JPH08109047A - Method for preparing stabilized transparent electroconductive film - Google Patents

Method for preparing stabilized transparent electroconductive film

Info

Publication number
JPH08109047A
JPH08109047A JP26617794A JP26617794A JPH08109047A JP H08109047 A JPH08109047 A JP H08109047A JP 26617794 A JP26617794 A JP 26617794A JP 26617794 A JP26617794 A JP 26617794A JP H08109047 A JPH08109047 A JP H08109047A
Authority
JP
Japan
Prior art keywords
film
resistance
conductive film
transparent conductive
linearity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26617794A
Other languages
Japanese (ja)
Other versions
JP3662958B2 (en
Inventor
Kiyoshi Kawamura
潔 河村
Kazunori Saito
一徳 斉藤
Shigeo Yamada
茂男 山田
Mamoru Aizawa
守 会沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP26617794A priority Critical patent/JP3662958B2/en
Publication of JPH08109047A publication Critical patent/JPH08109047A/en
Application granted granted Critical
Publication of JP3662958B2 publication Critical patent/JP3662958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE: To obtain glass with a transparent electroconductive film having high resistance and excellent stability in an environmental test, by covering the surface of a transparent electroconductive film formed on a transparent glass substrate with a thin film containing an organic polysilane. CONSTITUTION: A transparent electroconductive film such as ITO, FTO, ATO, Al-doped ZnO or In-doped ZnO having 10-30nm thickness and 200-3,000Ω/square sheet resistance is formed on a transparent glass substrate by any method of sputtering, CVD, spraying, etc. The film is overcoated with a thin film containing an organic polysilane and having 2-50nm film thickness by forming a film from a solution of an organic polysilane compound by a dipping method, a spin coating method, etc., to give glass with a transparent electroconductive film having excellent resistance stability in an environmental change.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は透明導電膜付ガラス、及
び透明導電膜の成膜方法に関するものであり、特にタッ
チパネルの透明電極として用いられる高抵抗で均一性に
優れた透明導電膜の成膜方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film-attached glass and a method for forming a transparent conductive film, and particularly to the formation of a transparent conductive film having high resistance and excellent uniformity used as a transparent electrode of a touch panel. Membrane method.

【0002】[0002]

【従来の技術】スズをドープした酸化インジウム膜(I
TOと称す)やフッ素をドープした酸化スズ膜(FTO
と称す)、アンチモンをドープした酸化スズ膜(ATO
と称す)、アルミニウムをドープした酸化亜鉛膜、イン
ジウムをドープした酸化亜鉛膜はその優れた透明性と導
電性を利用して、液晶ディスプレイ、エレクトロルミネ
ッセンスディスプレイ、面発熱体、タッチパネルの電
極、太陽電池の電極等に広く使用されている。この様に
広い分野で使用されると、使用目的によって抵抗値、透
明度は種々のものが要求される。すなわち、フラットパ
ネルディスプレイ用の透明導電膜では低抵抗、高透過率
のものが要求されるが、タッチパネル用の透明導電膜で
は逆に高抵抗、高透過率の膜が要求される。特に最近開
発されて市場の伸びが期待されるペン入力タッチパネル
用の導電膜は、位置の認識精度が高くなくてはならない
ことから、シート抵抗が200〜3000Ω/□といっ
た高抵抗でかつ抵抗値の均一性に優れた膜であることが
要求される。
2. Description of the Related Art Tin-doped indium oxide film (I
Fluorine-doped tin oxide film (FTO)
, And a tin oxide film doped with antimony (ATO
The aluminum oxide-doped zinc oxide film and the indium-doped zinc oxide film make use of their excellent transparency and conductivity to make use of liquid crystal displays, electroluminescent displays, surface heating elements, touch panel electrodes, and solar cells. It is widely used for electrodes and the like. When used in such a wide field, various resistance values and transparency are required depending on the purpose of use. That is, a transparent conductive film for a flat panel display is required to have a low resistance and a high transmittance, whereas a transparent conductive film for a touch panel is required to have a film having a high resistance and a high transmittance. In particular, the conductive film for a pen input touch panel, which has been recently developed and is expected to grow in the market, needs to have high position recognition accuracy, and thus has a high sheet resistance of 200 to 3000 Ω / □ and a high resistance value. It is required that the film has excellent uniformity.

【0003】抵抗値の均一性を評価する方法として、リ
ニアリティ試験がある。この方法は透明導電膜の向かい
合った2辺に銀ペースト等で低抵抗の電極を作成し、両
電極間に1〜10Vの直流電圧を印加する。この時、両
電極の間隔をD、印加電圧をVとする。透明導電膜の任
意の点について、マイナスの電極からの距離をd、マイ
ナスの電極とその点の電位差をvとすると(d/D−v
/V)×100をリニアリティ(%)と定義する。リニ
アリティ値は位置と、検出した電位差から計算した位置
とのずれを定義する量であり、文字や図形を認識する目
的で製作されるタッチパネルでは通常リニアリティ値で
±2%以内の抵抗値のバラツキであることが要求され
る。更に、液晶ディスプレイの上に置くことから高透過
率の膜であることが要求される。通常、高透過率を達成
する方法は膜厚を薄くすることであった。しかしなが
ら、膜厚を薄くしすぎると抵抗の安定性が悪くなり、種
々の条件で環境試験を行うとリニアリティ値が増大する
ために、高透過率と抵抗の安定性を両立することは困難
なことであった。
There is a linearity test as a method for evaluating the uniformity of resistance value. In this method, low-resistance electrodes are made of silver paste or the like on two opposite sides of a transparent conductive film, and a DC voltage of 1 to 10 V is applied between the electrodes. At this time, the distance between both electrodes is D and the applied voltage is V. Let d be the distance from the negative electrode and v be the potential difference between the negative electrode and that point at any point of the transparent conductive film (d / D−v
/ V) × 100 is defined as linearity (%). The linearity value is a quantity that defines the deviation between the position and the position calculated from the detected potential difference. In a touch panel manufactured for the purpose of recognizing characters and figures, the linearity value is usually within ± 2% of the variation in resistance value. Required to be present. Further, since it is placed on the liquid crystal display, it is required to be a film having high transmittance. Usually, the method of achieving high transmittance was to reduce the film thickness. However, if the film thickness is made too thin, the stability of resistance deteriorates, and if an environmental test is performed under various conditions, the linearity value increases, so it is difficult to achieve both high transmittance and resistance stability. Met.

【0004】[0004]

【発明が解決しようとする課題】ITO、FTO、AT
O、酸化亜鉛膜等の透明導電膜材料はいずれも屈折率が
基板ガラスの屈折率(ソーダライムガラスでは1.5
2)より高く(1.7〜2.2)、透明導電膜の膜厚を
厚くすると基板との界面での反射が大きくなり、可視光
透過率が低下する。高透過率の膜を得ようとする場合は
膜厚を薄くする必要があるが、人間の目に感度良く感知
される550nm波長で85%の透過率を得ようとする
と膜厚は30nm以下の膜厚にする必要があり、89%
の透過率の場合には膜厚を20nm以下の膜厚にする必
要がある。膜厚を30nm以下まで薄くすると、温度変
化や湿度変化の影響を受けて抵抗値が変動しやすくな
り、面内の抵抗値の均一性が悪化する。従って、種々の
条件で環境試験を行うと抵抗値の均一性の悪化によりリ
ニアリティ値が増大してしまう。
[Problems to be Solved by the Invention] ITO, FTO, AT
All of the transparent conductive film materials such as O and zinc oxide film have the refractive index of the substrate glass (1.5 for soda lime glass).
2) higher (1.7 to 2.2), and when the film thickness of the transparent conductive film is increased, the reflection at the interface with the substrate is increased and the visible light transmittance is reduced. In order to obtain a film having a high transmittance, it is necessary to reduce the film thickness, but when it is attempted to obtain a transmittance of 85% at a wavelength of 550 nm which is sensitive to human eyes, the film thickness is 30 nm or less. Need to have a film thickness, 89%
In the case of the above transmittance, the film thickness needs to be 20 nm or less. When the film thickness is reduced to 30 nm or less, the resistance value is likely to change under the influence of temperature change and humidity change, and the in-plane resistance value uniformity is deteriorated. Therefore, when the environmental test is performed under various conditions, the linearity value increases due to the deterioration of the uniformity of the resistance value.

【0005】一般に行われる環境試験は多く、150〜
250℃で30〜60分といった高温−短時間試験、8
0〜100℃で100〜300時間といった中温度−長
時間試験、50〜80℃、90〜100%RHで100
〜300時間といった中温度−高湿度−長時間試験、更
に5〜10V直流電圧を印加して30〜80℃、90〜
100%RHで100〜300時間といった通電下−中
温度−高湿度−長時間試験や−50〜−20℃で100
〜300時間といった低温度−長時間試験がある。これ
らの環境試験によって抵抗が変動しても、面内全ての抵
抗が均一に変動するならば、リニアリティ値は変動せず
増大しないが、高温試験では酸素の出入りによって導電
膜のキャリア密度が変化するために抵抗値の変動が大き
く、リニアリティ値は増大する傾向を示す。また、高湿
度試験では水分の吸着によって抵抗が変化することが度
々ありこの場合もリニアリティ値は増大する傾向を示
す。通電下−中温度−高湿度−長時間試験(通電耐湿試
験と称す)ではプラス電極とマイナス電極付近での抵抗
変動の仕方が異なるためにリニアリティ値は顕著に増大
する傾向を示す。すなわち、プラス電極付近では酸化反
応が起こり導電膜が高抵抗化するのに対し、マイナス電
極付近では還元反応が起こり、導電膜は低抵抗化する。
そのために、導電膜の面内抵抗は高抵抗の部分と低抵抗
の部分が生じ、その結果リニアリティ値は±2%以上に
増大してしまう。
There are many commonly conducted environmental tests, ranging from 150 to
High temperature-short time test such as 30 to 60 minutes at 250 ° C, 8
Medium temperature-long time test such as 100 to 300 hours at 0 to 100 ° C., 100 at 50 to 80 ° C. and 90 to 100% RH
Medium temperature-high humidity-long time test such as ~ 300 hours, further applying 5-10V DC voltage, 30-80 ° C, 90-
Under energization at 100% RH for 100 to 300 hours-medium temperature-high humidity-long time test or 100 at -50 to -20 ° C.
There are low temperature-long time tests such as ~ 300 hours. Even if the resistance fluctuates by these environmental tests, if all the resistances in the plane fluctuate uniformly, the linearity value does not fluctuate and does not increase, but in the high temperature test, the carrier density of the conductive film changes due to the inflow and outflow of oxygen. Therefore, the resistance value varies greatly and the linearity value tends to increase. Further, in the high humidity test, the resistance often changes due to the adsorption of water, and the linearity value also tends to increase in this case. Under energization-medium temperature-high humidity-long-time test (referred to as energization humidity resistance test), the linearity value tends to remarkably increase because the way of resistance variation in the vicinity of the positive electrode and the negative electrode is different. That is, an oxidation reaction occurs near the plus electrode to increase the resistance of the conductive film, whereas a reduction reaction occurs near the minus electrode to decrease the resistance of the conductive film.
Therefore, the in-plane resistance of the conductive film has a high resistance portion and a low resistance portion, and as a result, the linearity value increases to ± 2% or more.

【0006】本発明は、前述の実情からみてなされたも
ので、種々の環境試験においてリニアリティが変化をし
ない、タッチパネル用の10〜30nmの膜厚の安定化
された透明導電膜を作成する方法を提供することを目的
とする。
The present invention has been made in view of the above-mentioned circumstances, and provides a method for producing a stabilized transparent conductive film having a film thickness of 10 to 30 nm for a touch panel, the linearity of which does not change in various environmental tests. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明者らは通電耐湿試
験等の環境試験でリニアリティ値が増大しない方法につ
いて鋭意検討した結果、透明導電膜上に有機ポリシラン
を含有する膜をオーバーコートする方法により、抵抗安
定性の良好な透明導電膜が得られることを見出し、本発
明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have earnestly studied a method in which a linearity value does not increase in an environmental test such as an electric current humidity resistance test, and as a result, a method of overcoating a film containing an organic polysilane on a transparent conductive film. As a result, they have found that a transparent conductive film having good resistance stability can be obtained, and completed the present invention.

【0008】即ち、本発明は、(1)透明ガラス基板上
に形成した透明導電膜の表面を有機ポリシランを含有す
る薄膜で覆うことを特徴とする安定化透明導電膜の作製
方法、(2)透明導電膜のシート抵抗値が、200〜3
000Ω/□、リニアリティ値が±2%以内である安定
化透明導電膜の作製方法、および上記方法によって作製
された透明導電膜付ガラスを用いたタッチパネルであ
る。以下、本発明を詳細に説明する。
That is, the present invention provides: (1) a method for producing a stabilized transparent conductive film, characterized in that the surface of a transparent conductive film formed on a transparent glass substrate is covered with a thin film containing organic polysilane. The sheet resistance of the transparent conductive film is 200 to 3
A touch panel using a glass with a transparent conductive film produced by the above method, and a method of producing a stabilized transparent conductive film having a linearity value of 000Ω / □ and a linearity value within ± 2%. Hereinafter, the present invention will be described in detail.

【0009】本発明の基板上に形成される透明導電膜と
しては、ITO、FTO、ATO、AlドープZnO、
InドープZnO等が用いられるが、本発明の範囲はこ
れに限定されるものではない。
As the transparent conductive film formed on the substrate of the present invention, ITO, FTO, ATO, Al-doped ZnO,
Although In-doped ZnO or the like is used, the scope of the present invention is not limited to this.

【0010】通常一般的に用いられている安価なソーダ
ライムガラス(SLGと称す)を基板とした場合、シー
ト抵抗が200〜3000Ω/□の導電膜で実用的な膜
厚は10〜30nmであり、この膜厚での抵抗安定性は
良いとは言えず種々の環境試験を行うと、抵抗値が変動
する。抵抗値が変動する原因は高温下での膜表面の酸素
の授受であったり、高湿度下での水分の吸着であった
り、通電高湿度下での電解酸化−還元等であり、外部と
の相互作用の結果抵抗値が変動すると考えられる。すな
わち、導電膜に外部環境の影響を及ぼさないようにすれ
ば、抵抗変動は起きず、リニアリティも変化しないであ
ろう。この様な観点から導電膜上に酸化防止膜や、水分
防止膜をオーバーコートすることによって目的が逹せら
れると考え、導電性膜の抵抗を変化させず、すなわちそ
れ自身導電性を持っており、且つ透過率も低下しないオ
ーバーコート膜について探索、検討した。その結果、透
明導電膜上に有機ポリシランを含有する膜をオーバーコ
ートする方法により、種々の環境試験下でも抵抗安定性
の良好な透明導電膜が得られることを見出した。
When an inexpensive soda lime glass (referred to as SLG) which is generally used in general is used as a substrate, a conductive film having a sheet resistance of 200 to 3000 Ω / □ and a practical film thickness of 10 to 30 nm. However, the resistance stability at this film thickness cannot be said to be good, and the resistance value fluctuates when various environmental tests are performed. The reason why the resistance value fluctuates is the exchange of oxygen on the film surface at high temperature, the adsorption of water under high humidity, the electrolytic oxidation-reduction under high current and humidity, etc. It is considered that the resistance value fluctuates as a result of the interaction. That is, if the conductive film is not affected by the external environment, resistance fluctuation will not occur and linearity will not change. From this point of view, it is thought that the purpose can be achieved by overcoating the conductive film with an antioxidant film or a moisture preventive film, and the resistance of the conductive film is not changed, that is, it has conductivity itself. In addition, an overcoat film that does not decrease the transmittance was searched and examined. As a result, it was found that a transparent conductive film having good resistance stability can be obtained even under various environmental tests by a method of overcoating a film containing an organic polysilane on the transparent conductive film.

【0011】有機ポリシラン化合物は、ジメチルジクロ
ルシラン、フェニルメチルジクロルシラン、ジフェニル
ジクロルシラン等の少なくとも1種を原料とし、金属ナ
トリウムを触媒、トルエン等の溶媒中でウルツカップリ
ング反応等で合成したポリマーである。反応溶液は過剰
の金属ナトリウムを含んでいるので、要すればメタノー
ル等の溶媒中に投入して精製してもよい。
The organic polysilane compound is prepared by using at least one of dimethyldichlorosilane, phenylmethyldichlorosilane, diphenyldichlorosilane, etc. as a raw material, metal sodium as a catalyst and a Wurtz coupling reaction in a solvent such as toluene. It is a polymer. Since the reaction solution contains an excessive amount of metallic sodium, it may be put into a solvent such as methanol for purification if necessary.

【0012】有機ポリシラン化合物はトルエンやキシレ
ン等に溶解させ、通常10%以下の濃度の溶液を調製し
てディップ法、スピンコート法、パイロゾル法、スプレ
ー法等で成膜する。膜厚は厚すぎると導電性と透過率を
低下させ、薄すぎると抵抗安定性の効果が無くなるので
2〜50nm、望ましくは5〜20nmの膜厚でオーバ
ーコートする。ディップ法、スピンコート法で成膜する
場合は、成膜後100〜300℃で乾燥する。
The organic polysilane compound is dissolved in toluene, xylene or the like, and a solution having a concentration of 10% or less is usually prepared, and a film is formed by a dip method, a spin coating method, a pyrosol method, a spray method or the like. If the film thickness is too thick, the conductivity and transmittance will be reduced, and if it is too thin, the effect of resistance stability will be lost, so overcoating is performed with a film thickness of 2 to 50 nm, preferably 5 to 20 nm. When the film is formed by the dip method or the spin coat method, it is dried at 100 to 300 ° C. after the film formation.

【0013】透明導電膜を成膜する方法としては、一般
に知られている方法を採用できる。即ち、スパッター
法、電子ビーム蒸着法、イオンプレーティング法、化学
気相成膜法(CVD法)、パイロゾル法、スプレー法、
ディップ法等で所定の材料を所定の厚さで成膜すること
で達成される。
As a method for forming the transparent conductive film, a generally known method can be adopted. That is, a sputtering method, an electron beam evaporation method, an ion plating method, a chemical vapor deposition method (CVD method), a pyrosol method, a spray method,
This is achieved by forming a predetermined material with a predetermined thickness by a dip method or the like.

【0014】[0014]

【実施例】以下、実施例により本発明を更に具体的に説
明する。ただし、本発明はこれらに何ら限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these.

【0015】実施例1 厚さ1mmで10cm角のソーダライムガラスを超音波
霧化による常圧CVD法(パイロゾル成膜法)成膜装置
にセットし450℃に加熱した。InCl3 のCH3
H溶液(濃度は0.25mol/l)にSnCl4 をI
nに対して10原子%添加した溶液を超音波により2.
5ml/min霧化させ基板に導入し、2分間成膜し
た。その後成膜装置より取り出し、空気中で冷却した。
得られた膜は膜厚20nmのITO結晶膜であった。こ
の膜のシート抵抗を9点測定したところ、平均550Ω
/□、比抵抗1.1×10-3Ωcmであった。シート抵抗
の均一性は、平均±45Ω/□以内であった。透過率は
550nmで90.0%を示した。一方、有機ポリシラ
ンを含有するディップ用溶液を次に示す方法で調製し
た。フェニルメチルジクロルシラン0.85モル、ジフ
ェニルジクロルシラン0.15モル、金属ナトリウムを
1.2倍当量をトルエン溶媒に仕込み、還流下で反応さ
せた。反応終了後、大過剰のメタノール中に投入して精
製したポリシラン化合物を得た(分子量は約16000
であった)。精製した有機ポリシラン化合物をトルエン
に溶解して0.5%の液とした。前記したITO付ガラ
スの裏面をマスクテープで保護した後、この有機ポリシ
ラン溶液にディップし、20cm/minの速度で引き
上げ、200℃で15分乾燥した。マスクテープを剥が
し、シート抵抗と透過率を測定したところ、平均シート
抵抗540Ω/□、シート抵抗の均一性は±45Ω/□
以内であった。550nmの透過率は89.1%を示し
た。この試料について耐熱試験と通電耐湿試験を行っ
た。耐熱試験は、200℃で1時間加熱後の抵抗変化を
測定したところ、シート抵抗は、平均530Ω/□であ
り、シート抵抗の均一性は、平均±48Ω/□以内であ
った。通電耐湿試験については以下のように行った。ま
ず、この試料の向かい合う辺に導電性の銀ペーストを5
mm幅で塗布し電極を作成した。この2本の電極に直流
5Vを印加してリニアリティを5列(15mm間隔)、
10点/列(8mm間隔)で測定したところ−0.3〜
0.2%の値であった。この試料の7V,40℃,95
%RHの条件下で240時間放置した後のリニアリティ
を測定したところ−0.1〜0.3%の値であり、ほと
んど変化していなかった。
Example 1 Soda lime glass having a thickness of 1 mm and a size of 10 cm was set in an atmospheric pressure CVD (pyrosol film forming) film forming apparatus by ultrasonic atomization and heated to 450 ° C. InCl 3 CH 3 O
SnCl 4 was added to H solution (concentration: 0.25 mol / l)
2. A solution in which 10 atomic% of n is added by ultrasonic wave.
It was atomized at 5 ml / min, introduced into the substrate, and formed into a film for 2 minutes. Then, it was taken out from the film forming apparatus and cooled in air.
The obtained film was an ITO crystal film having a film thickness of 20 nm. When the sheet resistance of this film was measured at 9 points, the average was 550Ω.
/ □, the specific resistance was 1.1 × 10 −3 Ωcm. The sheet resistance uniformity was within ± 45Ω / □ on average. The transmittance was 90.0% at 550 nm. On the other hand, a dipping solution containing an organic polysilane was prepared by the following method. 0.85 mol of phenylmethyldichlorosilane, 0.15 mol of diphenyldichlorosilane, and 1.2 times equivalent of sodium metal were charged in a toluene solvent and reacted under reflux. After completion of the reaction, the polysilane compound was purified by pouring it into a large excess of methanol (the molecular weight is about 16,000).
Met). The purified organic polysilane compound was dissolved in toluene to give a 0.5% solution. After the back surface of the glass with ITO described above was protected by a mask tape, it was dipped in this organic polysilane solution, pulled up at a speed of 20 cm / min, and dried at 200 ° C. for 15 minutes. When the mask tape was peeled off and the sheet resistance and transmittance were measured, the average sheet resistance was 540 Ω / □, and the sheet resistance uniformity was ± 45 Ω / □.
It was within. The transmittance at 550 nm was 89.1%. A heat resistance test and an electric humidity resistance test were performed on this sample. In the heat resistance test, when a resistance change after heating at 200 ° C. for 1 hour was measured, the sheet resistance was 530 Ω / □ on average, and the uniformity of the sheet resistance was ± 48 Ω / □ on average. The electric humidity resistance test was performed as follows. First, apply a conductive silver paste to the opposite sides of this sample.
An electrode was prepared by coating with a width of mm. DC 5V is applied to these two electrodes to provide linearity in 5 rows (15 mm interval),
When measured at 10 points / row (8 mm interval), -0.3 to
The value was 0.2%. 7V, 40 ° C, 95 of this sample
When the linearity after standing for 240 hours under the condition of% RH was measured, it was a value of −0.1 to 0.3%, which was almost unchanged.

【0016】実施例2 実施例1において、フェニルメチルジクロルシラン0.
5モル、ジフェニルジクロルシラン0.5モルにした以
外は実施例1と全く同様の方法で行った。この反応で得
られたポリシランの分子量は約13000であった。精
製した有機ポリシラン化合物をトルエンに溶解して1w
t%の溶液を調製し、実施例1と同様の方法でオーバー
コートした。。マスクテープを剥がし、シート抵抗と透
過率を測定したところ、シート抵抗は、平均520Ω/
□であり、シート抵抗の均一性は、平均±45Ω/□以
内であった。透過率は550nmで89.0%を示し
た。実施例1と同様に耐熱試験と通電耐湿試験を行った
ところ、耐熱試験後のシート抵抗は、平均510Ω/□
であり、シート抵抗の均一性は、平均±46Ω/□以内
であった。通電耐湿試験前のリニアリティは−0.5〜
0.1%の値であった。この試料を7V,40℃,95
%RHの条件下で240時間放置した後、試験前と同じ
条件でリニアリティを測定したところ−0.4〜0.1
%の値であり、ほとんど変化していなかった。
Example 2 In Example 1, phenylmethyldichlorosilane 0.
The procedure was exactly the same as in Example 1 except that the amount was 5 mol and the amount of diphenyldichlorosilane was 0.5 mol. The molecular weight of the polysilane obtained by this reaction was about 13,000. 1w by dissolving the purified organic polysilane compound in toluene
A t% solution was prepared and overcoated in the same manner as in Example 1. . When the mask tape was peeled off and the sheet resistance and the transmittance were measured, the average sheet resistance was 520 Ω /
□, and the uniformity of the sheet resistance was within ± 45Ω / □ on average. The transmittance was 89.0% at 550 nm. When a heat resistance test and an electric humidity resistance test were conducted in the same manner as in Example 1, the sheet resistance after the heat resistance test was 510Ω / □ on average.
The average sheet resistance was within ± 46Ω / □. The linearity before the electric humidity test is -0.5 ~
The value was 0.1%. This sample is 7V, 40 ° C, 95
After standing for 240 hours under the condition of% RH, the linearity was measured under the same conditions as before the test, and the linearity was -0.4 to 0.1.
%, Which was almost unchanged.

【0017】比較例1 実施例1と同様の方法でITO成膜を行った。この膜に
オーバーコートをしないで実施例1と同様に耐熱試験と
通電耐湿試験を行ったところ、耐熱試験後のシート抵抗
は、平均710Ω/□であり、シート抵抗の均一性は、
平均±140Ω/□となった。通電耐湿試験前のリニア
リティは−0.3〜0.2%の値であった。この試料を
7V,40℃,95%RHの条件下で240時間放置し
た後、試験前と同じ条件でリニアリティ値を測定したと
ころ2.5〜3.8%に増大した。
Comparative Example 1 An ITO film was formed in the same manner as in Example 1. When a heat resistance test and an electric humidity resistance test were carried out in the same manner as in Example 1 without overcoating this film, the sheet resistance after the heat resistance test was 710 Ω / □ on average, and the uniformity of the sheet resistance was
The average was ± 140Ω / □. The linearity before the electrical humidity resistance test was a value of -0.3 to 0.2%. After this sample was left for 240 hours under the conditions of 7 V, 40 ° C. and 95% RH, the linearity value was measured under the same conditions as before the test, and the linearity value increased to 2.5 to 3.8%.

【0018】ガラス基板にITO成膜しただけの膜(比
較例1)の耐熱性は悪く1.3倍程度にシート抵抗は増
加し、均一性も約±20%に悪化するのに対し、本発明
によるオーバーコートを行うと、オーバーコート後のシ
ート抵抗、均一性、透過率はそれほど変わらないのに、
耐熱試験後もシート抵抗は1.1倍以下に抑えられ、均
一性も±10%以内を維持する。更に、通電耐湿試験を
行った場合のリニアリティは、オーバーコートなしの膜
(比較例1)が2%以上の値に増大したのに、本発明の
オーバーコートにより、いずれも±1%以内のリニアリ
ティ値を示し効果が大きいことが示された。
The heat resistance of a film (Comparative Example 1) formed by depositing ITO on a glass substrate is poor, and the sheet resistance increases about 1.3 times, and the uniformity deteriorates to about ± 20%. When the overcoating according to the invention is carried out, the sheet resistance, the uniformity and the transmittance after the overcoating do not change so much,
After the heat resistance test, the sheet resistance is suppressed to 1.1 times or less, and the uniformity is maintained within ± 10%. Further, the linearity in the case of conducting the resistance to humidity test was 2% or more in the film without the overcoat (Comparative Example 1), but the linearity was within ± 1% by the overcoat of the present invention. The results showed that the effect was great.

【0019】[0019]

【発明の効果】以上説明したように、本発明の方法によ
り、加熱によるシート抵抗変化を抑制し、かつ通電耐湿
試験でリニアリティ値が増大しない安定性に優れた透明
導電膜付ガラスを作製することが出来る。
As described above, according to the method of the present invention, it is possible to produce a glass with a transparent conductive film which suppresses a change in sheet resistance due to heating and which is excellent in stability in which a linearity value does not increase in a current resistance test. Can be done.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 会沢 守 千葉県市原市五井南海岸12−54 日本曹達 株式会社機能製品研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mamoru Aizawa 12-54 Goi Minamikaigan, Ichihara City, Chiba Nippon Soda Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】透明ガラス基板上に形成した透明導電膜の
表面を有機ポリシランを含有する薄膜で覆うことを特徴
とする安定化透明導電膜の作製方法。
1. A method for producing a stabilized transparent conductive film, which comprises covering the surface of a transparent conductive film formed on a transparent glass substrate with a thin film containing organic polysilane.
【請求項2】透明導電膜のシート抵抗値が、200〜3
000Ω/□、リニアリティ値が±2%以内である請求
項1記載の安定化透明導電膜の作製方法。
2. A transparent conductive film having a sheet resistance value of 200 to 3
The method for producing a stabilized transparent conductive film according to claim 1, wherein 000Ω / □ and a linearity value are within ± 2%.
【請求項3】請求項1、2記載の方法によって作製され
た透明導電膜付ガラスを用いたタッチパネル。
3. A touch panel using glass with a transparent conductive film produced by the method according to claim 1.
JP26617794A 1994-10-05 1994-10-05 Touch panel Expired - Fee Related JP3662958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26617794A JP3662958B2 (en) 1994-10-05 1994-10-05 Touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26617794A JP3662958B2 (en) 1994-10-05 1994-10-05 Touch panel

Publications (2)

Publication Number Publication Date
JPH08109047A true JPH08109047A (en) 1996-04-30
JP3662958B2 JP3662958B2 (en) 2005-06-22

Family

ID=17427334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26617794A Expired - Fee Related JP3662958B2 (en) 1994-10-05 1994-10-05 Touch panel

Country Status (1)

Country Link
JP (1) JP3662958B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902333A2 (en) * 1997-09-09 1999-03-17 Matsushita Electric Industrial Co., Ltd. Sheet having antistatic function and manufacturing method therefor
JP2005036139A (en) * 2003-07-17 2005-02-10 Osaka Gas Co Ltd Copolysilane and method for producing the same
WO2024071414A1 (en) * 2022-09-29 2024-04-04 ダイキン工業株式会社 Surface treatment agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902333A2 (en) * 1997-09-09 1999-03-17 Matsushita Electric Industrial Co., Ltd. Sheet having antistatic function and manufacturing method therefor
EP0902333A3 (en) * 1997-09-09 2001-07-25 Matsushita Electric Industrial Co., Ltd. Sheet having antistatic function and manufacturing method therefor
JP2005036139A (en) * 2003-07-17 2005-02-10 Osaka Gas Co Ltd Copolysilane and method for producing the same
WO2024071414A1 (en) * 2022-09-29 2024-04-04 ダイキン工業株式会社 Surface treatment agent

Also Published As

Publication number Publication date
JP3662958B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
GB2094355A (en) Sputtered indium-tin oxide coating
US4048372A (en) Coating of cadmium stannate films onto plastic substrates
JPH08109043A (en) Transparent electroconductive film-attached glass having high resistance
JP2003109434A (en) Transparent conductive film and touch panel
CN102723128A (en) Flexible transparent conductive film and manufacturing method thereof and touch panel
JP3662958B2 (en) Touch panel
JP2989886B2 (en) Analog touch panel
JP4406237B2 (en) A method for producing a transparent substrate with a multilayer film having conductivity.
JP4132191B2 (en) Electrode member for resistive film type transparent touch panel
JP3545141B2 (en) Transparent conductive laminate and touch panel using the same
JPH08109046A (en) Method for stabilizing transparent electroconductive film having high resistance
JPH08249929A (en) Transparent electrode film for input panel of coordinate data input apparatus
JPS59198607A (en) Transparent conductive film having protective film
JP2010020951A (en) Method for manufacturing transparent conductive film
JPH07257945A (en) Transparent electric conductive laminated body and pen input touch panel
JPH08109045A (en) Method for stabilizing film of indium oxide doped with tin
JP2000113732A (en) Transparent conductive film, its manufacture, substrate with transparent conductive film, and touch panel
JPH1165771A (en) Electrode substrate for touch panel and manufacture of the same
JPH08109044A (en) Method for stabilizing transparent electroconductive film
JP3627273B2 (en) Resin substrate with transparent conductive film and method for producing the same
JPH08119675A (en) Stabilized glass with transparent electrically conductive film
JP4245339B2 (en) Method for producing conductive transparent substrate with multilayer film
JPH10134638A (en) Transparent conductive film, its manufacture, substrate with transparent conductive film, and transparent touch panel with it
JPH08132554A (en) Transparent conductive film
US20220086961A1 (en) Transparent thin film heater with good moisture tolerance and mechanical properties comprising a transparent conducting oxide and the method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050325

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees