の回折格子31′を、図の回折格子31のように、回折格子30により近い実装可能な位置まで、線分BFに沿って平行移動し、その回折格子31の回折面から線分AFと平行な光軸上に直交ミラー35を配置すれば、上記光軸の角度関係を維持したままで特定波長帯の2度ずつの波長選択と折り返しとを小型化した状態で実現できる。   Accordingly, the imaginary diffraction grating 31 ′ is translated along the line segment BF to a mountable position closer to the diffraction grating 30 as shown in the figure, and the line segment from the diffraction surface of the diffraction grating 31 is translated. If the orthogonal mirror 35 is arranged on the optical axis parallel to the AF, the wavelength selection and folding of the specific wavelength band by 2 degrees can be realized in a compact state while maintaining the angular relationship of the optical axis.

そして、この回折格子31に対して回折格子30を、刻線に平行な軸で回動させることで、選択波長の掃引が行える。   Then, the selected wavelength can be swept by rotating the diffraction grating 30 with respect to the diffraction grating 31 about an axis parallel to the score line.

この際、固定された回折格子31について、直交ミラー35で180度反射(折り返し)させるためには、回折格子31の回折角β2が一定(光軸が平行移動する)である必要があり、その固定された回折角β2に対し、波長λと入射角i2とが次の条件を満たすように変化する必要がある。   At this time, in order to reflect (fold back) the fixed diffraction grating 31 by 180 degrees with the orthogonal mirror 35, the diffraction angle β2 of the diffraction grating 31 needs to be constant (the optical axis moves in parallel), For the fixed diffraction angle β2, it is necessary to change the wavelength λ and the incident angle i2 so as to satisfy the following conditions.

sin(i2)=m・λ/d−sin(β2)
ここで、sin(β2)は、直交ミラー35の配置角度と回折格子31によって決定される定数、mは回折次数、dは回折格子の溝間隔を表す。
sin (i2) = m · λ / d−sin (β2)
Here, sin (β2) is a constant determined by the arrangement angle of the orthogonal mirror 35 and the diffraction grating 31, m is the diffraction order, and d is the groove spacing of the diffraction grating.

上記条件を満たした状態で、回折格子30を回転させることで、波長λの掃引が可能となる。   The wavelength λ can be swept by rotating the diffraction grating 30 while satisfying the above conditions.

このように、第2の実施形態の光スペクトラムアナライザ20′は、第1の実施形態の光スペクトラムアナライザ20に比べて波長選択部29の回折格子が一つ増えるが、被測定光Pxを第1レンズ22で平行光にして偏光分離部23に入射して直交偏光成分を分離し、その一方の偏光方向を1/2波長板24で90度回転させて、他方の偏光方向に合わせて、波長選択部29に入射させている点、また、偏光保存型光ファイバ41、42へ各偏光成分を集光入射するためのレンズと、偏光保存型光ファイバ41、42で折り返された各偏光成分を平行ビームにして波長選択部29へ再入射させるためのレンズとを単一の第2レンズ40によって共通化している点、および、最終次選択光(第4次選択光)を、第3、第4レンズ45、46で集光しスリット47、48を通過させて受光器50、51で受光している点は共通である。   As described above, the optical spectrum analyzer 20 ′ of the second embodiment has one more diffraction grating of the wavelength selection unit 29 than the optical spectrum analyzer 20 of the first embodiment, but the measured light Px is the first. The light is converted into parallel light by the lens 22 and is incident on the polarization separation unit 23 to separate the orthogonal polarization components. One of the polarization directions is rotated by 90 degrees by the half-wave plate 24 to match the other polarization direction. The point where the light is incident on the selection unit 29, the lens for converging each polarization component to the polarization preserving optical fibers 41 and 42, and each polarization component folded back by the polarization preserving optical fibers 41 and 42 The single second lens 40 shares a lens for making a parallel beam and re-entering the wavelength selection unit 29, and the final selection light (fourth selection light) is the third, 4 lenses 45 and 46 A common point which is received by the photodetector 50 and 51 light is passed through a slit 47.

このため、従来装置に比べて、偏光保存型ファイバが2本で済み、出射用光ファイバが不要となり、さらにレンズが4個で構成でき、格段に小型、低コストに高い波長選択性を持ち光スペクトラムアナライザが実現できる。   For this reason, compared with the conventional device, only two polarization-preserving fibers are required, no outgoing optical fiber is required, and four lenses can be formed, which is extremely small and low in cost and has high wavelength selectivity. A spectrum analyzer can be realized.

なお、前記実施形態では、被測定光Pxの直交する二つの偏光成分がそれぞれx軸、y軸に沿っている最良の状態で偏光分離部23に入射させて、二つの偏光成分を正しく分離させていたが、偏光多重された光信号の場合、入射時の偏光面にずれがあると、互いの偏光成分が正しく分離されず、精度の高い測定が行えない。   In the embodiment, two orthogonal polarization components of the light to be measured Px are incident on the polarization separation unit 23 in the best state along the x-axis and the y-axis, respectively, so that the two polarization components are correctly separated. However, in the case of a polarization multiplexed optical signal, if there is a deviation in the polarization plane at the time of incidence, the polarization components of each other are not correctly separated, and highly accurate measurement cannot be performed.

そのような場合には、図9に示すように、光入射端子20aと偏光分離部23の間に偏光コントロラー70を挿入し、被測定光Pxの偏光面を偏光コントローラ70によって調整して、被測定光Pxの直交する偏光成分を偏光分離部23で正しく分離できる状態(例えば、両偏光成分のレベルの和が最大となる状態)にすればよい。   In such a case, as shown in FIG. 9, a polarization controller 70 is inserted between the light incident terminal 20a and the polarization separation unit 23, and the polarization plane of the measured light Px is adjusted by the polarization controller 70. What is necessary is just to set it as the state (For example, the state where the sum of the level of both polarization components becomes the maximum) which can correctly isolate | separate the orthogonal | polarized-light component of the to-be-measured light Px by the polarization separation part 23.

20、20′……光スペクトラムアナライザ、20a……光入射端子、22……第1レンズ、23……偏光分離部、23a……偏光ビームスプリッタ、23b……平面ミラー、24……1/2波長板、25……ビームキエスパンダ、29……波長選択部、30、31……回折格子、35……直交ミラー、36……回動装置、40……第2レンズ、41、42……偏光保存型光ファイバ、45……第3レンズ、46……第4レンズ、47……第1のスリット、48……第2のスリット、50……第1の受光器、51……第2の受光器、52、53……A/D変換器、60……演算処理部、61……表示部、70……偏光コントローラ   20, 20 '... Optical spectrum analyzer, 20a ... Light incident terminal, 22 ... First lens, 23 ... Polarization separator, 23a ... Polarizing beam splitter, 23b ... Planar mirror, 24 ... 1/2 Wave plate 25 ...... Beam key spander 29 ...... Wavelength selection unit 30, 31 ...... Diffraction grating 35, Orthogonal mirror 36, Rotating device 40, Second lens 41, 42, ... Polarization-preserving optical fiber, 45 ... 3rd lens, 46 ... 4th lens, 47 ... 1st slit, 48 ... 2nd slit, 50 ... 1st light receiver, 51 ... 1st 2 light receivers, 52, 53... A / D converter, 60... Arithmetic processing unit, 61... Display unit, and 70.

Claims (4)

被測定光を入射させるための光入射端子(20a)と、
前記光入射端子に入射された被測定光を平行光にする第1レンズ(22)と、
前記第1レンズから出射された平行光を受けて、互いに直交する偏光成分に分離する偏光分離部(23)と、
前記偏光分離部から出射された偏光成分の一方を受けてその偏光方向を90度回転させ、他方の偏光成分の偏光方向に合わせる1/2波長板(24)と、
一面側に刻線が平行に設けられた少なくとも一つの回折格子(30、31)を有し、前記偏光方向が合わされた各偏光成分を、前記刻線の長さ方向にずれた位置に同一入射角で受けて、特定波長帯の光を特定方向に選択的に出射する波長選択部(29)と、
前記波長選択部の前記回折格子の前記刻線に直交する平面上で互いに直交する2つの反射面(35a、35b)をもち、前記波長選択部から前記特定方向に出射される前記特定波長帯の選択光を一方の反射面で受けて他方の反射面へ反射させ、該他方の反射面でさらに反射させて、入射時と平行で前記刻線方向にずれた光軸で折り返す直交ミラー(35)と、
前記直交ミラーまたは前記波長選択部の回折格子を前記刻線と平行な軸で所定角度範囲回動させて、前記直交ミラーから前記波長選択部に折り返される前記特定波長帯の光の中心波長を掃引させる回動装置(36)と、
前記波長選択部に対する入射光軸と平行で且つ前記刻線方向にずれた光軸上にそれぞれ配置された集光用の第2、第3、第4のレンズ(40、45、46)と、
前記第2レンズで集光された光を一端側で受けて所定距離伝搬させ、他端側から入射時と同一の偏光状態で前記第2レンズへ折り返す第1、第2の偏光保存型光ファイバ(41、42)と、
前記第3、第4のレンズによって集光された光の前記刻線に直交する方向の幅をそれぞれ制限して波長選択度を高くするための第1、第2のスリット(47、48)と、
前記第1、第2のスリットを通過した光を受けてその強度を検出する第1、第2の受光器(50、51)とを備え、
前記偏光方向が合わされた各偏光成分に対して前記波長選択部が前記特定方向に出射する第1次選択光を前記直交ミラーにより前記刻線方向にずれた光軸で前記波長選択部に折り返し、
該折り返し光に対して前記波長選択部が示す入射時と可逆な波長選択作用によって選択される前記特定波長帯の第2次選択光を前記第2レンズに入射して、その各偏光成分を前記第1、第2の偏光保存型光ファイバに入射させ、
該第1、第2の偏光保存型光ファイバで折り返されて前記第2レンズを介して入射された光に対して前記波長選択部が前記特定方向に出射する前記特定波長帯の第3次選択光を前記直交ミラーにより再度折り返し、
該直交ミラーにより再度折り返された光に対して前記波長選択部が出射する前記特定波長帯の第4次選択光の各偏光成分を前記第3、第4のレンズにより集光し、前記第1、第2のスリットを通過させて、前記第1、第2の受光器に入射させ、該第1、第2の受光器の出力に基づいて、前記被測定光の直交する偏光成分のスペクトラム特性を求めることを特徴とする光スペクトラムアナライザ。
A light incident terminal (20a) for making the light to be measured incident;
A first lens (22) that collimates the light to be measured incident on the light incident terminal;
A polarization separation unit (23) that receives the parallel light emitted from the first lens and separates the parallel light components into orthogonal polarization components;
A half-wave plate (24) that receives one of the polarization components emitted from the polarization separation unit, rotates the polarization direction by 90 degrees, and matches the polarization direction of the other polarization component;
It has at least one diffraction grating (30, 31) in which engraving lines are provided in parallel on one surface side, and each polarization component whose polarization direction is matched is incident on the position shifted in the length direction of the engraving line. A wavelength selection unit (29) that receives light at a corner and selectively emits light in a specific wavelength band in a specific direction;
It has two reflection surfaces (35a, 35b) orthogonal to each other on a plane orthogonal to the score line of the diffraction grating of the wavelength selection unit, and the specific wavelength band emitted from the wavelength selection unit in the specific direction. Orthogonal mirror (35) that receives the selective light on one reflecting surface, reflects it to the other reflecting surface, reflects it further on the other reflecting surface, and folds it along the optical axis that is parallel to the incident and shifted in the direction of the engraving When,
The orthogonal mirror or the diffraction grating of the wavelength selection unit is rotated by a predetermined angle range about an axis parallel to the score line, and the center wavelength of the light in the specific wavelength band that is folded back from the orthogonal mirror to the wavelength selection unit is swept. A rotating device (36) for causing;
Second, third, and fourth condensing lenses (40, 45, 46) respectively disposed on optical axes that are parallel to the incident optical axis with respect to the wavelength selection unit and shifted in the score direction;
First and second polarization-preserving optical fibers that receive light collected by the second lens on one end side, propagate a predetermined distance, and return to the second lens in the same polarization state as incident from the other end side. (41, 42),
First and second slits (47, 48) for increasing the wavelength selectivity by limiting the width of the light collected by the third and fourth lenses in the direction perpendicular to the score line, respectively. ,
First and second light receivers (50, 51) that receive light that has passed through the first and second slits and detect the intensity thereof,
For each polarization component with the polarization direction matched, the wavelength selection unit folds the primary selection light emitted in the specific direction to the wavelength selection unit with an optical axis shifted in the engraving direction by the orthogonal mirror,
The second selective light of the specific wavelength band selected by the wavelength selective action that is reversible with the time indicated by the wavelength selection unit with respect to the folded light is incident on the second lens, and each polarization component is Incident first and second polarization preserving optical fibers,
Third-order selection of the specific wavelength band that the wavelength selection unit emits in the specific direction with respect to the light that is turned back by the first and second polarization preserving optical fibers and enters through the second lens The light is turned back again by the orthogonal mirror,
The first and fourth lenses condense each polarization component of the fourth-order selection light in the specific wavelength band emitted by the wavelength selection unit with respect to the light refolded by the orthogonal mirror, and the first lens Then, the light passes through the second slit, is incident on the first and second light receivers, and based on the outputs of the first and second light receivers, the spectral characteristics of the orthogonal polarization components of the measured light An optical spectrum analyzer characterized by
前記波長選択部が単一の回折格子によって構成されていることを特徴とする請求項1記載の光スペクトラムアナライザ。   2. The optical spectrum analyzer according to claim 1, wherein the wavelength selection unit is constituted by a single diffraction grating. 前記波長選択部が、互いに対向する二つの回折格子によって構成されており、
前記波長選択部に入射された光は、前記特定波長帯について前記二つの回折格子による2度の波長選択作用を受けて出射されることを特徴とする請求項1記載の光スペクトラムアナライザ。
The wavelength selector is composed of two diffraction gratings facing each other;
2. The optical spectrum analyzer according to claim 1, wherein the light incident on the wavelength selection unit is emitted after receiving a wavelength selection action of two times by the two diffraction gratings for the specific wavelength band.
前記光入射端子と前記偏光分離部の間に、前記偏光分離部に入射される被測定光の偏光を制御するための偏光コントローラ(70)を配置したことを特徴とする請求項1または請求項2記載の光スペクトラムアナライザ。   The polarization controller (70) for controlling the polarization of the light to be measured incident on the polarization separation unit is disposed between the light incident terminal and the polarization separation unit. 2. An optical spectrum analyzer according to 2.
JP2011026243A 2011-02-09 2011-02-09 Optical spectrum analyzer Active JP5711561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011026243A JP5711561B2 (en) 2011-02-09 2011-02-09 Optical spectrum analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011026243A JP5711561B2 (en) 2011-02-09 2011-02-09 Optical spectrum analyzer

Publications (2)

Publication Number Publication Date
JP2012163534A true JP2012163534A (en) 2012-08-30
JP5711561B2 JP5711561B2 (en) 2015-05-07

Family

ID=46843050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011026243A Active JP5711561B2 (en) 2011-02-09 2011-02-09 Optical spectrum analyzer

Country Status (1)

Country Link
JP (1) JP5711561B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042960A (en) * 2013-08-26 2015-03-05 横河電機株式会社 Light measuring apparatus
JP2016166841A (en) * 2015-03-10 2016-09-15 アンリツ株式会社 Spectral device, spectral method, and analyzer
JP2018124203A (en) * 2017-02-02 2018-08-09 アンリツ株式会社 Polarized light analysis device and optical spectrum analyzer
JP2018124202A (en) * 2017-02-02 2018-08-09 アンリツ株式会社 Polarized light analysis device and optical spectrum analyzer
JP2018124204A (en) * 2017-02-02 2018-08-09 アンリツ株式会社 Polarized light analysis device and optical spectrum analyzer
JP2022148267A (en) * 2021-03-24 2022-10-06 アンリツ株式会社 optical spectrum analyzer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399238A (en) * 1989-09-13 1991-04-24 Univ Osaka High resolution spectroscope
US5886785A (en) * 1996-10-02 1999-03-23 Photonetics Optical spectrum analyzer and process for analyzing the corresponding spectrum
US6177992B1 (en) * 1998-09-25 2001-01-23 Hewlett-Packard Company Low insertion loss optical monochromator
JP2002323374A (en) * 2001-04-25 2002-11-08 Anritsu Corp Optical spectrum analyzer
JP2003083810A (en) * 2001-09-14 2003-03-19 Anritsu Corp Spectroscopic device and light measuring device
US20050073679A1 (en) * 2002-07-25 2005-04-07 Gang He High optical rejection optical spectrum analyzer/monochromator
US20050094934A1 (en) * 2000-04-07 2005-05-05 Exfo Electro-Optical Engineering Inc. Optical spectrum analyzer using a diffraction grating and multi-pass optics
JP2009264895A (en) * 2008-04-24 2009-11-12 Anritsu Corp Monochromator
JP2010025670A (en) * 2008-07-17 2010-02-04 Anritsu Corp Optical signal sn ratio measuring apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399238A (en) * 1989-09-13 1991-04-24 Univ Osaka High resolution spectroscope
US5886785A (en) * 1996-10-02 1999-03-23 Photonetics Optical spectrum analyzer and process for analyzing the corresponding spectrum
US6177992B1 (en) * 1998-09-25 2001-01-23 Hewlett-Packard Company Low insertion loss optical monochromator
US20050094934A1 (en) * 2000-04-07 2005-05-05 Exfo Electro-Optical Engineering Inc. Optical spectrum analyzer using a diffraction grating and multi-pass optics
JP2002323374A (en) * 2001-04-25 2002-11-08 Anritsu Corp Optical spectrum analyzer
JP2003083810A (en) * 2001-09-14 2003-03-19 Anritsu Corp Spectroscopic device and light measuring device
US20050073679A1 (en) * 2002-07-25 2005-04-07 Gang He High optical rejection optical spectrum analyzer/monochromator
JP2009264895A (en) * 2008-04-24 2009-11-12 Anritsu Corp Monochromator
JP2010025670A (en) * 2008-07-17 2010-02-04 Anritsu Corp Optical signal sn ratio measuring apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042960A (en) * 2013-08-26 2015-03-05 横河電機株式会社 Light measuring apparatus
JP2016166841A (en) * 2015-03-10 2016-09-15 アンリツ株式会社 Spectral device, spectral method, and analyzer
JP2018124203A (en) * 2017-02-02 2018-08-09 アンリツ株式会社 Polarized light analysis device and optical spectrum analyzer
JP2018124202A (en) * 2017-02-02 2018-08-09 アンリツ株式会社 Polarized light analysis device and optical spectrum analyzer
JP2018124204A (en) * 2017-02-02 2018-08-09 アンリツ株式会社 Polarized light analysis device and optical spectrum analyzer
JP2022148267A (en) * 2021-03-24 2022-10-06 アンリツ株式会社 optical spectrum analyzer
JP7332647B2 (en) 2021-03-24 2023-08-23 アンリツ株式会社 optical spectrum analyzer

Also Published As

Publication number Publication date
JP5711561B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5711561B2 (en) Optical spectrum analyzer
US8345238B2 (en) Measuring optical spectral property of light based on polarization analysis
US7852475B2 (en) Scanning spectrometer with multiple photodetectors
JP4908838B2 (en) Multi-wavelength spectrometer
JP6622733B2 (en) Ellipsometer and optical spectrum analyzer
US6753960B1 (en) Optical spectral power monitors employing frequency-division-multiplexing detection schemes
JP4640577B2 (en) Optical spectrum analyzer
EP1014033B1 (en) Delay time measurement apparatus for an optical element
JP6452958B2 (en) Vibrometer with optical interferometer
JP2007263748A (en) Optical interferometer
JP4741329B2 (en) Chromatic dispersion measurement method, chromatic dispersion measurement apparatus, and chromatic dispersion correction system
JP2007132727A (en) Interference measuring apparatus
JP2003114402A (en) Optical multiplexer/demultiplexer and its adjusting method
JP2008530592A (en) Optical tap delay line with long aperture time
CN101694369B (en) Fizeau interferometer with simultaneous phase shifting
JP5838532B2 (en) Wavelength selective polarization controller
JP4680223B2 (en) Chromatic dispersion measurement device
JP6612794B2 (en) Ellipsometer and optical spectrum analyzer
KR102039826B1 (en) AWG spectrum sensor
KR101198013B1 (en) Multi-wavelength heterodyne interferometer using AOTF
JP6622734B2 (en) Ellipsometer and optical spectrum analyzer
JP6055006B2 (en) Spectroscopic apparatus, spectroscopic method, and analytical apparatus
JP5669140B2 (en) Optical performance monitor
JP5106038B2 (en) Wavelength monitor
JP2008209188A (en) Polarization mode dispersion measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150306

R150 Certificate of patent or registration of utility model

Ref document number: 5711561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250