JP2010160094A - X-ray spectral information acquisition method and x-ray spectrometer - Google Patents

X-ray spectral information acquisition method and x-ray spectrometer Download PDF

Info

Publication number
JP2010160094A
JP2010160094A JP2009003340A JP2009003340A JP2010160094A JP 2010160094 A JP2010160094 A JP 2010160094A JP 2009003340 A JP2009003340 A JP 2009003340A JP 2009003340 A JP2009003340 A JP 2009003340A JP 2010160094 A JP2010160094 A JP 2010160094A
Authority
JP
Japan
Prior art keywords
ray
spectroscopic
dispersed
dispersed light
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009003340A
Other languages
Japanese (ja)
Other versions
JP5204672B2 (en
Inventor
Kazunori Tsukamoto
一徳 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2009003340A priority Critical patent/JP5204672B2/en
Publication of JP2010160094A publication Critical patent/JP2010160094A/en
Application granted granted Critical
Publication of JP5204672B2 publication Critical patent/JP5204672B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray spectrometer capable of acquiring spectral diffraction of an X-ray in a wide wavelength range with excellent reproducibility, relative to the X-ray spectrometer. <P>SOLUTION: This X-ray spectrometer includes: two spectroscopic elements 1, 2 arranged mutually approximately at an angle of about 90°, for receiving a characteristic X-ray 13 generated from a sample 11; a position sensitive detector 15 for receiving simultaneously each dispersed light from the two spectroscopic elements, and converting each light into electric signals; a memory for storing output from the position sensitive detector; an image processing part for reading out data stored in the memory, and performing prescribed image processing; and a display part for displaying spectral information by receiving output from the image processing part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はX線分光情報取得方法及びX線分光装置に関し、更に詳しくはより広い波長範囲にわたって分散光を測定することができるようにしたX線分光情報取得方法及びX線分光装置に関する。   The present invention relates to an X-ray spectroscopic information acquisition method and an X-ray spectroscopic device, and more particularly to an X-ray spectroscopic information acquisition method and an X-ray spectroscopic device that enable measurement of dispersed light over a wider wavelength range.

X線マイクロアナライザ(EPMA)は、極めて細かく絞った電子線束を試料表面に照射して、そこから放射される特性X線の波長と強度をX線分光器で測定し、その微小部に含まれている元素を定性、又は定量するための分析機器であり、今や金属、鉄鋼、岩石、鉱物、ガラス、セラミクス等の広い分野の組成、材料研究になくてはならない分析機器となっている。   An X-ray microanalyzer (EPMA) irradiates a sample surface with a very finely focused electron beam bundle, measures the wavelength and intensity of characteristic X-rays radiated from the sample surface, and is contained in a minute part. It is an analytical instrument for qualitative or quantitative analysis of the elements that are present, and is now an analytical instrument indispensable for composition and material research in a wide range of fields such as metals, steel, rocks, minerals, glass and ceramics.

図5はX線マイクロアナライザの構成概念図である。電子銃1から発射された電子線2は、電磁レンズ(コンデンサレンズ)3で集束された後、走査コイル4により偏向され、試料台上の試料6に照射される。電子線2は細い電子プローブ5となって試料6に照射されることになる。この時に、試料6から発生された特性X線はX線検出部20に入る。   FIG. 5 is a conceptual diagram of the configuration of the X-ray microanalyzer. An electron beam 2 emitted from the electron gun 1 is focused by an electromagnetic lens (condenser lens) 3, deflected by a scanning coil 4, and applied to a sample 6 on a sample table. The electron beam 2 becomes a thin electron probe 5 and is irradiated to the sample 6. At this time, characteristic X-rays generated from the sample 6 enter the X-ray detector 20.

つまり試料6から発生された特性X線7は、X線検出部20内に配置された分光結晶8に入射され、分光される。分光された特性X線はX線検出部20内に設けられた検出器9で電気信号に変換される。図示しない演算制御手段では、検出器9で検出された特性X線に応じた電気信号に所定の処理を行ない、波長と強度に関するスペクトルを得て、図示しないディスプレイ上に表示させる。操作者はこのディスプレイに表示されたスペクトルを見ることで、試料の元素組成を定性、定量することができる。   That is, the characteristic X-ray 7 generated from the sample 6 is incident on the spectral crystal 8 disposed in the X-ray detection unit 20 and dispersed. The spectral characteristic X-rays are converted into electrical signals by the detector 9 provided in the X-ray detection unit 20. A calculation control means (not shown) performs predetermined processing on the electrical signal corresponding to the characteristic X-ray detected by the detector 9 to obtain a spectrum relating to the wavelength and intensity, and displays it on a display (not shown). The operator can qualitatively and quantitatively determine the elemental composition of the sample by viewing the spectrum displayed on the display.

以下、EPMAの検出系の構成について説明する。図6は従来装置の第1の構成概念図である。光源12から出射された電子プローブ12aは試料11に入射する。この時、試料11から発生された特性X線13は、分光素子14に入射して分光され、分光された分散光は位置敏感検出器15に照射される。位置敏感検出器15は、入射されてきた特性X線の検出位置情報と強度に応じた電気信号を発生するものであり、例えばCCD素子が用いられる。16は分光素子の分散光である。ここで、試料11は図5の6に相当し、光源12は電子銃1に相当し、分光素子14は分光結晶8に相当する。   The configuration of the EPMA detection system will be described below. FIG. 6 is a conceptual diagram of a first configuration of the conventional apparatus. The electron probe 12 a emitted from the light source 12 enters the sample 11. At this time, the characteristic X-rays 13 generated from the sample 11 are incident on the spectroscopic element 14 and are dispersed, and the dispersed light that has been dispersed is applied to the position sensitive detector 15. The position sensitive detector 15 generates an electric signal corresponding to the detected position information and intensity of the incident characteristic X-ray, and for example, a CCD element is used. Reference numeral 16 denotes dispersed light of the spectroscopic element. Here, the sample 11 corresponds to 6 in FIG. 5, the light source 12 corresponds to the electron gun 1, and the spectroscopic element 14 corresponds to the spectroscopic crystal 8.

ここで、Aは分光素子14の形状が円筒型のものを示し、Bは分光素子14の形状が円筒型以外の形状、例えば球面やトロイダル等の非円筒型のものを示している。このように構成された装置の動作を説明すれば、以下の通りである。   Here, A indicates that the shape of the spectroscopic element 14 is cylindrical, and B indicates that the shape of the spectroscopic element 14 is other than a cylindrical shape, for example, a non-cylindrical shape such as a spherical surface or a toroid. The operation of the apparatus configured as described above will be described as follows.

光源12から出射された電子プローブ12aは、試料11に照射される。この時、試料11からは特性X線13が発生する。この特性X線13は、分光素子14に入射する。入射した特性X線13は該分光素子14で分光反射され、位置敏感検出器15に照射される。該位置敏感検出器15は照射されたX線に応じた電気信号を発生する。明るい領域は、対応する波長の特性X線強度が強いということであり、暗い部分は対応する波長の特性X線強度が弱いということである。   The sample 11 is irradiated with the electron probe 12 a emitted from the light source 12. At this time, characteristic X-rays 13 are generated from the sample 11. This characteristic X-ray 13 is incident on the spectroscopic element 14. The incident characteristic X-ray 13 is spectrally reflected by the spectroscopic element 14 and irradiated to the position sensitive detector 15. The position sensitive detector 15 generates an electrical signal corresponding to the irradiated X-ray. A bright region means that the characteristic X-ray intensity of the corresponding wavelength is strong, and a dark part means that the characteristic X-ray intensity of the corresponding wavelength is weak.

位置敏感検出器上の分散光の検出位置とカウント数により、得られた画像情報を、波長を横軸、縦軸を強度としてプロットすると、試料11の原子構造に関するスペクトルが得られる。ここで、波長領域を広い範囲で測定したい場合には、位置敏感検出器15を図の矢印18A方向又は18B方向に移動することにより広い波長範囲のX線分析を行なうことができる。   When the obtained image information is plotted with the wavelength as the horizontal axis and the vertical axis as the intensity according to the detection position and the count number of the dispersed light on the position sensitive detector, a spectrum relating to the atomic structure of the sample 11 is obtained. Here, when it is desired to measure the wavelength region in a wide range, X-ray analysis in a wide wavelength range can be performed by moving the position sensitive detector 15 in the direction of the arrow 18A or 18B in the figure.

このような動作を行ないながら、電子プローブ12aが試料11上を走査すると、試料11の全面にわたる分散光が得られる。
図7は従来装置の第2の構成概念図である。図6と同一のものは、同一の符号を付して示す。光源12から出射された電子プローブ12aは、試料11に入射する。この時、試料11からは特性X線13が発生する。この特性X線13は、分光素子14に入射する。入射した特性X線13は該分光素子14で分光反射され、位置敏感検出器15に照射される。該位置敏感検出器15は照射されたX線に応じた電気信号を発生する。
When the electron probe 12a scans the sample 11 while performing such an operation, dispersed light over the entire surface of the sample 11 is obtained.
FIG. 7 is a second conceptual diagram of the conventional apparatus. The same components as those in FIG. 6 are denoted by the same reference numerals. The electron probe 12 a emitted from the light source 12 enters the sample 11. At this time, characteristic X-rays 13 are generated from the sample 11. This characteristic X-ray 13 is incident on the spectroscopic element 14. The incident characteristic X-ray 13 is spectrally reflected by the spectroscopic element 14 and irradiated to the position sensitive detector 15. The position sensitive detector 15 generates an electrical signal corresponding to the irradiated X-ray.

位置敏感検出器上の分散光の検出位置とカウント数により、得られた画像情報を、波長を横軸、縦軸を強度としてプロットすると、試料11の原子構造に関するスペクトルが得られる。ここで、波長領域を広い範囲で測定したい場合には、分光素子14を別の場所に配置されている異なる分光波長領域をもつ分光素子14’に切り替えて、同様の動作によりX線スペクトルを得る。このようにすることで、広い範囲のX線分析を行なうことができる。   When the obtained image information is plotted with the wavelength as the horizontal axis and the vertical axis as the intensity according to the detection position and the count number of the dispersed light on the position sensitive detector, a spectrum relating to the atomic structure of the sample 11 is obtained. Here, when it is desired to measure the wavelength region in a wide range, the spectroscopic element 14 is switched to the spectroscopic element 14 ′ having a different spectral wavelength region arranged at another place, and an X-ray spectrum is obtained by the same operation. . In this way, a wide range of X-ray analysis can be performed.

このような動作を行ないながら、電子プローブ12aが試料11上を走査すると、試料11の全面にわたる分散光が得られる。
従来のこの種の装置としては、所定の放物線に沿って湾曲された分光結晶と、この分光結晶で反射されたX線を検出する位置敏感型X線検出器とを備え、かつ、前記分光結晶の焦点が試料上のX線の発生位置に設定されているX線分光装置が知られている(例えば特許文献1参照)。また、単一の検出器を用いた簡単で安価な構成でありながら、波長の相異なる複数の2次X線の各強度を、広い波長範囲において十分な感度で測定できる波長分散型蛍光X線分析装置が知られている(例えば特許文献2参照)。
When the electron probe 12a scans the sample 11 while performing such an operation, dispersed light over the entire surface of the sample 11 is obtained.
A conventional apparatus of this type includes a spectral crystal curved along a predetermined parabola, and a position sensitive X-ray detector for detecting X-rays reflected by the spectral crystal, and the spectral crystal An X-ray spectroscopic apparatus is known in which the focal point is set at the X-ray generation position on the sample (see, for example, Patent Document 1). In addition, a wavelength-dispersed fluorescent X-ray capable of measuring each intensity of a plurality of secondary X-rays having different wavelengths with sufficient sensitivity in a wide wavelength range, while having a simple and inexpensive configuration using a single detector. An analyzer is known (see, for example, Patent Document 2).

特開平1−180439号公報(第2頁右上欄第6行〜同頁右下欄第1行、第1図、第2図)JP-A-1-180439 (page 2, upper right column, line 6 to page, lower right column, line 1, FIG. 1, FIG. 2) WO 2004/086018号公報(第5頁第12行〜第7頁第12行、図1〜図4)WO 2004/086018 (page 5, line 12 to page 7, line 12, FIGS. 1 to 4)

図6に示した従来装置の場合、検出器15を移動させることにより、波長検出位置の再現が難しいという問題がある。また、検出器15の移動の度に位置の微調整や波長校正が必要である。更に機構が複雑になりやすいという問題がある。図7に示す従来装置の場合、分光素子を切り替えることにより、波長検出位置の再現性が悪化しやすいという問題がある。また、分光素子を切り替える毎に位置の微調整や波長校正が必要である。更に、機構が複雑になりやすいという問題がある。また、分光素子へのX線の入射角θが小さい場合、分光素子の傾斜のズレが僅かであっても、図8に示すように、θに対する傾斜ズレの割合が大きくなるため、波長検出位置は大きくずれるという問題がある。また、波長分解能が高くなるほど、波長検出位置の再現が困難になる。   In the case of the conventional apparatus shown in FIG. 6, there is a problem that it is difficult to reproduce the wavelength detection position by moving the detector 15. Further, fine adjustment of the position and wavelength calibration are required every time the detector 15 moves. Furthermore, there is a problem that the mechanism tends to be complicated. In the case of the conventional apparatus shown in FIG. 7, there is a problem that the reproducibility of the wavelength detection position tends to be deteriorated by switching the spectral elements. Further, fine adjustment of the position and wavelength calibration are required every time the spectroscopic element is switched. Furthermore, there is a problem that the mechanism tends to be complicated. Further, when the incident angle θ of X-rays to the spectroscopic element is small, even if the spectroscopic element has a slight deviation in inclination, the ratio of the inclination deviation to θ increases as shown in FIG. There is a problem that is greatly shifted. Also, the higher the wavelength resolution, the more difficult it is to reproduce the wavelength detection position.

本発明はこのような課題に鑑みてなされたものであって、広い波長範囲でX線の分光を再現性よく得ることができるX線分光情報取得方法及びX線分光装置を提供することを目的としている。   The present invention has been made in view of such a problem, and an object of the present invention is to provide an X-ray spectroscopic information acquisition method and an X-ray spectroscopic device capable of obtaining X-ray spectroscopy with high reproducibility in a wide wavelength range. It is said.

(1)請求項1記載の発明は、試料から発生した特性X線を、互いにほぼ90°の角度で配置された2つの分光素子により分光し、該2つの分光素子からの分散光を位置敏感検出器により同時に受けて検出信号に変換し、該位置敏感検出器からの検出信号を検出データとしてメモリに記憶し、該メモリに記憶された検出データを読み出して所定の画像処理を行ない、該画像処理が行なわれたデータを受けて分光情報を表示することを特徴とする。 (2)請求項2記載の発明は、前記メモリに記憶された検出データを読み出して、各々の分光素子で分光した分散光の波形を分離して得ることを特徴とする。   (1) According to the first aspect of the present invention, the characteristic X-rays generated from the sample are dispersed by two spectroscopic elements arranged at an angle of approximately 90 ° to each other, and the dispersed light from the two spectroscopic elements is position sensitive. Simultaneously received by the detector and converted into a detection signal, the detection signal from the position sensitive detector is stored in the memory as detection data, the detection data stored in the memory is read out, and predetermined image processing is performed. The spectral information is displayed by receiving the processed data. (2) The invention according to claim 2 is characterized in that the detection data stored in the memory is read out, and the waveform of the dispersed light dispersed by each spectroscopic element is separated.

(3)請求項3記載の発明は、前記画像処理は、前記位置敏感検出器で検出した検出データをY軸方向に積算し、各積算値をX軸に投影して得られる波形をg1(x)、該検出データをX軸方向に積算し、各積算値をY軸に投影して得られた波形をg2(y)とする時、前記一方の分光素子で分光した分散光の波形をf1(x)、前記他方の分光素子で分光した分散光の波形をf2(y)とすると、それぞれのオフセット成分を、Σf2、Σf
1として、f1(x)、f2(y)を次式で求めるものであることを特徴とする。
(3) In the invention according to claim 3, in the image processing, a waveform obtained by integrating the detection data detected by the position sensitive detector in the Y-axis direction and projecting each integrated value on the X-axis is g 1. (X) When the detected data is integrated in the X-axis direction and the waveform obtained by projecting each integrated value on the Y-axis is g 2 (y), Assuming that the waveform is f 1 (x) and the waveform of the dispersed light dispersed by the other spectroscopic element is f 2 (y), the respective offset components are Σf 2 , Σf
1 , f 1 (x) and f 2 (y) are obtained by the following equations.

1(x)=g1(x)−Σf2
2(y)=g2(y)−Σf1
(4)請求項4記載の発明は、前記f1(x)にf2(y)をつなぎ合わせて一度に分光可能な波長範囲を広くするようにしたことを特徴とする。
f 1 (x) = g 1 (x) −Σf 2
f 2 (y) = g 2 (y) −Σf 1
(4) The invention described in claim 4 is characterized in that f 2 (y) is connected to f 1 (x) so as to widen the wavelength range that can be dispersed at once.

(5)請求項5記載の発明は、前記分光素子は円筒型又は球面型又はトロイダル型等の2次曲面型であることを特徴とする。
(6)請求項6記載の発明は、前記分光素子の形状が球面型又はトロイダル型等の円筒型以外の2次曲面型である場合、非分散方向の曲率を十分に大きくして結像面を直線とみなして分散光を求めるようにしたことを特徴とする。
(5) The invention according to claim 5 is characterized in that the spectroscopic element is a quadratic curved surface type such as a cylindrical type, a spherical type or a toroidal type.
(6) In the invention according to claim 6, when the shape of the spectroscopic element is a secondary curved surface type other than a cylindrical type such as a spherical type or a toroidal type, the curvature in the non-dispersion direction is sufficiently increased to form an image plane. It is characterized in that dispersed light is obtained by regarding as a straight line.

(7)請求項7記載の発明は、試料から発生した特性X線を受ける互いにほぼ90°の角度で配置された2つの分光素子と、該2つの分光素子からの分散光を同時に受けて検出信号に変換する位置敏感検出器と、該位置敏感検出器からの検出信号を検出データとして記憶するメモリと、該メモリに記憶された検出データを読み出して所定の画像処理を行なう画像処理部と、該画像処理部からの出力データを受けて分光情報を表示する表示部と、
を有することを特徴とする。
(7) According to the seventh aspect of the present invention, two spectroscopic elements that receive characteristic X-rays generated from a sample are disposed at an angle of approximately 90 ° to each other, and dispersed light from the two spectroscopic elements is simultaneously received and detected. A position sensitive detector for converting into a signal, a memory for storing a detection signal from the position sensitive detector as detection data, an image processing unit for reading out the detection data stored in the memory and performing predetermined image processing, A display unit that receives the output data from the image processing unit and displays spectral information;
It is characterized by having.

(8)請求項8記載の発明は、前記メモリに記憶された検出データを読み出して、各々の分光素子で分光した分散光の波形を分離して得ることを特徴とする。
(9)請求項9記載の発明は、前記画像処理部は、前記位置敏感検出器で検出した検出データをY軸方向に積算し、各積算値をX軸に投影して得られる波形をg1(x)、該検出データをX軸方向に積算し、各積算値をY軸に投影して得られた波形をg2(y)とする時、前記一方の分光素子で分光した分散光の波形をf1(x)、前記他方の分光素子で分光した分散光の波形をf2(y)とすると、それぞれのオフセット成分を、Σf2、Σ
1として、f1(x)、f2(y)を次式で求めることを特徴とする。
(8) The invention according to claim 8 is characterized in that the detection data stored in the memory is read out, and the waveform of the dispersed light dispersed by each spectroscopic element is separated.
(9) In the invention according to claim 9, the image processing unit integrates the detection data detected by the position sensitive detector in the Y-axis direction, and calculates a waveform obtained by projecting each integrated value on the X-axis. 1 (x), when the detected data is integrated in the X-axis direction, and the waveform obtained by projecting each integrated value on the Y-axis is g 2 (y), the dispersed light spectrally dispersed by the one spectroscopic element Where f 1 (x) is the waveform of the dispersed light and f 2 (y) is the waveform of the dispersed light dispersed by the other spectroscopic element, the offset components are Σf 2 , Σ
As f 1 , f 1 (x) and f 2 (y) are obtained by the following equations.

1(x)=g1(x)−Σf2
2(y)=g2(y)−Σf1
(10)請求項10記載の発明は、前記f1(x)にf2(y)をつなぎ合わせて波長幅の広い分光特性を得るようにしたことを特徴とする。
f 1 (x) = g 1 (x) −Σf 2
f 2 (y) = g 2 (y) −Σf 1
(10) The invention described in claim 10 is characterized in that f 2 (y) is connected to f 1 (x) to obtain a spectral characteristic with a wide wavelength range.

(11)請求項11記載の発明は、前記分光素子は円筒型又は球面型又はトロイダル型等の2次曲面型であることを特徴とする。
(12)請求項12記載の発明は、前記分光素子の形状が球面型又はトロイダル型等の円筒型以外の2次曲面型である場合、非分散方向の曲率を十分に大きくして結像面を直線とみなして分散光を求めるようにしたことを特徴とする。
(11) The invention according to claim 11 is characterized in that the spectroscopic element is a quadratic curved surface type such as a cylindrical type, a spherical type or a toroidal type.
(12) In the invention described in claim 12, when the shape of the spectroscopic element is a quadratic curved surface type other than a cylindrical type such as a spherical type or a toroidal type, the curvature in the non-dispersion direction is sufficiently increased to form an image plane. It is characterized in that dispersed light is obtained by regarding as a straight line.

(1)請求項1記載の発明によれば、試料から発生される特性X線を受ける互いにほぼ90°の角度に配置された2つの分光素子を用意し、これら分光素子で分光された特性X線を位置敏感検出器で検出し、検出した特性X線のデータを演算処理することで、広い波長範囲でX線の分光スペクトルを再現性よく得ることができる。   (1) According to the first aspect of the present invention, two spectroscopic elements arranged at an angle of approximately 90 ° to receive characteristic X-rays generated from a sample are prepared, and the characteristic X spectrally separated by these spectroscopic elements By detecting a line with a position sensitive detector and processing the detected characteristic X-ray data, an X-ray spectrum can be obtained with a high reproducibility in a wide wavelength range.

(2)請求項2記載の発明によれば、検出された分散光の像から各々の分光素子で分光した分散光の波形を分離して得ることにより、これら2つの分散光の波形をつないで、広い波長範囲のX線の分光スペクトルを得ることができる。   (2) According to the second aspect of the invention, by separating and obtaining the dispersed light waveforms dispersed by the respective spectral elements from the detected dispersed light image, the two dispersed light waveforms are connected. A spectrum of X-rays in a wide wavelength range can be obtained.

(3)請求項3記載の発明によれば、前記位置敏感検出器で検出したY軸方向に積算しX軸に投影した画像と、X軸方向に積算しY軸に投影した画像を用いて、X方向及びY方向に分離した分散光の波形を求めることができる。   (3) According to the invention described in claim 3, using the image detected by the position sensitive detector in the Y-axis direction and projected onto the X-axis, and the image accumulated in the X-axis direction and projected onto the Y-axis. The waveform of the dispersed light separated in the X direction and the Y direction can be obtained.

(4)請求項4記載の発明によれば、前記求めたX方向及びY方向の分散光の波形をつなぎ合わせて試料の広い波長範囲の分光特性を得ることができる。
(5)請求項5記載の発明によれば、分光素子として円筒形又は球面又はトロイダルの何れを用いても広い波長範囲の試料の分光特性を得ることができる。
(4) According to the invention described in claim 4, it is possible to obtain the spectral characteristics of a wide wavelength range of the sample by connecting the obtained waveforms of the dispersed light in the X direction and the Y direction.
(5) According to the invention described in claim 5, it is possible to obtain spectral characteristics of a sample in a wide wavelength range even if any of a cylindrical shape, a spherical surface or a toroidal is used as a spectroscopic element.

(6)請求項6記載の発明によれば、分光素子がどのような形状のものであっても、広い波長範囲の試料の分光特性を得ることができる。
(7)請求項7記載の発明によれば、試料から発生される特性X線を受ける互いにほぼ90°の角度に配置された2つの分光素子を用意し、これら分光素子の分光反射特性X線を位置敏感検出器で検出し、検出した分光反射特性X線のデータを演算処理することで、広い波長範囲でX線の分光スペクトルを再現性よく得ることができるX線分光装置を提供することができる。
(6) According to the invention described in claim 6, the spectral characteristics of the sample in a wide wavelength range can be obtained regardless of the shape of the spectroscopic element.
(7) According to the invention described in claim 7, two spectroscopic elements that receive characteristic X-rays generated from a sample are arranged at an angle of approximately 90 ° to each other, and the spectral reflection characteristic X-rays of these spectroscopic elements are prepared. An X-ray spectroscopic apparatus capable of obtaining a spectral spectrum of X-rays with a wide reproducibility in a wide wavelength range by detecting X-rays with a position sensitive detector and processing the detected spectral reflection characteristic X-ray data Can do.

(8)請求項8記載の発明によれば、検出された分散光の像から各々の分光素子で分光した分散光の波形を分離して得ることにより、これら2つの分散光の波形をつないで、広い範囲のX線の分光スペクトルを得ることができる。   (8) According to the eighth aspect of the invention, by separating and obtaining the dispersed light waveform dispersed by each spectroscopic element from the detected dispersed light image, the two dispersed light waveforms are connected. A broad spectrum of X-ray spectra can be obtained.

(9)請求項9記載の発明によれば、前記位置敏感検出器で検出したY軸方向に積算しX軸に投影した画像と、X軸に積算しY軸に投影した画像を用いて、X方向及びY方向に分離した分散光の波形を求めることができる。   (9) According to the invention described in claim 9, using the image integrated in the Y-axis direction detected by the position sensitive detector and projected on the X-axis, and the image integrated on the X-axis and projected on the Y-axis, The waveform of the dispersed light separated in the X direction and the Y direction can be obtained.

(10)請求項10記載の発明によれば、前記求めたX方向及びY方向の分散光の波形をつなぎ合わせて試料の広い波長範囲の分光特性を得ることができる。
(11)請求項11記載の発明によれば、分光素子として円筒形又は球面型又はトロイダル型等2次曲面型の何れを用いても広い波長範囲の試料の分光特性を得ることができる。
(10) According to the invention described in claim 10, it is possible to obtain the spectral characteristics in a wide wavelength range of the sample by connecting the obtained waveforms of the dispersed light in the X direction and the Y direction.
(11) According to the invention described in claim 11, the spectral characteristics of a sample in a wide wavelength range can be obtained regardless of whether the spectroscopic element is a cylindrical, spherical or quadric surface type such as a toroidal type.

(12)請求項12記載の発明によれば、分光素子がどのような形状のものであっても、広い波長範囲の試料の分光特性を得ることができる。   (12) According to the invention of the twelfth aspect, the spectral characteristics of the sample in a wide wavelength range can be obtained regardless of the shape of the spectroscopic element.

本発明の第1の実施の形態の構成概念図である。It is a composition conceptual diagram of a 1st embodiment of the present invention. 位置敏感検出器の検出像の説明図である。It is explanatory drawing of the detection image of a position sensitive detector. 波長範囲を拡大した分光スペクトルの求め方の説明図である。It is explanatory drawing of how to obtain | require the spectral spectrum which expanded the wavelength range. 検出器で検出した分散光の像を示す図である。It is a figure which shows the image of the dispersed light detected with the detector. X線マイクロアナライザの構成概念図である。It is a composition conceptual diagram of an X-ray microanalyzer. 従来装置の第1の構成概念図である。It is a 1st structure conceptual diagram of a conventional apparatus. 従来装置の第2の構成概念図である。It is a 2nd structure conceptual diagram of a conventional apparatus. 分光素子へのX線の入射の様子を示す図である。It is a figure which shows the mode of incidence | injection of the X-ray to a spectroscopic element.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。
(第1の実施の形態)
図1は本発明の第1の実施の形態の構成概念図である。第1の実施の形態は、分光素子を2枚ほぼ90°の角度で配置し、広い波長範囲における試料の分光特性を得るようにしたものである。図1において、図6と同一のものは、同一の符号を付して示す。図において、12は例えば電子線を出射する光源、12aは光源12から出射された電子プローブ、13は光源12から出射された電子プローブ12aが試料11に入射することにより出力される特性X線13である。14Aと14Bとはほぼ90°の角度で配置され、特性X線13を受けて分光させる分光素子である。14Aを分光素子1、14Bを分光素子2と呼ぶ。これら分光素子は、分光波長範囲が異なるものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a conceptual diagram of the configuration of the first embodiment of the present invention. In the first embodiment, two spectroscopic elements are arranged at an angle of approximately 90 ° to obtain the spectroscopic characteristics of a sample in a wide wavelength range. 1, the same components as those in FIG. 6 are denoted by the same reference numerals. In the figure, 12 is a light source that emits an electron beam, 12a is an electron probe emitted from the light source 12, 13 is a characteristic X-ray 13 output when the electron probe 12a emitted from the light source 12 is incident on the sample 11, and so on. It is. 14A and 14B are spectroscopic elements that are disposed at an angle of approximately 90 ° and that receive the characteristic X-rays 13 and separate the light. 14A is called the spectroscopic element 1, and 14B is called the spectroscopic element 2. These spectral elements have different spectral wavelength ranges.

15はこれら分光素子1,2により分光された特性X線の分散光を受けてそれに応じた電気信号(検出信号)を発生する位置敏感検出器である。該位置敏感検出器15としては、例えばCCDが好適に用いられる。該位置敏感検出器15はX方向とY方向を持つ2次元平面である。図の位置敏感検出器15は、受けたX線の分散光の様子を示すために階調を持たせている。16Aは分光素子14Aの分散光、16Bは分光素子14Bの分散光である。分散光16AはY軸にほぼ平行に現れ、分散光16BはX軸にほぼ平行に現れる。このように構成された装置の動作を説明すれば、以下の通りである。   Reference numeral 15 denotes a position sensitive detector that receives the dispersed light of the characteristic X-rays dispersed by the spectroscopic elements 1 and 2 and generates an electric signal (detection signal) corresponding thereto. For example, a CCD is preferably used as the position sensitive detector 15. The position sensitive detector 15 is a two-dimensional plane having an X direction and a Y direction. The position sensitive detector 15 in the figure has a gradation to show the state of the received X-ray dispersed light. 16A is the dispersed light of the spectroscopic element 14A, and 16B is the dispersed light of the spectroscopic element 14B. The dispersed light 16A appears substantially parallel to the Y axis, and the dispersed light 16B appears substantially parallel to the X axis. The operation of the apparatus configured as described above will be described as follows.

光源12からの電子プローブ12aを試料12に照射し、該試料11から発生された特性X線を分光波長範囲の異なる2種の分光素子1,2で分光し、その分散光をCCD等の位置敏感検出器15で検出する。この場合において、バックグラウンドを低減する必要性から、位置敏感検出器15には、試料11からのX線が直接入らないようにすることが必要である。   The sample 12 is irradiated with the electron probe 12a from the light source 12, and the characteristic X-rays generated from the sample 11 are dispersed by the two spectroscopic elements 1 and 2 having different spectral wavelength ranges, and the dispersed light is positioned at the CCD or the like. Detection is performed by the sensitive detector 15. In this case, it is necessary to prevent the X-ray from the sample 11 from directly entering the position sensitive detector 15 because of the necessity of reducing the background.

光源12から出射された電子プローブ12aは、試料11に照射される。この時、試料11からは特性X線13が発生する。この特性X線13は、分光素子14A,14Bに入射する。入射した特性X線13は該分光素子14A,14Bで分光され、位置敏感検出器15に到達する。該位置敏感検出器15は到達した特性X線に応じた電気信号を発生する。明るい領域は、対応する波長の特性X線が強いということであり、暗い部分は対応する波長の特性X線が弱いということである。   The sample 11 is irradiated with the electron probe 12 a emitted from the light source 12. At this time, characteristic X-rays 13 are generated from the sample 11. This characteristic X-ray 13 is incident on the spectroscopic elements 14A and 14B. The incident characteristic X-ray 13 is split by the spectroscopic elements 14 </ b> A and 14 </ b> B and reaches the position sensitive detector 15. The position sensitive detector 15 generates an electrical signal corresponding to the characteristic X-ray that has arrived. A bright region means that the characteristic X-ray of the corresponding wavelength is strong, and a dark part means that the characteristic X-ray of the corresponding wavelength is weak.

分散光の検出位置とカウント数により、得られた画像情報を、波長を横軸、縦軸を強度としてプロットしていくと、試料11の原子構造に関するスペクトル(X線分光スペクトル)が得られる。   When the obtained image information is plotted with the wavelength as the horizontal axis and the vertical axis as the intensity according to the detection position of the dispersed light and the number of counts, a spectrum (X-ray spectroscopic spectrum) relating to the atomic structure of the sample 11 is obtained.

このような動作を行ないながら、電子プローブ12aが試料11上を走査すると、試料11の全面にわたる分散光が得られる。
図1の位置敏感検出器15で検出したカウント(検出値)をY軸方向に積算し、各積算値をX軸に投影した波形をg1(x)、当該カウントをX軸方向に積算し、各積算値をY軸に投影した波形をg2(y)とする。分光素子1から得られた分散光16Aの波形をf1(x)、分光素子から得られた分散光16Bの波形をf2(y)とすると、f1(x),f2(y)はそれぞれ次式のようになる。
When the electron probe 12a scans the sample 11 while performing such an operation, dispersed light over the entire surface of the sample 11 is obtained.
The count (detected value) detected by the position sensitive detector 15 in FIG. 1 is integrated in the Y-axis direction, the waveform obtained by projecting each integrated value on the X-axis is g 1 (x), and the count is integrated in the X-axis direction. A waveform obtained by projecting each integrated value on the Y axis is defined as g 2 (y). Assuming that the waveform of the dispersed light 16A obtained from the spectroscopic element 1 is f 1 (x) and the waveform of the dispersed light 16B obtained from the spectroscopic element is f 2 (y), f 1 (x), f 2 (y) Is as follows:

1(x)=g1(x)−Σf2 (1)
2(y)=g2(y)−Σf1 (2)
ここで、Σf2,Σf1はそれぞれ分散光f1(x),f2(y)のオフセット成分(詳細後述)である。
f 1 (x) = g 1 (x) −Σf 2 (1)
f 2 (y) = g 2 (y) −Σf 1 (2)
Here, Σf 2 and Σf 1 are offset components (details will be described later) of the dispersed lights f 1 (x) and f 2 (y), respectively.

図2は位置敏感検出器の検出像の説明図である。30は検出像である。該検出像30は、図に示すようにx,y方向に平面画像として現れる。図中にハッチングで描いた部分は、輝度が高い部分を表している。g1(x)は図中に破線で示し、f1(x)は実線で示す。g1(x)とf1(x)の差分(オフセット分)がΣf2である。一方、g2(y)
は図中に破線で示し、f2(y)は実線で示す。g2(y)とf2(y)の差分(オフセット分)がΣf1である。Σf2とΣf1は、それぞれの方向の分光画像のオフセットと
見なせる。つまり、f1(x)は、投影画像g1(x)からオフセット分Σf2を引いた
ものとして示されている。f2(y)についても同様である。即ち、f2(y)は、投影画像g2(y)からオフセット分Σf1を引いたものとして示されている。この場合において、Σf2とΣf1は、図2に示す分光画像g1(x)、g2(y)の波形形状から差
分として求めることができる。
FIG. 2 is an explanatory diagram of a detection image of the position sensitive detector. Reference numeral 30 denotes a detection image. The detected image 30 appears as a planar image in the x and y directions as shown in the figure. A hatched portion in the figure represents a portion with high luminance. g 1 (x) is indicated by a broken line in the figure, and f 1 (x) is indicated by a solid line. The difference (offset) between g 1 (x) and f 1 (x) is Σf 2 . On the other hand, g 2 (y)
Is indicated by a broken line in the figure, and f 2 (y) is indicated by a solid line. The difference (offset) between g 2 (y) and f 2 (y) is Σf 1 . Σf 2 and Σf 1 can be regarded as offsets of the spectral images in the respective directions. That is, f 1 (x) is shown as a value obtained by subtracting the offset Σf 2 from the projected image g 1 (x). The same applies to f 2 (y). In other words, f 2 (y) is shown as the projection image g 2 (y) minus the offset Σf 1 . In this case, Σf 2 and Σf 1 can be obtained as a difference from the waveform shapes of the spectral images g 1 (x) and g 2 (y) shown in FIG.

このようにして求めた分光スペクトルをディスプレイ(図示せず)に表示する方法について説明する。位置敏感検出器15で、図2に示すようなg1(x)とΣf2、g2(y)とΣf1とが求まったら、画像処理装置(図示せず)は、これら画像をメモリ(図示せず)に記憶する。そして、試料11の全面にわたる分光画像が求まったら、(1)式,(2)式によりf1(x)とf2(y)を求める。 A method for displaying the spectrum obtained in this way on a display (not shown) will be described. When g 1 (x) and Σf 2 , g 2 (y) and Σf 1 as shown in FIG. 2 are obtained by the position sensitive detector 15, the image processing apparatus (not shown) stores these images in a memory ( (Not shown). When the spectral image over the entire surface of the sample 11 is obtained, f 1 (x) and f 2 (y) are obtained from the equations (1) and (2).

1(x)とf2(y)が求まったら、f1(x)とf2(y)を横につないで、波長範囲を拡大した分光スペクトルを求める。図3は波長範囲を拡大した分光スペクトルの求め方の説明図である。図において、(a)は前述した分光スペクトルf1(x)、(b)は前述した分光スペクトルf2(y)である。(a)の波長範囲をW1〜W2、(b)の波長範囲をW3からW4とする。分光素子を適当に選ぶとW2とW3がほぼ同じ波長になるようにすることができ、(a)と(b)を合わせたものが(c)に示す分光スペクトルである。波長範囲がW1〜W4まで広がった分光スペクトルが得られたことになる。 When f 1 (x) and f 2 (y) are obtained, f 1 (x) and f 2 (y) are connected horizontally to obtain a spectrum with an expanded wavelength range. FIG. 3 is an explanatory diagram of how to obtain a spectral spectrum in which the wavelength range is expanded. In the figure, (a) is the aforementioned spectral spectrum f 1 (x), and (b) is the aforementioned spectral spectrum f 2 (y). The wavelength range of (a) is W1-W2, and the wavelength range of (b) is W3 to W4. If a spectroscopic element is appropriately selected, W2 and W3 can be made to have substantially the same wavelength, and a combination of (a) and (b) is a spectroscopic spectrum shown in (c). A spectral spectrum having a wavelength range extending from W1 to W4 was obtained.

第1の実施の形態によれば、試料から反射される特性X線を受ける互いにほぼ90°の角度に配置された2つの分光素子を用意し、これら分光素子の分光反射特性X線を位置敏感検出器で検出し、検出した分光反射特性X線のデータを演算処理することで、広い波長範囲でX線の分光スペクトルを再現性よく得ることができるX線分光装置を提供することができる。   According to the first embodiment, two spectroscopic elements arranged at an angle of approximately 90 ° to receive characteristic X-rays reflected from the sample are prepared, and the spectral reflection characteristic X-rays of these spectroscopic elements are position sensitive. It is possible to provide an X-ray spectrometer capable of obtaining a spectral spectrum of X-rays in a wide wavelength range with good reproducibility by calculating and processing the detected spectral reflection characteristic X-ray data with a detector.

また、検出された分散光の像から各々の分光素子で分光した分散光の波形を分離して得ることにより、これら2つの分散光の波形をつないで、広い波長範囲のX線の分光スペクトルを得ることができる。また、前記位置敏感検出器で検出したY軸方向に積算し、各積算値をX軸に投影して得られる波形と、X軸方向に積算し、各積算値をY軸に投影して得られる波形を用いて、X方向及びY方向に分離した分散光の波形を求めることができる。   In addition, by separating the dispersed light waveform dispersed by each spectroscopic element from the detected dispersed light image, the two dispersed light waveforms can be connected to obtain an X-ray spectral spectrum in a wide wavelength range. Obtainable. In addition, integration is performed in the Y-axis direction detected by the position sensitive detector, each integrated value is projected onto the X-axis, and the waveform obtained by integrating in the X-axis direction, and each integrated value is projected onto the Y-axis. The waveform of the dispersed light separated in the X direction and the Y direction can be obtained using the obtained waveform.

また、前記求めたX方向及びY方向の分散光の波形をつなぎ合わせて試料の広い波長範囲の分光特性を得ることができる。更に、分光素子がどのような形状のものであっても、広い波長範囲の試料の分光特性を得ることができる。
(第2の実施の形態)
第2の実施の形態は、分光素子として実施の形態1で用いた円筒型のものではなく、球面、トロイダル等の円筒型以外の分光素子を用いたものである。その構成は、図1に示すものと同じであり、分光素子が異なるだけである。図1に示すように、試料11上の光源12から出た光を分光波長範囲の異なる2種類の分光素子14A,14Bで分光し、その分散光をCCD等の位置敏感検出器15で検出するものである。この場合において、バックグラウンドを低減するため、試料11で発生するX線が直接位置敏感検出器15に入らないようにする。実施の形態2の動作を以下に説明する。
Moreover, the spectral characteristics of a wide wavelength range of the sample can be obtained by connecting the obtained waveforms of the dispersed light in the X direction and the Y direction. Furthermore, the spectral characteristics of the sample in a wide wavelength range can be obtained regardless of the shape of the spectroscopic element.
(Second Embodiment)
In the second embodiment, a spectral element other than the cylindrical type such as a spherical surface or a toroidal is used instead of the cylindrical type used in the first embodiment. The configuration is the same as that shown in FIG. 1, except for the spectroscopic elements. As shown in FIG. 1, the light emitted from the light source 12 on the sample 11 is dispersed by two types of spectroscopic elements 14A and 14B having different spectral wavelength ranges, and the dispersed light is detected by a position sensitive detector 15 such as a CCD. Is. In this case, in order to reduce the background, X-rays generated in the sample 11 are prevented from entering the position sensitive detector 15 directly. The operation of the second embodiment will be described below.

図4に示すように、位置敏感検出器15で検出した分散光の像31を分散光32の波形のピーク(f1(x),f2(y)の極大値)の位置が直線状32’になるように平行移動し、配置し直す。ここで、分光素子14A,14Bとして球面、トロイダル等の円筒型以外の分光素子を用いると、位置敏感検出器15で検出される像は図4に示すように曲がっている。このような像のデータを一旦メモリ(図示せず)に取り込む。画像処理装置(図示せず)は、メモリに取り込んだ画像データを読み出し、曲がった図形がまっすぐになるように画像データの演算処理を行なう。この演算処理を、ここでは「平行移動し、配置し直す」と表現している。 As shown in FIG. 4, the position of the dispersed light 32 waveform peak 31 (maximum value of f 1 (x), f 2 (y)) of the dispersed light image 31 detected by the position sensitive detector 15 is linear 32. Translate and rearrange to become '. Here, when a spectral element other than a cylindrical type such as a spherical surface or a toroidal is used as the spectral elements 14A and 14B, the image detected by the position sensitive detector 15 is bent as shown in FIG. Such image data is once taken into a memory (not shown). An image processing apparatus (not shown) reads the image data fetched into the memory, and performs image data calculation processing so that the bent figure becomes straight. This arithmetic processing is expressed here as “translate and rearrange”.

再配置後の分散光の像39において長方形で囲める領域37から実施の形態1と同様に、位置敏感検出器15で検出したカウント(検出データ)をY軸方向に積算し、各積算値をX軸に投影したものをg1(x)とする。 As in the first embodiment, the count (detection data) detected by the position sensitive detector 15 is integrated in the Y-axis direction from the region 37 enclosed by the rectangle in the dispersed light image 39 after the rearrangement, and each integrated value is X Let g 1 (x) be the projection on the axis.

また、同様に分散光33の波形のピーク(f1(x),f2(y)の極大値)の位置が直線33’になるように平行移動し配置し直す。再配置後の分散光の像38において長方形で囲める領域41から、X軸方向に積算し、各積算値をY軸に投影したものをg2(y)とする。 Similarly, the position of the peak of the waveform of the dispersed light 33 (maximum value of f 1 (x), f 2 (y)) is translated and rearranged so that it becomes a straight line 33 ′. From the region 41 enclosed by the rectangle in the rearranged dispersed light image 38, integration is performed in the X-axis direction, and each integrated value is projected onto the Y-axis, and g 2 (y) is assumed.

実施の形態1と同様に、図1の分光素子14Aで分光した分散光の波形をf1(x)、分光素子14Bで分光した分散光の波形をf2(y)とすると、f1(x)、f2(y)は以下のようになる。 As in the first embodiment, when the waveform of the dispersed light dispersed by the spectroscopic element 14A in FIG. 1 is f 1 (x) and the waveform of the dispersed light dispersed by the spectroscopic element 14B is f 2 (y), f 1 ( x) and f 2 (y) are as follows.

1(x)=g1(x)−Σf2 (1)
2(y)=g2(y)−Σf1 (2)
ここで、Σf1,Σf2はg2(y),g1(x)のスペクトル形状から見積もる。見積
もり方法については、図2について説明した通りである。
f 1 (x) = g 1 (x) −Σf 2 (1)
f 2 (y) = g 2 (y) −Σf 1 (2)
Here, Σf 1 and Σf 2 are estimated from the spectral shapes of g 2 (y) and g 1 (x). The estimation method is as described with reference to FIG.

この場合において、第2の実施の形態によれば、分光素子として球面、トロイダル等の円筒型以外の分光素子の何れを用いても広い波長範囲の試料の分光特性を得ることができる。また、分光素子がどのような形状のものであっても、広い波長範囲の試料の分光特性を得ることができる。   In this case, according to the second embodiment, the spectral characteristics of the sample in a wide wavelength range can be obtained using any spectral element other than a cylindrical type such as a spherical surface or a toroidal as the spectral element. Moreover, the spectral characteristics of a sample in a wide wavelength range can be obtained regardless of the shape of the spectroscopic element.

この場合において、前記分光素子の形状が球面型又はトロイダル型等の円筒型以外の2次曲面型である場合、非分散方向の曲率を十分に大きくして結像面を直線とみなして分散光を求めるようにすることができる。これによれば、分光素子がどのような形状のものであっても、広い波長範囲の試料の分光特性を得ることができる。   In this case, when the shape of the spectroscopic element is a secondary curved surface type other than a cylindrical type such as a spherical type or a toroidal type, the curvature of the non-dispersion direction is sufficiently increased so that the imaging surface is regarded as a straight line and the dispersed light Can be requested. According to this, the spectral characteristics of the sample in a wide wavelength range can be obtained regardless of the shape of the spectroscopic element.

以上、詳細に説明したように、本発明によれば、複数の分光素子の分散光(回折光)を一つの位置敏感検出器で同時に検出して、分光器の駆動部をなくすことにより、波長再現性を向上させることができる。また、同時に複数の分光素子の分散光(回折光)を検出可能なため、複数の分光素子にまたがる広い波長範囲の測定時間の短縮ができる。更に、検出器を一つにすることにより、分光器の小型化や取り付けスペースを小さくすることができる。   As described above in detail, according to the present invention, by detecting the dispersed light (diffracted light) of a plurality of spectroscopic elements at the same time with one position sensitive detector and eliminating the spectroscopic drive unit, the wavelength can be reduced. Reproducibility can be improved. Moreover, since the dispersed light (diffracted light) of a plurality of spectroscopic elements can be detected at the same time, the measurement time in a wide wavelength range across the plurality of spectroscopic elements can be shortened. Furthermore, by using a single detector, the spectrometer can be downsized and the installation space can be reduced.

11 試料
12 光源
13 特性X線
14A 分光素子1
14B 分光素子2
15 位置敏感検出器
16A 分光素子1の分散光
16B 分光素子2の分散光
11 Sample 12 Light source 13 Characteristic X-ray 14A Spectroscopic element 1
14B Spectroscopic element 2
15 Position sensitive detector 16A Dispersed light 16B of the spectroscopic element 1 Dispersed light of the spectroscopic element 2

Claims (12)

試料から発生した特性X線を、互いにほぼ90°の角度で配置された2つの分光素子により分光し、
該2つの分光素子からの分散光を位置敏感検出器により同時に受けて検出信号に変換し、
該位置敏感検出器からの検出信号を検出データとしてメモリに記憶し、
該メモリに記憶された検出データを読み出して所定の画像処理を行ない、
該画像処理が行なわれたデータを受けて分光情報を表示する
ことを特徴とするX線分光情報取得方法。
The characteristic X-rays generated from the sample are dispersed by two spectroscopic elements arranged at an angle of approximately 90 ° to each other,
The dispersed light from the two spectroscopic elements is simultaneously received by a position sensitive detector and converted into a detection signal,
Storing a detection signal from the position sensitive detector as detection data in a memory;
The detection data stored in the memory is read and predetermined image processing is performed,
An X-ray spectroscopic information acquisition method comprising receiving spectrally processed data and displaying spectral information.
前記メモリに記憶された検出データを読み出して、各々の分光素子で分光した分散光の波形を分離して得ることを特徴とする請求項1記載のX線分光情報取得方法。   The X-ray spectroscopic information acquisition method according to claim 1, wherein the detection data stored in the memory is read out and the waveform of the dispersed light separated by each spectroscopic element is separated. 前記画像処理は、前記位置敏感検出器で検出した検出データをY軸方向に積算し、各積算値をX軸に投影して得られる波形をg1(x)、該検出データをX軸方向に積算し、各積算値をY軸に投影して得られた波形をg2(y)とする時、前記一方の分光素子で分光した分散光の波形をf1(x)、前記他方の分光素子で分光した分散光の波形をf2(y)とすると、それぞれのオフセット成分を、Σf2、Σf1として、f1(x)、f2
y)を次式で求めるものであることを特徴とする請求項1記載のX線分光情報取得方法。
1(x)=g1(x)−Σf2
2(y)=g2(y)−Σf1
In the image processing, the detection data detected by the position sensitive detector is integrated in the Y-axis direction, a waveform obtained by projecting each integrated value on the X-axis is g 1 (x), and the detection data is converted in the X-axis direction. When the waveform obtained by projecting each integrated value onto the Y axis is g 2 (y), the waveform of the dispersed light dispersed by the one spectroscopic element is f 1 (x), and the other Assuming that the waveform of the dispersed light dispersed by the spectroscopic element is f 2 (y), the offset components are Σf 2 and Σf 1 , and f 1 (x), f 2 (
2. The X-ray spectral information acquisition method according to claim 1, wherein y) is obtained by the following equation.
f 1 (x) = g 1 (x) −Σf 2
f 2 (y) = g 2 (y) −Σf 1
前記f1(x)にf2(y)をつなぎ合わせて一度に分光可能な波長範囲を広くするようにしたことを特徴とする請求項3記載のX線分光情報取得方法。 4. The X-ray spectroscopic information acquisition method according to claim 3, wherein f 2 (y) is connected to f 1 (x) to widen a wavelength range that can be dispersed at a time. 前記分光素子は円筒型又は球面型又はトロイダル型等の2次曲面型であることを特徴とする請求項1乃至4の何れか1項に記載のX線分光情報取得方法。   5. The X-ray spectral information acquisition method according to claim 1, wherein the spectroscopic element is a quadratic curved surface type such as a cylindrical type, a spherical type, or a toroidal type. 前記分光素子の形状が球面型又はトロイダル型等の円筒型以外の2次曲面型である場合、非分散方向の曲率を十分に大きくして結像面を直線とみなして分散光を求めるようにしたことを特徴とする請求項5記載のX線分光情報取得方法。   When the shape of the spectroscopic element is a quadratic curved surface type other than a cylindrical type such as a spherical type or a toroidal type, the dispersion in the non-dispersion direction is sufficiently increased so that the imaging surface is regarded as a straight line and the dispersed light is obtained. The X-ray spectral information acquisition method according to claim 5, wherein 試料から発生した特性X線を受ける互いにほぼ90°の角度で配置された2つの分光素子と、
該2つの分光素子からの分散光を同時に受けて検出信号に変換する位置敏感検出器と、
該位置敏感検出器からの検出信号を検出データとして記憶するメモリと、
該メモリに記憶された検出データを読み出して所定の画像処理を行なう画像処理部と、
該画像処理部からの出力データを受けて分光情報を表示する表示部と、
を有することを特徴とするX線分光装置。
Two spectroscopic elements arranged at an angle of approximately 90 ° to each other to receive characteristic X-rays generated from the sample;
A position sensitive detector that simultaneously receives dispersed light from the two spectroscopic elements and converts them into detection signals;
A memory for storing detection signals from the position sensitive detector as detection data;
An image processing unit that reads out detection data stored in the memory and performs predetermined image processing;
A display unit that receives the output data from the image processing unit and displays spectral information;
An X-ray spectrometer characterized by comprising:
前記メモリに記憶された検出データを読み出して、各々の分光素子で分光した分散光の波形を分離して得ることを特徴とする請求項7記載のX線分光装置。   The X-ray spectrometer according to claim 7, wherein the detection data stored in the memory is read out, and the waveform of the dispersed light separated by each spectroscopic element is separated. 前記画像処理部は、前記位置敏感検出器で検出した検出データをY軸方向に積算し、各積算値をX軸に投影して得られる波形をg1(x)、該検出データをX軸方向に積算し、各積算値をY軸に投影して得られた波形をg2(y)とする時、前記一方の分光素子で分光した分散光の波形をf1(x)、前記他方の分光素子で分光した分散光の波形をf2(y)とすると、それぞれのオフセット成分を、Σf2、Σf1として、f1(x)、f2
(y)を次式で求めることを特徴とする請求項7記載のX線分光装置。
1(x)=g1(x)−Σf2
2(y)=g2(y)−Σf1
The image processing unit integrates the detection data detected by the position sensitive detector in the Y-axis direction, g 1 (x) a waveform obtained by projecting each integrated value on the X-axis, and the detected data as the X-axis When the waveform obtained by integrating in the direction and projecting each integrated value on the Y axis is g 2 (y), the waveform of the dispersed light dispersed by the one spectroscopic element is f 1 (x), and the other Assuming that the waveform of the dispersed light dispersed by the spectroscopic element is f 2 (y), the offset components are Σf 2 and Σf 1 , and f 1 (x), f 2
8. The X-ray spectrometer according to claim 7, wherein (y) is obtained by the following equation.
f 1 (x) = g 1 (x) −Σf 2
f 2 (y) = g 2 (y) −Σf 1
前記f1(x)にf2(y)をつなぎ合わせて波長幅の広い分光特性を得るようにしたことを特徴とする請求項9記載のX線分光装置。 10. The X-ray spectrometer according to claim 9, wherein f 2 (y) is connected to f 1 (x) to obtain a spectral characteristic having a wide wavelength range. 前記分光素子は円筒型又は球面型又はトロイダル型等の2次曲面型であることを特徴とする請求項7乃至10の何れか1項に記載のX線分光装置。   The X-ray spectrometer according to any one of claims 7 to 10, wherein the spectroscopic element is a quadratic curved surface type such as a cylindrical type, a spherical type, or a toroidal type. 前記分光素子の形状が球面型又はトロイダル型等の円筒型以外の2次曲面型である場合、非分散方向の曲率を十分に大きくして結像面を直線とみなして分散光を求めるようにしたことを特徴とする請求項11記載のX線分光装置。   When the shape of the spectroscopic element is a quadratic curved surface type other than a cylindrical type such as a spherical type or a toroidal type, the dispersion in the non-dispersion direction is sufficiently increased so that the imaging surface is regarded as a straight line and the dispersed light is obtained. The X-ray spectrometer according to claim 11.
JP2009003340A 2009-01-09 2009-01-09 X-ray spectroscopic information acquisition method and X-ray spectroscopic apparatus Expired - Fee Related JP5204672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009003340A JP5204672B2 (en) 2009-01-09 2009-01-09 X-ray spectroscopic information acquisition method and X-ray spectroscopic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009003340A JP5204672B2 (en) 2009-01-09 2009-01-09 X-ray spectroscopic information acquisition method and X-ray spectroscopic apparatus

Publications (2)

Publication Number Publication Date
JP2010160094A true JP2010160094A (en) 2010-07-22
JP5204672B2 JP5204672B2 (en) 2013-06-05

Family

ID=42577355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009003340A Expired - Fee Related JP5204672B2 (en) 2009-01-09 2009-01-09 X-ray spectroscopic information acquisition method and X-ray spectroscopic apparatus

Country Status (1)

Country Link
JP (1) JP5204672B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253815A (en) * 2012-06-05 2013-12-19 Kohzu Precision Co Ltd X-ray spectroscope
JP2020144071A (en) * 2019-03-08 2020-09-10 日本電子株式会社 Analyzer and spectrum generation method
EP3745122A2 (en) 2019-05-31 2020-12-02 Jeol Ltd. X-ray analyzer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8689217B2 (en) 2008-10-31 2014-04-01 Electronics And Telecommunications Research Institute System and method for thread processing robot software components responsive to periodic, dedicated, and passive modes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106547A (en) * 1986-10-24 1988-05-11 Hitachi Ltd Multiple energy x-ray measuring apparatus
JPH01180439A (en) * 1988-01-12 1989-07-18 Shimadzu Corp X-ray spectroscopic device
JPH05340894A (en) * 1992-06-09 1993-12-24 Nippon Steel Corp X-ray picture photographing device and x-ray ct device using k-absorption edge difference method
JPH08110312A (en) * 1994-10-07 1996-04-30 Rigaku Ind Co Radiation spectroscope
JPH10507532A (en) * 1995-07-25 1998-07-21 フィリップス エレクトロニクス エヌ ベー X-ray spectrometer with multiple fixed measurement channels
JPH11326599A (en) * 1998-03-20 1999-11-26 Rigaku Denki Kk X-ray analyzer
JP2002039970A (en) * 2000-07-28 2002-02-06 Rigaku Corp X-ray device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106547A (en) * 1986-10-24 1988-05-11 Hitachi Ltd Multiple energy x-ray measuring apparatus
JPH01180439A (en) * 1988-01-12 1989-07-18 Shimadzu Corp X-ray spectroscopic device
JPH05340894A (en) * 1992-06-09 1993-12-24 Nippon Steel Corp X-ray picture photographing device and x-ray ct device using k-absorption edge difference method
JPH08110312A (en) * 1994-10-07 1996-04-30 Rigaku Ind Co Radiation spectroscope
JPH10507532A (en) * 1995-07-25 1998-07-21 フィリップス エレクトロニクス エヌ ベー X-ray spectrometer with multiple fixed measurement channels
JPH11326599A (en) * 1998-03-20 1999-11-26 Rigaku Denki Kk X-ray analyzer
JP2002039970A (en) * 2000-07-28 2002-02-06 Rigaku Corp X-ray device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253815A (en) * 2012-06-05 2013-12-19 Kohzu Precision Co Ltd X-ray spectroscope
JP2020144071A (en) * 2019-03-08 2020-09-10 日本電子株式会社 Analyzer and spectrum generation method
US11353414B2 (en) 2019-03-08 2022-06-07 Jeol Ltd. Analysis device and spectrum generation method
EP3745122A2 (en) 2019-05-31 2020-12-02 Jeol Ltd. X-ray analyzer
US11467106B2 (en) 2019-05-31 2022-10-11 Jeol Ltd. X-ray analyzer

Also Published As

Publication number Publication date
JP5204672B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
US4594509A (en) Infrared spectrometer
JP5307503B2 (en) X-ray analyzer and X-ray analysis method
JP6656210B2 (en) Spectrofluorometer
US7456950B2 (en) Spectroscope with spatial resolution control
JP6769402B2 (en) Electron microanalyzer and data processing program
KR101594794B1 (en) X-ray diffraction apparatus and x-ray diffraction measurement method
JP5116014B2 (en) Small-angle wide-angle X-ray measurement system
JP5204672B2 (en) X-ray spectroscopic information acquisition method and X-ray spectroscopic apparatus
JP2019020363A (en) Display device for optical analysis apparatus
KR20160030356A (en) X-ray fluorescence analyzer and method of adjusting measurement position thereof
US20180238735A1 (en) Spatially variable light source and spatially variable detector systems and methods
US5963320A (en) Active spectrometer
KR20120103476A (en) X-ray analyzing apparatus
JP5170582B2 (en) Spectroscopic analyzer for microscope
US9601308B2 (en) Spectroscopic element and charged particle beam device using the same
JP2010151801A (en) Raman imaging apparatus
CN109791116B (en) Wavelength dispersion type fluorescent X-ray analyzer
JP7030077B2 (en) X-ray analyzer
JP5429698B2 (en) Spectroscopic analyzer for microscope and spectroscopic analysis method of spectroscopic analyzer for microscope
US20160363481A1 (en) Spectrometer and analysis apparatus
JP2010223898A (en) Sample analysis method and sample analyzer
JPWO2019064632A1 (en) X-ray image pickup apparatus and image processing method of X-ray image pickup element
JP7284457B2 (en) Quantum efficiency distribution acquisition method, quantum efficiency distribution display method, quantum efficiency distribution acquisition program, quantum efficiency distribution display program, spectrofluorophotometer and display device
JP2007192552A (en) Spectral measuring instrument
JP2006276840A (en) Microscope apparatus, control unit thereof, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

R150 Certificate of patent or registration of utility model

Ref document number: 5204672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees