JP3627273B2 - Resin substrate with transparent conductive film and method for producing the same - Google Patents

Resin substrate with transparent conductive film and method for producing the same Download PDF

Info

Publication number
JP3627273B2
JP3627273B2 JP03261495A JP3261495A JP3627273B2 JP 3627273 B2 JP3627273 B2 JP 3627273B2 JP 03261495 A JP03261495 A JP 03261495A JP 3261495 A JP3261495 A JP 3261495A JP 3627273 B2 JP3627273 B2 JP 3627273B2
Authority
JP
Japan
Prior art keywords
film
transparent conductive
resin substrate
sin
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03261495A
Other languages
Japanese (ja)
Other versions
JPH07278790A (en
Inventor
輝行 矢上
悟 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP03261495A priority Critical patent/JP3627273B2/en
Publication of JPH07278790A publication Critical patent/JPH07278790A/en
Application granted granted Critical
Publication of JP3627273B2 publication Critical patent/JP3627273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、液晶ディスプレイ、タッチパネルなどの表示装置に用いられる透明導電膜付き樹脂基板およびその製造方法に関する。
【0002】
【従来の技術】
液晶表示装置をはじめ、その他の電子ディスプレイデバイス用の透明電極として、透明導電金属酸化物であるITO(Snを含有するIn )薄膜が汎用されている。特に近年、液晶表示装置は電子手帳、高機能付き電話機、小型ワープロ、ポータブル情報端末機器等に採用されており、液晶表示素子を用いた製品の小型軽量化に伴い、液晶表示素子自身の小型軽量化と、耐衝撃性に優れた液晶表示素子への要求が高まってきた。その軽量性、耐衝撃性ゆえに、ガラス基板の代わりに透明樹脂基板(以下樹脂基板という)を用いた液晶表示装置やタッチパネルディスプレイが盛んに検討されている。
【0003】
従来の液晶表示装置に用いられる透明導電樹脂基板は、樹脂基板上にスパッタリング法や真空蒸着法等のPVD法によりITO等の透明導電金属酸化物膜(以下透明導電膜という)を形成し、そののちフォトリソグラフィー工程、ウェットエッチング工程によりITO電極の微細加工(以下パターニングという)をして作製される。
【0004】
しかし、樹脂基板と透明導電膜の付着力が充分でなくウェットエッチング工程で透明導電膜が剥離したり、またアンダーカットやサイドエッチングが大きくパターニングが安定しない。この場合、上記の液晶表示素子等の電子ディスプレイデバイスの透明電極として利用する際には、微小なクラック、膜剥離等でも断線、表示むら、低耐久性などの品質劣化を招くため、生産性を著しく損なうという問題があった。
【0005】
これらの解決方法として、樹脂基板上に有機系または無機系の中間層や、樹脂基板と透明導電膜の間に、RF放電スパッタリング法により中間層としてSiO 膜を形成する手法が主に採用されている。しかし、活性度の高いRF放電プラズマ、とりわけ酸素プラズマによる樹脂層へのダメージのため、透明導電膜のパターニング特性が安定しない。このため耐久性テスト後に、透明導電膜の剥離が生じるなど、その性能は充分とはいえないのが現状である。
【0006】
【発明が解決しようとする課題】
本発明の目的は、従来の透明導電樹脂基板の製造方法が有する前述の問題点の解決にある。
【0007】
【課題を解決するための手段】
本発明は、透明樹脂基板と透明導電金属酸化物薄膜層の間に中間膜を設けた透明導電膜付き樹脂基板において、該中間膜はSiNx からなり、かつ不純物ドープSiターゲットを用いてN 2 および/またはNH 3 を含むガスによりDC放電スパッタリング法で形成されたものであることを特徴とする透明導電膜付き樹脂基板の製造方法を提供する。
【0008】
本発明においては、透明樹脂基板(以下樹脂基板という)、または樹脂基板の保護層上に中間膜を形成する際に、活性度の高いRF放電プラズマ、とりわけ酸素プラズマを使用しないで中間膜を形成することが重要である。
【0009】
図1は本発明に係る透明樹脂基板の断面図である。1は樹脂基板を、2は保護層を示す。この保護層2は樹脂基板1の種類により不要となることもある。3は中間膜のSiN 膜であり、4は透明導電金属酸化物薄膜層(以下透明導電膜という)である。
【0010】
本発明の樹脂基板1としては、例えばポリエチレンテレフタレート、ポリフェニレンスルフィド、ポリイミド、ポリエーテルイミド、ポリメチルメタクリレート、ポリカーボネート、ポリエーテルサルフォン、ポリアリレート等の基板が挙げられ、その特性により用途別に広く用いられる。その他にも、アクリル系、ポリエチレン系、ポリエステル系、ポリイミド系、アラミド系、シリコーン系、フッ素系などの各種樹脂が挙げられるが、これらに限定されない。ただし、液晶表示素子(LCD)の用途に用いる場合、いずれの樹脂においても、光学異方性の小さい樹脂基板であることが望ましい。
【0011】
本発明における透明導電膜4としてはITO(Sn含有量5〜10wt%)、FやSbをドープしたSnO 、Al等をドープしたZnO等の透明導電金属酸化物が代表例として挙げられるが、その他の透明導電金属酸化物でもよい。
【0012】
本発明における保護層2は、樹脂基板1自身が化学的、光学的、機械的に耐久性に欠ける場合や、ガス遮断性能に欠ける場合に必要となる。すなわち、透明導電膜の電極パターニング時に要求される耐酸、耐アルカリ性能や、セル化工程での耐UV、耐溶剤性能、またハンドリング時等に要求される耐擦傷性等に、樹脂基板1の特性が満たない場合、より耐久性に富む安定な有機物または無機物等の保護層2を施すことにより樹脂基板1自身の劣化を防止できる。
【0013】
保護層2としては樹脂基板1との密着性が要求されるため、樹脂基板1の種類により異なるが、一般的にはアクリル系、ポリイミド系、シリコーン系、ウレタン系、およびエポキシ系からなる群から選ばれる少なくとも1種の系の樹脂を主成分とする有機物か、TiO 、ZrO 、Al 、およびSiO からなる群から選ばれる少なくとも1種を主成分とするアルコキシドを焼成・乾燥して得られる無機物、または上記有機物と上記無機物との混合物、または複数層に構成したものなどが代表的な例として挙げられるが、上記耐久性を満足すれば特に限定されない。また、保護層2の膜厚は1〜10μmであることが望ましい。
【0014】
保護層2の形成方法としてはスピンコート法、ロールコート法、ディップコート法、スプレーコート法などを用いた湿式法を用いて塗布し、60〜200℃で焼成・乾燥させる。しかし、焼成・乾燥温度は樹脂基板1の耐熱温度により異なるため、樹脂の耐熱温度より10〜20℃程度低い温度で焼成・乾燥を行うことが望ましい。
【0015】
また、保護層2の膜厚を薄くする場合、エタノール等の溶媒で適宜希釈し、塗布液粘度を下げればよい。樹脂基板1に保護層2を形成する際に、上記溶液のぬれ性が悪く、中間層3を形成することが困難な場合、アクリル系樹脂を主成分としたプライマーにて表面処理を行い複数層の構成にするとよい。
【0016】
SiN からなる中間膜3のターゲットには不純物ドープSiターゲットを用いる。不純物としてはP、B、Fe、Cr、およびAlからなる群から選ばれる少なくとも1種を主成分として含むものがよく、カラー液晶表示装置の作動を阻害するものでなければ他のIII 族やV族の元素あるいは他の金属元素でも用いうる。特に、比抵抗が10 Ωcm以下になるように不純物をSiにドープしたターゲットを用いると、制御が容易で、成膜速度が速く、膜質の均一性に優れるDC放電スパッタリングが可能となる。
【0017】
ここで不純物Siターゲットの比抵抗値が減少する機構は必ずしも明確ではないが、III 族やV族の元素をSiにドープした場合は禁止帯内にアクセプター準位やドナー準位が形成され比抵抗が下がり、また金属元素をSiにドープさせた場合は金属元素の導電率が高いため全体として比抵抗が下がると考えられる。
【0018】
SiN からなる中間膜3の形成方法としてはDC放電スパッタリングがもっとも好ましく、スパッタリングに使用するガスはN やNH だけでもよいが、放電の安定にはAr、He等の希ガスとの混合ガスが好ましい。
【0019】
またSiN 膜厚は2nm以上50nm以下が好ましい。2nmよりも薄いと充分なガス遮断性能や密着性能が得られない。特に10nm以上であるとガス遮断性能や密着性能において好ましい結果が得られる。また、50nmよりも厚いと膜中の内部応力が大きくなり、クラックなどが生じやすい。
【0020】
SiN からなる中間膜3の組成比は、ガス遮断性能の観点から、窒素(N)とケイ素(Si)との原子比N/Siは、1.3以上1.36以下が好ましい。また、原子比N/Siが1.3未満ではSiN 膜が吸収膜となることからも前記範囲が好ましい。特に、原子比N/Siが1.33であるとガス遮断性能や密着性能において好ましい結果が得られる。
【0021】
原子比N/Siは、前記のスパッタリングに使用するガスの組成、またはスパッタリング電力を制御することによって調整可能である。
【0022】
【作用】
本発明におけるSiN からなる中間膜3は成膜時にO ガスを用いていないため、SiO 膜を形成する際に問題となる反応性に富むO プラズマがないこと、さらにSiターゲットの不純物のドープにより導電性を向上させたことによって、活性度の高いプラズマを伴うRFスパッタリングではなく、DCスパッタリングが使用でき、樹脂基板1のプラズマによる劣化を極力抑えうる。
【0023】
また、本発明におけるSiN からなる中間膜3は、透明導電膜4の成膜の際の樹脂基板1からの有機性ガスを遮断し、透明導電膜4を劣化させないため、付着力が高く透明導電膜4のパターニング性を向上させるという作用を有する。
【0024】
さらに、DC放電スパッタリング法が可能なため、RF放電スパッタリング法よりも制御が容易となり、非常に高価なマッチングボックスが不用で、成膜速度も著しく速く、生産性に優れるという作用も有する。
【0025】
【実施例】
樹脂基板1としては1mm厚のポリカーボネート(レキサン8010C)基板を用いた。その基板表面をアクリル系樹脂によりプライマー処理した後、シリコーン系樹脂(メチルトリメトキシシランなどアルコキシシランを主成分とするもの)とコロイドシリカとを混合し溶媒希釈した溶液中に浸し、基板を取りだした後、115〜125℃で焼成・乾燥して樹脂基板1の両面に保護層2を10μm形成した。
【0026】
その上にPを1ppmドープしたSiターゲット(比抵抗2.9Ω・cm)を用いて、ArガスとN ガスを7対3の比で圧力が4×10−3Torrになるように導入し、DCマグネトロンスパッタリング法によりPドープSiN 膜(以下DC−SiN という)を膜厚10nmで形成した。さらにその上にITOからなる透明導電膜4をDCマグネトロンスパッタリング法により膜厚が50nmになるように作製した。スパッタリング成膜時の基板温度は70℃であった。
【0027】
上記ITO膜上にフォトリソグラフィー法によりライン状のレジストを形成し、0.2規定の塩酸のエッチング液によりITO膜のパターニングを行った。その結果を表1に示す。
【0028】
なお、比較のために上記保護層2を形成した樹脂基板1に直接ITO透明導電膜4を50nm成膜したもの、また保護層2とITO膜4の間に中間膜3としてRF放電スパッタリングによりSiO 膜(以下RF−SiO )、またはSiN 膜(以下RF−SiN )をそれぞれ10nm形成したのち、ITO膜4を50nm成膜し、ITO膜をパターニングしたものも表1に示す。
【0029】
本発明におけるSiN 膜を中間膜3として用いた場合は、中間膜3を用いない場合や中間膜3をRF−SiO 膜やRF−SiN 膜としたものよりもサイドエッチング量が少なく1μm以下であり、パターニング性に優れていた。
【0030】
表1に示した4種類のサンプルと同じ膜構成のものについて、ITO成膜後のシート抵抗値(Ω/□)の測定結果を表2に示す。中間膜としてDC−SiN 膜を用いると、ITO膜のシート抵抗値は、中間膜としてRF−SiO 膜やRF−SiN 膜を用いた場合と同様、中間膜のないものより低くなった。
【0031】
ITOからなる透明導電膜4の耐久性試験については、表2で示されるサンプルについて、恒温恒湿曹内にて温度60℃、湿度90%の雰囲気に保ち240時間放置し、ITO薄膜のシート抵抗値(Ω/□)と表面状態変化を調べた。基板温度が120℃のサンプルについての結果を表3に、また、基板温度が70℃のサンプルについての結果を表4に記す。
【0032】
表3、4より、全てのサンプルにおいて、外観上の表面状態の変化はみられないが、中間膜3としてDC−SiN 膜を用いると、中間膜としてRF−SiO 膜やRF−SiN 膜を用いた場合と同様、ITO膜の抵抗上昇を抑えうることが分かった。
【0033】
前記耐久性試験前後でITOから成る透明導電膜4の表面から基板に届く程度の傷をカッターで1〜2mm□間隔で100個の碁盤の目状につけて、JIS−Z1522(1989)に示す基準を満たすテープにより、テープ剥離テストを行った。この結果、全てのサンプルについて100個中1個もITO薄膜の剥離みられなかった。
【0034】
本発明の透明導電膜付き樹脂基板において、樹脂基板1と透明導電膜4との付着力、耐久性のもうひとつの尺度として、耐薬品性試験を試みた。耐酸性としては2重量%の塩酸中に浸漬し、耐アルカリ性では0.6重量%の水酸化ナトリウム水溶液中に浸漬、そして耐溶剤性は透明導電金属酸化物薄膜成膜側にアセトンを滴下、それぞれ常温で1時間放置後、その表面状態を観察した。
【0035】
以上の耐薬品性試験を表2で示される基板温度が70℃のサンプル4種について行った結果を表5に示す。なお、表2で示される基板温度が120℃のサンプル4種について行ったところ表5と同じ結果を得た。
【0036】
表5の結果から、中間膜3としてDC−SiN 膜を用いると、中間膜としてRF−SiO 膜やRF−SiN 膜を用いた場合と同様、耐薬品性、耐溶剤性が良くなることが分かった。
【0037】
本発明の透明導電膜付き樹脂基板において、中間膜3のガス遮断性能を調べるため、表2で示される基板温度120℃のサンプル4種について、ITO膜の成膜後に、ITO膜中に取り込まれたC量をC/In比として、SIMSで測定した結果を表6に示す。Cの取り込み量が少ないほど、ITO成膜中に樹脂基板1から出るC系アウトガスの遮断性能が優れることが分かった。
【0038】
表6より中間膜3としてDC−SiN 膜を用いると、中間膜を用いない場合や、中間膜としてRF−SiO 膜やRF−SiN 膜を用いた場合よりも、ITO膜中に取り込まれたC量が少量で、アウトガス遮断性能に優れることが分かった。
【0039】
さらに、本発明の透明導電膜付き樹脂基板について、表1に示される電極パターニング済み基板(中間膜がDC−SiN のもの)を用いて液晶表示素子の模擬セルを作成し、その耐久性を評価した結果、問題なく作動した。
【0040】
次に、膜厚を変化させ、また、原子比N/Siを変化させた以外は前記と同様にして、DCマグネトロンスパッタリング法によるDC−SiN 膜とRF放電スパッタリング法によるRF−SiO 膜とを成膜した。得られた各種サンプルについて、従来のエチレン/ビニルアルコール系(EVA)膜のガス透過度を基準とした相対ガス透過度をそれぞれ測定した。結果を図2に示す。なお、図2において、原子比N/Siが1.3と1.36との結果は、ほぼ同一の結果であったので同じプロットで表している。
【0041】
図2より分かるように、原子比N/Siが1.3以上1.36以下では、広い膜厚範囲で優れたガス遮断性が得られ、特に、膜厚が、30〜50nmでは、従来のRF−SiO 膜やEVA膜よりも優れたガス遮断性が得られる。さらに、原子比N/Siが1.33の場合では、極めて優れたガス遮断性が得られる。
【0042】
以上の各種DC−SiN 膜を用いて液晶表示素子の模擬セルを作成し、その耐久性を評価した結果、問題なく作動した。
【0043】
【表1】

Figure 0003627273
【0044】
【表2】
Figure 0003627273
【0045】
【表3】
Figure 0003627273
【0046】
【表4】
Figure 0003627273
【0047】
【表5】
Figure 0003627273
【0048】
【表6】
Figure 0003627273
【0049】
【発明の効果】
本発明の透明導電膜付き樹脂基板は、樹脂層と透明導電膜の間に不純物ドープSiターゲットを用いてDC放電スパッタリングにより不純物ドープSiN 膜を設けることで透明導電膜の付着力が向上し、透明導電膜のパターニング性が向上し良好な透明電極パターンが形成できるという効果がある。
【0050】
また、SiN 膜の作製時に、DC放電スパッタリング法を用いるため、制御が容易で、成膜速度も著しく速いため生産性に優れるという効果も有する。さらに、RF放電を利用しないために、非常に高価なマッチングボックスが不用となり、装置コストの低減がはかれるという経済的効果も有する。
【図面の簡単な説明】
【図1】本発明に係る透明導電樹脂基板の断面図
【図2】N/Si原子比と相対ガス透過度との関係を示す図
【符号の説明】
1:透明樹脂基板
2:樹脂保護層
3:SiN からなる中間膜
4:透明導電膜[0001]
[Industrial application fields]
The present invention relates to a resin substrate with a transparent conductive film used for a display device such as a liquid crystal display and a touch panel, and a method for producing the same.
[0002]
[Prior art]
An ITO (In 2 O 3 containing Sn) thin film, which is a transparent conductive metal oxide, is widely used as a transparent electrode for liquid crystal display devices and other electronic display devices. In particular, in recent years, liquid crystal display devices have been adopted in electronic notebooks, highly functional telephones, small word processors, portable information terminal devices, etc. With the reduction in size and weight of products using liquid crystal display elements, the liquid crystal display elements themselves have become smaller and lighter. There has been an increasing demand for liquid crystal display elements with excellent resistance to impact. Due to its light weight and impact resistance, liquid crystal display devices and touch panel displays using a transparent resin substrate (hereinafter referred to as a resin substrate) instead of a glass substrate have been actively studied.
[0003]
A transparent conductive resin substrate used in a conventional liquid crystal display device is formed by forming a transparent conductive metal oxide film (hereinafter referred to as a transparent conductive film) such as ITO on a resin substrate by a PVD method such as a sputtering method or a vacuum deposition method. After that, the ITO electrode is finely processed (hereinafter referred to as patterning) by a photolithography process and a wet etching process.
[0004]
However, the adhesive force between the resin substrate and the transparent conductive film is not sufficient, and the transparent conductive film is peeled off in the wet etching process, and undercut and side etching are large and patterning is not stable. In this case, when used as a transparent electrode of an electronic display device such as a liquid crystal display device described above, fine cracks, in film peeling, because it causes breakage, uneven display, the quality degradation such as low durability, productivity There has been a problem of seriously damaging.
[0005]
As a solution to these problems, an organic or inorganic intermediate layer on a resin substrate, or a method of forming an SiO 2 film as an intermediate layer by RF discharge sputtering between the resin substrate and the transparent conductive film is mainly employed. ing. However, the patterning characteristics of the transparent conductive film are not stable due to damage to the resin layer by RF discharge plasma having high activity, particularly oxygen plasma. For this reason, after the durability test, the transparent conductive film is peeled off and the performance is not sufficient.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems of a conventional method for producing a transparent conductive resin substrate.
[0007]
[Means for Solving the Problems]
The present invention provides a transparent conductive film-coated resin substrate provided with the intermediate layer between the transparent resin substrate and the transparent conductive metal oxide thin film layer, the intermediate layer is Ri SiN x Tona, and using the impurity-doped Si target N 2 And / or NH 3 Provides a method for producing a transparent conductive film with a resin base plate, characterized in der Rukoto those formed by DC discharge sputtering with a gas containing.
[0008]
In the present invention, when an intermediate film is formed on a transparent resin substrate (hereinafter referred to as a resin substrate) or a protective layer of the resin substrate, the intermediate film is formed without using high-activity RF discharge plasma, particularly oxygen plasma . It is important to form.
[0009]
FIG. 1 is a cross-sectional view of a transparent resin substrate according to the present invention. Reference numeral 1 denotes a resin substrate, and 2 denotes a protective layer. The protective layer 2 may be unnecessary depending on the type of the resin substrate 1. Reference numeral 3 denotes an intermediate SiN x film, and reference numeral 4 denotes a transparent conductive metal oxide thin film layer (hereinafter referred to as a transparent conductive film).
[0010]
Examples of the resin substrate 1 of the present invention include substrates such as polyethylene terephthalate, polyphenylene sulfide, polyimide, polyetherimide, polymethyl methacrylate, polycarbonate, polyethersulfone, and polyarylate. . In addition, various resins such as acrylic, polyethylene, polyester, polyimide, aramid, silicone, and fluorine are exemplified, but the invention is not limited thereto. However, when used for applications of liquid crystal display elements (LCD), any resin is desirably a resin substrate having a small optical anisotropy.
[0011]
Transparent ITO (Sn content 5 to 10 wt%) as the conductive film 4 film in the present invention, SnO 2 film doped with F or Sb, as the transparent conductive metal oxide film is a typical example of a ZnO film or the like doped with Al or the like Other transparent conductive metal oxide films may be used.
[0012]
The protective layer 2 in the present invention is necessary when the resin substrate 1 itself lacks chemical, optical, and mechanical durability or lacks gas barrier performance. That is, the characteristics of the resin substrate 1 include the acid resistance and alkali resistance performance required for electrode patterning of the transparent conductive film, UV resistance, solvent resistance performance in the cell forming process, scratch resistance required for handling, and the like. Is not satisfied, the deterioration of the resin substrate 1 itself can be prevented by applying the protective layer 2 made of a stable organic material or inorganic material having a higher durability.
[0013]
The protective layer 2 is required to have close contact with the resin substrate 1 and therefore differs depending on the type of the resin substrate 1, but is generally selected from the group consisting of acrylic, polyimide, silicone, urethane, and epoxy. An organic substance mainly composed of at least one selected resin or an alkoxide mainly composed of at least one selected from the group consisting of TiO 2 , ZrO 2 , Al 2 O 3 , and SiO 2 is fired and dried. Examples of the inorganic material obtained as described above, a mixture of the above organic material and the above inorganic material, or a material composed of a plurality of layers are given as typical examples, but are not particularly limited as long as the above durability is satisfied. Further, the thickness of the protective layer 2 is desirably 1 to 10 μm.
[0014]
The protective layer 2 is formed by a wet method using a spin coating method, a roll coating method, a dip coating method, a spray coating method, or the like, and is baked and dried at 60 to 200 ° C. However, since the baking / drying temperature varies depending on the heat resistance temperature of the resin substrate 1, it is desirable to perform the baking / drying at a temperature lower by about 10-20 ° C. than the heat resistance temperature of the resin.
[0015]
Moreover, when making the film thickness of the protective layer 2 thin, it should just dilute suitably with solvents, such as ethanol, and should just reduce a coating-solution viscosity. When forming the protective layer 2 on the resin substrate 1, if the wettability of the solution is poor and it is difficult to form the intermediate layer 3, a surface treatment is performed with a primer mainly composed of an acrylic resin to form a plurality of layers. It is good to have a configuration of
[0016]
An impurity-doped Si target is used as the target of the intermediate film 3 made of SiN x . As the impurities, those containing at least one selected from the group consisting of P, B, Fe, Cr, and Al as a main component are preferable. If they do not inhibit the operation of the color liquid crystal display device, other Group III or V Group elements or other metal elements can also be used. In particular, when a target obtained by doping Si with impurities so as to have a specific resistance of 10 4 Ωcm or less is used, DC discharge sputtering that is easy to control, has a high film formation rate, and is excellent in film quality uniformity is possible.
[0017]
Here, the mechanism by which the resistivity value of the impurity Si target decreases is not necessarily clear, but when a group III or group V element is doped into Si, an acceptor level or a donor level is formed in the forbidden band, and the resistivity In addition, when Si is doped with a metal element, it is considered that the specific resistance decreases as a whole because the conductivity of the metal element is high.
[0018]
DC discharge sputtering is the most preferable method for forming the intermediate film 3 made of SiN x , and the gas used for sputtering may be only N 2 or NH 3, but in order to stabilize the discharge, it is mixed with a rare gas such as Ar or He. Gas is preferred.
[0019]
The SiN x film thickness is preferably 2 nm or more and 50 nm or less. If it is thinner than 2 nm, sufficient gas barrier performance and adhesion performance cannot be obtained. In particular, when the thickness is 10 nm or more, preferable results can be obtained in terms of gas barrier performance and adhesion performance. On the other hand, if it is thicker than 50 nm, the internal stress in the film increases and cracks are likely to occur.
[0020]
As for the composition ratio of the intermediate film 3 made of SiN x , the atomic ratio N / Si between nitrogen (N) and silicon (Si) is preferably 1.3 or more and 1.36 or less from the viewpoint of gas barrier performance. Moreover, the above range is preferable because the SiN x film becomes an absorption film when the atomic ratio N / Si is less than 1.3. In particular, when the atomic ratio N / Si is 1.33, favorable results are obtained in terms of gas barrier performance and adhesion performance.
[0021]
The atomic ratio N / Si can be adjusted by controlling the composition of the gas used for the sputtering or the sputtering power.
[0022]
[Action]
Since the intermediate film 3 made of SiN x in the present invention does not use O 2 gas at the time of film formation, there is no reactive O 2 plasma that becomes a problem when forming the SiO 2 film, and the impurity of the Si target By improving the conductivity by doping, it is possible to use DC sputtering instead of RF sputtering accompanied by plasma with high activity, and the deterioration of the resin substrate 1 due to plasma can be suppressed as much as possible.
[0023]
In addition, since the intermediate film 3 made of SiN x in the present invention blocks the organic gas from the resin substrate 1 during the formation of the transparent conductive film 4 and does not deteriorate the transparent conductive film 4, the adhesive film is highly adhesive and transparent. It has the effect | action of improving the patternability of the electrically conductive film 4. FIG.
[0024]
Furthermore, since the DC discharge sputtering method is possible, the control is easier than the RF discharge sputtering method, an extremely expensive matching box is unnecessary, the film forming speed is remarkably high, and the productivity is excellent.
[0025]
【Example】
As the resin substrate 1, a 1 mm thick polycarbonate (Lexan 8010C) substrate was used. After the substrate surface was primed with an acrylic resin, the substrate was taken out by immersing it in a solution obtained by mixing a silicone resin (based on alkoxysilane such as methyltrimethoxysilane) and colloidal silica and diluting the solvent. Thereafter, the protective layer 2 was formed to have a thickness of 10 μm on both surfaces of the resin substrate 1 by baking and drying at 115 to 125 ° C.
[0026]
On top of that, using a Si target doped with 1 ppm of P (specific resistance: 2.9 Ω · cm), Ar gas and N 2 gas were introduced at a ratio of 7 to 3 so that the pressure was 4 × 10 −3 Torr. Then, a P-doped SiN x film (hereinafter referred to as DC-SiN x ) was formed with a film thickness of 10 nm by a DC magnetron sputtering method. Further, a transparent conductive film 4 made of ITO was formed thereon by a DC magnetron sputtering method so as to have a film thickness of 50 nm. The substrate temperature at the time of sputtering film formation was 70 ° C.
[0027]
A line resist was formed on the ITO film by photolithography, and the ITO film was patterned with a 0.2 N hydrochloric acid etching solution. The results are shown in Table 1.
[0028]
For comparison, an ITO transparent conductive film 4 having a thickness of 50 nm is directly formed on the resin substrate 1 on which the protective layer 2 is formed, and an intermediate film 3 is formed between the protective layer 2 and the ITO film 4 by RF discharge sputtering. Table 1 also shows two films (hereinafter referred to as RF-SiO 2 ) or SiN x films (hereinafter referred to as RF-SiN x ) having a thickness of 10 nm, an ITO film 4 having a thickness of 50 nm, and a patterning of the ITO film.
[0029]
When the SiN x film in the present invention is used as the intermediate film 3, the side etching amount is less than 1 μm when the intermediate film 3 is not used or the intermediate film 3 is an RF-SiO 2 film or an RF-SiN x film. The patterning property was excellent.
[0030]
Table 2 shows the measurement results of the sheet resistance value (Ω / □) after the ITO film formation for the samples having the same film configuration as the four types of samples shown in Table 1. When a DC-SiN x film was used as the intermediate film, the sheet resistance value of the ITO film was lower than that without the intermediate film, as in the case of using the RF-SiO 2 film or the RF-SiN x film as the intermediate film. .
[0031]
Regarding the durability test of the transparent conductive film 4 made of ITO, the sample shown in Table 2 was kept in an atmosphere of 60 ° C. and 90% humidity for 240 hours in a constant temperature and humidity soda, and the sheet resistance of the ITO thin film. The value (Ω / □) and surface condition change were examined. The results for the sample with the substrate temperature of 120 ° C. are shown in Table 3, and the results for the sample with the substrate temperature of 70 ° C. are shown in Table 4.
[0032]
From Tables 3 and 4, no change in the surface state of the appearance is observed in all the samples, but when a DC-SiN x film is used as the intermediate film 3, an RF-SiO 2 film or RF-SiN x is used as the intermediate film. It was found that the increase in the resistance of the ITO film can be suppressed as in the case of using the film.
[0033]
Before and after the durability test, scratches that reach the substrate from the surface of the transparent conductive film 4 made of ITO are made into 100 grids at intervals of 1 to 2 mm □ with a cutter, and the standard shown in JIS-Z1522 (1989) A tape peeling test was performed with a tape satisfying the above requirements. As a result, no peeling of the ITO thin film was observed in every 100 samples.
[0034]
In the resin substrate with a transparent conductive film of the present invention, a chemical resistance test was attempted as another measure of adhesion and durability between the resin substrate 1 and the transparent conductive film 4. The acid resistance was immersed in a 2 wt% hydrochloric acid, the alkali resistance was immersed in a 0.6 wt% aqueous sodium hydroxide, and solvent resistance dropwise acetone transparent conductive metal oxide thin film deposition side and, 1 hour after standing at room temperature, respectively, for observation of surface conditions.
[0035]
Table 5 shows the results of the above chemical resistance test performed on four types of samples having a substrate temperature of 70 ° C. shown in Table 2. In addition, when it performed about 4 types of samples whose board | substrate temperature shown by Table 2 is 120 degreeC, the same result as Table 5 was obtained.
[0036]
From the results in Table 5, when a DC-SiN x film is used as the intermediate film 3, chemical resistance and solvent resistance are improved as in the case of using an RF-SiO 2 film or an RF-SiN x film as the intermediate film. I understood that.
[0037]
In order to examine the gas barrier performance of the intermediate film 3 in the resin substrate with a transparent conductive film of the present invention, four types of samples having a substrate temperature of 120 ° C. shown in Table 2 were taken into the ITO film after the ITO film was formed. Table 6 shows the results measured by SIMS with the amount of C as the C / In ratio. It was found that the smaller the amount of C taken in, the better the blocking performance of C-based outgas emitted from the resin substrate 1 during ITO film formation.
[0038]
From Table 6, when a DC-SiN x film is used as the intermediate film 3, it is taken into the ITO film than when no intermediate film is used or when an RF-SiO 2 film or an RF-SiN x film is used as the intermediate film. It was found that the amount of C produced was small and the outgas barrier performance was excellent.
[0039]
Furthermore, for the resin substrate with a transparent conductive film of the present invention, a simulated cell of a liquid crystal display element was prepared using the electrode patterned substrate (intermediate film of DC-SiN x ) shown in Table 1, and its durability was improved. As a result of evaluation, it operated without problems.
[0040]
Next, the DC-SiN x film by the DC magnetron sputtering method and the RF-SiO 2 film by the RF discharge sputtering method are the same as described above except that the film thickness is changed and the atomic ratio N / Si is changed. Was deposited. The relative gas permeability of each of the obtained samples was measured based on the gas permeability of a conventional ethylene / vinyl alcohol (EVA) membrane. The results are shown in FIG. In FIG. 2, the results with the atomic ratio N / Si of 1.3 and 1.36 are almost the same results, and therefore are represented by the same plot.
[0041]
As can be seen from FIG. 2, when the atomic ratio N / Si is 1.3 or more and 1.36 or less, excellent gas barrier properties are obtained in a wide film thickness range, and particularly when the film thickness is 30 to 50 nm, Gas barrier properties superior to those of the RF-SiO 2 film and EVA film can be obtained. Furthermore, when the atomic ratio N / Si is 1.33, extremely excellent gas barrier properties can be obtained.
[0042]
As a result of creating a simulated cell of a liquid crystal display element using the various DC-SiN x films described above and evaluating its durability, the liquid crystal display element operated without problems.
[0043]
[Table 1]
Figure 0003627273
[0044]
[Table 2]
Figure 0003627273
[0045]
[Table 3]
Figure 0003627273
[0046]
[Table 4]
Figure 0003627273
[0047]
[Table 5]
Figure 0003627273
[0048]
[Table 6]
Figure 0003627273
[0049]
【The invention's effect】
The resin substrate with a transparent conductive film of the present invention improves the adhesion of the transparent conductive film by providing an impurity-doped SiN x film by DC discharge sputtering using an impurity-doped Si target between the resin layer and the transparent conductive film, The patterning property of the transparent conductive film is improved, and an excellent transparent electrode pattern can be formed.
[0050]
In addition, since the DC discharge sputtering method is used when forming the SiN x film, the control is easy, and the film forming speed is remarkably fast, so that the productivity is excellent. Furthermore, since the RF discharge is not used, a very expensive matching box is unnecessary, and there is an economic effect that the apparatus cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a transparent conductive resin substrate according to the present invention. FIG. 2 is a diagram showing the relationship between N / Si atomic ratio and relative gas permeability.
1: Transparent resin substrate 2: Resin protective layer 3: Intermediate film made of SiN x 4: Transparent conductive film

Claims (1)

透明樹脂基板と透明導電金属酸化物薄膜層の間にSiNx からなる中間膜を設けた透明導電膜付き樹脂基板の製造方法において、該中間膜は不純物ドープSiターゲットを用いてN2 および/またはNH3 を含むガスによりDC放電スパッタリング法により形成されることを特徴とする透明導電膜付き樹脂基板の製造方法。In the method of manufacturing a resin substrate with a transparent conductive film in which an intermediate film made of SiN x is provided between the transparent resin substrate and the transparent conductive metal oxide thin film layer, the intermediate film is formed by using an impurity-doped Si target and N 2 and / or A method for producing a resin substrate with a transparent conductive film, which is formed by a DC discharge sputtering method using a gas containing NH 3 .
JP03261495A 1994-02-21 1995-02-21 Resin substrate with transparent conductive film and method for producing the same Expired - Fee Related JP3627273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03261495A JP3627273B2 (en) 1994-02-21 1995-02-21 Resin substrate with transparent conductive film and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2284494 1994-02-21
JP6-22844 1994-02-21
JP03261495A JP3627273B2 (en) 1994-02-21 1995-02-21 Resin substrate with transparent conductive film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07278790A JPH07278790A (en) 1995-10-24
JP3627273B2 true JP3627273B2 (en) 2005-03-09

Family

ID=26360128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03261495A Expired - Fee Related JP3627273B2 (en) 1994-02-21 1995-02-21 Resin substrate with transparent conductive film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3627273B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69940421D1 (en) * 1998-12-25 2009-04-02 Semiconductor Energy Lab Semiconductor devices and their manufacture
US6891236B1 (en) 1999-01-14 2005-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP4137551B2 (en) * 2002-08-09 2008-08-20 日東電工株式会社 Surface protective film for transparent conductive substrate and transparent conductive substrate with surface protective film
EA009303B1 (en) * 2006-05-15 2007-12-28 Владимир Яковлевич ШИРИПОВ Method of application of silicon nitride films under vacuum (embodiments)
JP5812217B1 (en) * 2014-04-17 2015-11-11 三菱マテリアル株式会社 Sputtering target and manufacturing method of sputtering target

Also Published As

Publication number Publication date
JPH07278790A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
US6329044B1 (en) Transparent conductive film and method of making the film
KR100272820B1 (en) Transparent electrically conductive film-attached substrate and display element using it
KR100821541B1 (en) Transparent conductive film
US5808715A (en) Liquid crystal display devices having undercoat and overcoat made of TiO2 --SiO2 composite material
JPH08240800A (en) Resin substrate for liqud crystal display
US20180314094A1 (en) Touch control display device having high resistance layer
US6685805B2 (en) Method of manufacturing substrate having transparent conductive film, substrate having transparent conductive film manufactured using the method, and touch panel using the substrate
GB2372042A (en) Functional film with concentration gradient
JP3627273B2 (en) Resin substrate with transparent conductive film and method for producing the same
US6652981B2 (en) Etching process for making electrodes
JP3257913B2 (en) Transparent electrode
JP2003109434A (en) Transparent conductive film and touch panel
KR101884643B1 (en) Zinc-doped tine oxide based transparent conducting oxide, multilayered transparent conducting film using the same and method for preparing the same
JP3176812B2 (en) Transparent conductive film
JPH08109043A (en) Transparent electroconductive film-attached glass having high resistance
JP3501820B2 (en) Transparent conductive film with excellent flexibility
JPH04230906A (en) Transparent conductive laminated body
JP2010020951A (en) Method for manufacturing transparent conductive film
JP3369728B2 (en) Laminated transparent conductive substrate
JPH07146480A (en) Manufacture of color filter board with transparent electroconductive film
JPH08109046A (en) Method for stabilizing transparent electroconductive film having high resistance
KR100579492B1 (en) Method for forming electrode on conducting film having insulating protective layer and device which conducting film having insulating protective layer is formed
JPH10119170A (en) Flexible laminated film
KR101171663B1 (en) Touch panel with both elevation of view trait and printing layer
KR100514346B1 (en) Transparent conductive layer, product for conductive protection layer and menufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees