JP3627273B2 - With a transparent conductive film resin substrate and a manufacturing method thereof - Google Patents

With a transparent conductive film resin substrate and a manufacturing method thereof Download PDF

Info

Publication number
JP3627273B2
JP3627273B2 JP03261495A JP3261495A JP3627273B2 JP 3627273 B2 JP3627273 B2 JP 3627273B2 JP 03261495 A JP03261495 A JP 03261495A JP 3261495 A JP3261495 A JP 3261495A JP 3627273 B2 JP3627273 B2 JP 3627273B2
Authority
JP
Japan
Prior art keywords
resin substrate
transparent conductive
conductive film
film
table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03261495A
Other languages
Japanese (ja)
Other versions
JPH07278790A (en
Inventor
輝行 矢上
悟 高木
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2284494 priority Critical
Priority to JP6-22844 priority
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP03261495A priority patent/JP3627273B2/en
Publication of JPH07278790A publication Critical patent/JPH07278790A/en
Application granted granted Critical
Publication of JP3627273B2 publication Critical patent/JP3627273B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Images

Description

【0001】 [0001]
【産業上の利用分野】 BACKGROUND OF THE INVENTION
本発明は、液晶ディスプレイ、タッチパネルなどの表示装置に用いられる透明導電膜付き樹脂基板およびその製造方法に関する。 The present invention relates to a liquid crystal display, about the transparent conductive film-coated resin substrate and a manufacturing method thereof used in a display device such as a touch panel.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
液晶表示装置をはじめ、その他の電子ディスプレイデバイス用の透明電極として、透明導電金属酸化物であるITO(Snを含有するIn )薄膜が汎用されている。 Including a liquid crystal display device, as other transparent electrode for electronic display devices, (In 2 O 3 containing Sn) ITO which is a transparent conductive metal oxide thin film is widely used. 特に近年、液晶表示装置は電子手帳、高機能付き電話機、小型ワープロ、ポータブル情報端末機器等に採用されており、液晶表示素子を用いた製品の小型軽量化に伴い、液晶表示素子自身の小型軽量化と、耐衝撃性に優れた液晶表示素子への要求が高まってきた。 In recent years, liquid crystal display device an electronic organizer, advanced telephone with a small word processor has been adopted in the portable information terminal or the like, with the size and weight of the product using the liquid crystal display device, the liquid crystal display element itself lightweight reduction and has been increasing demand for liquid crystal display device excellent in impact resistance. その軽量性、耐衝撃性ゆえに、ガラス基板の代わりに透明樹脂基板(以下樹脂基板という)を用いた液晶表示装置やタッチパネルディスプレイが盛んに検討されている。 Its light weight, impact resistance because, a liquid crystal display device or a touch panel display using a transparent resin substrate (hereinafter referred to as resin substrate) instead of the glass substrate has been extensively studied.
【0003】 [0003]
従来の液晶表示装置に用いられる透明導電樹脂基板は、樹脂基板上にスパッタリング法や真空蒸着法等のPVD法によりITO等の透明導電金属酸化物膜(以下透明導電膜という)を形成し、そののちフォトリソグラフィー工程、ウェットエッチング工程によりITO電極の微細加工(以下パターニングという)をして作製される。 Transparent conductive resin substrate used in the conventional liquid crystal display device, a transparent conductive metal oxide film such as ITO (hereinafter referred transparent conductive film) formed by sputtering method or a PVD method such as vacuum vapor deposition on a resin substrate, the later photolithography process, is manufactured by a wet etching process microfabrication of ITO electrode (hereinafter referred to as patterning).
【0004】 [0004]
しかし、樹脂基板と透明導電膜の付着力が充分でなくウェットエッチング工程で透明導電膜が剥離したり、またアンダーカットやサイドエッチングが大きくパターニングが安定しない。 However, peeled off the transparent conductive film by a wet etching process rather than adhesive force sufficient for the resin substrate and the transparent conductive film, also large patterned undercut and side etching is not stable. この場合、上記の液晶表示素子等の電子ディスプレイデバイスの透明電極として利用する際には、微小なクラック、膜剥離等でも断線、表示むら、低耐久性などの品質劣化を招くため、生産性を著しく損なうという問題があった。 In this case, when used as a transparent electrode of an electronic display device such as a liquid crystal display device described above, fine cracks, in film peeling, because it causes breakage, uneven display, the quality degradation such as low durability, productivity the there is a problem that significantly impairing.
【0005】 [0005]
これらの解決方法として、樹脂基板上に有機系または無機系の中間層や、樹脂基板と透明導電膜の間に、RF放電スパッタリング法により中間層としてSiO 膜を形成する手法が主に採用されている。 As these solutions, an intermediate layer and an organic or inorganic on a resin substrate, between the resin substrate and the transparent conductive film, method of forming the SiO 2 film as the intermediate layer is employed mainly by RF discharge sputtering ing. しかし、活性度の高いRF放電プラズマ、とりわけ酸素プラズマによる樹脂層へのダメージのため、透明導電膜のパターニング特性が安定しない。 However, high RF discharge plasma of activity, especially for the damage to the resin layer with oxygen plasma, the patterning property of the transparent conductive film is not stable. このため耐久性テスト後に、透明導電膜の剥離が生じるなど、その性能は充分とはいえないのが現状である。 Therefore after the durability test, peeling of the transparent conductive film is produced, its performance at present, can not be said sufficient.
【0006】 [0006]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
本発明の目的は、従来の透明導電樹脂基板の製造方法が有する前述の問題点の解決にある。 An object of the present invention is to solve the aforementioned problems the conventional method of manufacturing a transparent electroconductive resin substrate has.
【0007】 [0007]
【課題を解決するための手段】 In order to solve the problems]
本発明は、透明樹脂基板と透明導電金属酸化物薄膜層の間に中間膜を設けた透明導電膜付き樹脂基板において、該中間膜はSiN xからなり、かつ不純物ドープSiターゲットを用いてN 2 The present invention provides a transparent conductive film-coated resin substrate provided with the intermediate layer between the transparent resin substrate and the transparent conductive metal oxide thin film layer, the intermediate layer is Ri SiN x Tona, and using the impurity-doped Si target N 2 および/またはNH 3 And / or NH 3 を含むガスによりDC放電スパッタリング法で形成されたものであることを特徴とする透明導電膜付き樹脂基板の製造方法を提供する。 It provides a method for producing a transparent conductive film with a resin base plate, characterized in der Rukoto those formed by DC discharge sputtering with a gas containing.
【0008】 [0008]
本発明においては、透明樹脂基板(以下樹脂基板という)、または樹脂基板の保護層上に中間膜を形成する際に、活性度の高いRF放電プラズマ、とりわけ酸素プラズマを使用しないで中間膜を形成することが重要である。 In the present invention, when forming an intermediate film on a transparent resin substrate (hereinafter referred to as resin substrate), or a resin substrate protective layer, high RF discharge plasma-activity, especially oxygen plasma, an intermediate layer without using formation it is important to.
【0009】 [0009]
図1は本発明に係る透明樹脂基板の断面図である。 Figure 1 is a cross-sectional view of a transparent resin substrate according to the present invention. 1は樹脂基板を、2は保護層を示す。 1 the resin substrate, 2 denotes a protective layer. この保護層2は樹脂基板1の種類により不要となることもある。 The protective layer 2 is sometimes unnecessary depending on the kind of the resin substrate 1. 3は中間膜のSiN 膜であり、4は透明導電金属酸化物薄膜層(以下透明導電膜という)である。 3 is the SiN x film of the intermediate layer, 4 is a transparent conductive metal oxide thin film layer (hereinafter referred to as a transparent conductive film).
【0010】 [0010]
本発明の樹脂基板1としては、例えばポリエチレンテレフタレート、ポリフェニレンスルフィド、ポリイミド、ポリエーテルイミド、ポリメチルメタクリレート、ポリカーボネート、ポリエーテルサルフォン、ポリアリレート等の基板が挙げられ、その特性により用途別に広く用いられる。 The resin substrate 1 of the present invention, for example, polyethylene terephthalate, polyphenylene sulfide, polyimide, polyether imide, polymethyl methacrylate, polycarbonate, polyether sulfone, a substrate such as a polyarylate, whether employed applications apart widely owing to its characteristics . その他にも、アクリル系、ポリエチレン系、ポリエステル系、ポリイミド系、アラミド系、シリコーン系、フッ素系などの各種樹脂が挙げられるが、これらに限定されない。 Besides, acrylic, polyethylene, polyester, polyimide, aramid, silicone, including but various resins such as a fluorine-based, but are not limited to. ただし、液晶表示素子(LCD)の用途に用いる場合、いずれの樹脂においても、光学異方性の小さい樹脂基板であることが望ましい。 However, when used in applications of the liquid crystal display device (LCD), in any of the resin, it is desirable that small resin substrate having optical anisotropy.
【0011】 [0011]
本発明における透明導電膜4としてはITO(Sn含有量5〜10wt%) 、FやSbをドープしたSnO 、Al等をドープしたZnO 等の透明導電金属酸化物が代表例として挙げられるが、その他の透明導電金属酸化物でもよい。 Transparent ITO (Sn content 5 to 10 wt%) as the conductive film 4 film in the present invention, SnO 2 film doped with F or Sb, as the transparent conductive metal oxide film is a typical example of a ZnO film or the like doped with Al or the like there may be mentioned, it may be other transparent conductive metal oxide film.
【0012】 [0012]
本発明における保護層2は、樹脂基板1自身が化学的、光学的、機械的に耐久性に欠ける場合や、ガス遮断性能に欠ける場合に必要となる。 Protective layer 2 in the present invention, and when the resin substrate 1 itself lacks chemical, optical, mechanical durability is required when a lack of gas barrier performance. すなわち、透明導電膜の電極パターニング時に要求される耐酸、耐アルカリ性能や、セル化工程での耐UV、耐溶剤性能、またハンドリング時等に要求される耐擦傷性等に、樹脂基板1の特性が満たない場合、より耐久性に富む安定な有機物または無機物等の保護層2を施すことにより樹脂基板1自身の劣化を防止できる。 That is, oxidation is required when the electrode patterning of the transparent conductive film, and alkali resistance performance, anti-UV at cell step, solvent performance and scratch resistance, etc. required for the handling or the like, the resin substrate 1 Characteristics If it is less than, the resin substrate 1 itself deterioration can be prevented by applying a protective layer 2 of more such stable organic or inorganic material which is rich in durability.
【0013】 [0013]
保護層2としては樹脂基板1との密着性が要求されるため、樹脂基板1の種類により異なるが、一般的にはアクリル系、ポリイミド系、シリコーン系、ウレタン系、およびエポキシ系からなる群から選ばれる少なくとも1種の系の樹脂を主成分とする有機物か、TiO 、ZrO 、Al 、およびSiO からなる群から選ばれる少なくとも1種を主成分とするアルコキシドを焼成・乾燥して得られる無機物、または上記有機物と上記無機物との混合物、または複数層に構成したものなどが代表的な例として挙げられるが、上記耐久性を満足すれば特に限定されない。 Since the adhesion between the resin substrate 1 as the protective layer 2 is required may vary depending on the type of the resin substrate 1, generally acrylic are polyimide, silicone, urethane, and from the group consisting of epoxy or organic substance as a main component at least one system resin selected, baking and drying the alkoxide as a main component at least one selected from TiO 2, ZrO 2, Al 2 O 3, and the group consisting of SiO 2 Although inorganic obtained by or mixture of the organic substance and the inorganic substance, or the like a plurality of layers to that structure may be mentioned as typical examples, but are not particularly limited as far as it satisfies the above durability. また、保護層2の膜厚は1〜10μmであることが望ましい。 Further, it is desirable that the film thickness of the protective layer 2 is 1 to 10 [mu] m.
【0014】 [0014]
保護層2の形成方法としてはスピンコート法、ロールコート法、ディップコート法、スプレーコート法などを用いた湿式法を用いて塗布し、60〜200℃で焼成・乾燥させる。 Spin coating as a method for forming the protective layer 2, a roll coating method, a dip coating method, a wet method using a spray coating was applied using the so fired and dried at 60 to 200 ° C.. しかし、焼成・乾燥温度は樹脂基板1の耐熱温度により異なるため、樹脂の耐熱温度より10〜20℃程度低い温度で焼成・乾燥を行うことが望ましい。 However, firing and drying temperatures because it varies by the heat resistance temperature of the resin substrate 1, it is preferable to perform baking and drying at about 10 to 20 ° C. than the heat resistance temperature of the resin low temperature.
【0015】 [0015]
また、保護層2の膜厚を薄くする場合、エタノール等の溶媒で適宜希釈し、塗布液粘度を下げればよい。 In the case of reducing the thickness of the protective layer 2, appropriately diluted with a solvent such as ethanol, may be lowering the viscosity of the coating solution. 樹脂基板1に保護層2を形成する際に、上記溶液のぬれ性が悪く、中間層3を形成することが困難な場合、アクリル系樹脂を主成分としたプライマーにて表面処理を行い複数層の構成にするとよい。 In forming the protective layer 2 to the resin substrate 1, the solution is poor wettability, if the intermediate layer 3 it is difficult to form a plurality of layers was surface treated with a primer mainly composed of acrylic resin it may be in the configuration.
【0016】 [0016]
SiN からなる中間膜3のターゲットには不純物ドープSiターゲットを用いる。 The intermediate layer 3 made of SiN x is the target used doped Si target. 不純物としてはP、B、Fe、Cr、およびAlからなる群から選ばれる少なくとも1種を主成分として含むものがよく、カラー液晶表示装置の作動を阻害するものでなければ他のIII 族やV族の元素あるいは他の金属元素でも用いうる。 As the impurity P, B, Fe, Cr, and at least one well which contains as a main component selected from the group consisting of Al, as long as they do not inhibit the operation of the color liquid crystal display device other Group III or V It may be used in elemental or other metal element group. 特に、比抵抗が10 Ωcm以下になるように不純物をSiにドープしたターゲットを用いると、制御が容易で、成膜速度が速く、膜質の均一性に優れるDC放電スパッタリングが可能となる。 In particular, the use of target doped with impurities to Si as the specific resistance is 10 4 [Omega] cm or less, the control is easy, the deposition rate is high, it is possible to DC discharge sputtering is excellent in uniformity of film quality.
【0017】 [0017]
ここで不純物Siターゲットの比抵抗値が減少する機構は必ずしも明確ではないが、III 族やV族の元素をSiにドープした場合は禁止帯内にアクセプター準位やドナー準位が形成され比抵抗が下がり、また金属元素をSiにドープさせた場合は金属元素の導電率が高いため全体として比抵抗が下がると考えられる。 Here mechanism to reduce the specific resistance value of the impurity Si target always is not clear, if doped with elements of group III and group V in Si is formed acceptor level and the donor level in the forbidden band Resistivity It decreases, also if it is doped with a metal element Si is considered that the specific resistance drops as a whole because of the high conductivity of the metal element.
【0018】 [0018]
SiN からなる中間膜3の形成方法としてはDC放電スパッタリングがもっとも好ましく、スパッタリングに使用するガスはN やNH だけでもよいが、放電の安定にはAr、He等の希ガスとの混合ガスが好ましい。 Mixing most preferably DC discharge sputtering as a method of forming the intermediate layer 3 made of SiN x, the gas used for sputtering may only N 2 and NH 3, the stability of the discharge Ar, a rare gas such as He gas is preferable.
【0019】 [0019]
またSiN 膜厚は2nm以上50nm以下が好ましい。 The SiN x film thickness is preferably 2nm or 50nm or less. 2nmよりも薄いと充分なガス遮断性能や密着性能が得られない。 Thin not sufficient gas barrier performance and adhesion performance can be obtained than 2 nm. 特に10nm以上であるとガス遮断性能や密着性能において好ましい結果が得られる。 Particularly favorable results in gas barrier performance and adhesion performance when is 10nm or more is obtained. また、50nmよりも厚いと膜中の内部応力が大きくなり、クラックなどが生じやすい。 Further, the thick and the internal stress in the film is larger than 50 nm, cracks and the like easily occurs.
【0020】 [0020]
SiN からなる中間膜3の組成比は、ガス遮断性能の観点から、窒素(N)とケイ素(Si)との原子比N/Siは、1.3以上1.36以下が好ましい。 The composition ratio of the intermediate layer 3 made of SiN x, from the viewpoint of gas barrier performance, the atomic ratio N / Si of nitrogen (N) and silicon (Si) is preferably 1.3 or more 1.36 or less. また、原子比N/Siが1.3未満ではSiN 膜が吸収膜となることからも前記範囲が好ましい。 The atomic ratio of N / Si is preferably the range from the fact that the SiN x film is absorbing film is less than 1.3. 特に、原子比N/Siが1.33であるとガス遮断性能や密着性能において好ましい結果が得られる。 In particular, the atomic ratio N / Si is 1.33 preferable result in gas barrier performance and adhesion performance.
【0021】 [0021]
原子比N/Siは、前記のスパッタリングに使用するガスの組成、またはスパッタリング電力を制御することによって調整可能である。 Atomic ratio N / Si is adjustable by controlling the composition or sputtering power, the gas used in the sputtering.
【0022】 [0022]
【作用】 [Action]
本発明におけるSiN からなる中間膜3は成膜時にO ガスを用いていないため、SiO 膜を形成する際に問題となる反応性に富むO プラズマがないこと、さらにSiターゲットの不純物のドープにより導電性を向上させたことによって、活性度の高いプラズマを伴うRFスパッタリングではなく、DCスパッタリングが使用でき、樹脂基板1のプラズマによる劣化を極力抑えうる。 Since the intermediate layer 3 made of SiN x in the present invention does not use the O 2 gas during deposition, lack O 2 plasma rich in problems become reactive in forming the SiO 2 film, further Si target impurities by having improved conductivity by doping, rather than the RF sputtering with a highly active plasma, DC sputtering can be used, may minimizing the deterioration of the resin substrate 1 by the plasma.
【0023】 [0023]
また、本発明におけるSiN からなる中間膜3は、透明導電膜4の成膜の際の樹脂基板1からの有機性ガスを遮断し、透明導電膜4を劣化させないため、付着力が高く透明導電膜4のパターニング性を向上させるという作用を有する。 The intermediate layer 3 made of SiN x in the present invention is to protect the organic gases from the resin substrate 1 upon the transparent conductive film 4 deposited, so as not to deteriorate the transparent conductive film 4, adhesion high transparency It has the effect of improving the patterning of the conductive film 4.
【0024】 [0024]
さらに、DC放電スパッタリング法が可能なため、RF放電スパッタリング法よりも制御が容易となり、非常に高価なマッチングボックスが不用で、成膜速度も著しく速く、生産性に優れるという作用も有する。 Furthermore, having due capable DC discharge sputtering method, the control becomes easier than RF discharge sputtering method, an unnecessary very expensive matching box, the deposition speed significantly faster, also act as excellent productivity.
【0025】 [0025]
【実施例】 【Example】
樹脂基板1としては1mm厚のポリカーボネート(レキサン8010C)基板を用いた。 Using 1mm thick polycarbonate (LEXAN 8010C) substrate is used as the resin substrate 1. その基板表面をアクリル系樹脂によりプライマー処理した後、シリコーン系樹脂(メチルトリメトキシシランなどアルコキシシランを主成分とするもの)とコロイドシリカとを混合し溶媒希釈した溶液中に浸し、基板を取りだした後、115〜125℃で焼成・乾燥して樹脂基板1の両面に保護層2を10μm形成した。 After primed with an acrylic resin and the substrate surface, (as a main component an alkoxysilane such as methyltrimethoxysilane) silicone resin and soaked in colloidal silica and the mixed solution was diluted with a solvent, the substrate was taken out after it was 10μm form a protective layer 2 on both surfaces of the resin substrate 1 was baked and dried at 115 to 125 ° C..
【0026】 [0026]
その上にPを1ppmドープしたSiターゲット(比抵抗2.9Ω・cm)を用いて、ArガスとN ガスを7対3の比で圧力が4×10 −3 Torrになるように導入し、DCマグネトロンスパッタリング法によりPドープSiN 膜(以下DC−SiN という)を膜厚10nmで形成した。 Moreover by using a Si target in which 1ppm doped P (resistivity 2.9Ω · cm) in, introduced so as to make the pressure to 4 × 10 -3 Torr Ar gas and N 2 gas at 7: 3 ratio It was formed P doped the SiN x film (hereinafter referred DC-SiN x) with a thickness of 10nm by DC magnetron sputtering. さらにその上にITOからなる透明導電膜4をDCマグネトロンスパッタリング法により膜厚が50nmになるように作製した。 Thickness transparent conductive film 4 made of ITO thereon by DC magnetron sputtering method was prepared so as to 50nm more. スパッタリング成膜時の基板温度は70℃であった。 The substrate temperature during sputtering film formation was 70 ° C..
【0027】 [0027]
上記ITO膜上にフォトリソグラフィー法によりライン状のレジストを形成し、0.2規定の塩酸のエッチング液によりITO膜のパターニングを行った。 Above on the ITO film to form a line-shaped resist by photolithography, was patterned ITO film with an etchant of 0.2 N hydrochloric acid. その結果を表1に示す。 The results are shown in Table 1.
【0028】 [0028]
なお、比較のために上記保護層2を形成した樹脂基板1に直接ITO透明導電膜4を50nm成膜したもの、また保護層2とITO膜4の間に中間膜3としてRF放電スパッタリングによりSiO 膜(以下RF−SiO )、またはSiN 膜(以下RF−SiN )をそれぞれ10nm形成したのち、ITO膜4を50nm成膜し、ITO膜をパターニングしたものも表1に示す。 Incidentally, SiO by RF discharge sputtering as the intermediate layer 3 directly ITO transparent conductive film 4 in the resin substrate 1 formed with the protective layer 2 intended to 50nm deposited, also between the protective layer 2 and the ITO film 4 for comparison 2 film (hereinafter RF-SiO 2), or the SiN x film After each 10nm form (RF-SiN x or less), the ITO film 4 and 50nm deposited, are also shown in Table 1 obtained by patterning the ITO film.
【0029】 [0029]
本発明におけるSiN 膜を中間膜3として用いた場合は、中間膜3を用いない場合や中間膜3をRF−SiO 膜やRF−SiN 膜としたものよりもサイドエッチング量が少なく1μm以下であり、パターニング性に優れていた。 When using the SiN x film in the present invention as an intermediate film 3, the side etching amount is less 1μm than that of the case and the intermediate layer 3 without using the intermediate film 3 and RF-SiO 2 film and RF-the SiN x film or less, and was excellent in patterning properties.
【0030】 [0030]
表1に示した4種類のサンプルと同じ膜構成のものについて、ITO成膜後のシート抵抗値(Ω/□)の測定結果を表2に示す。 Table for one to four samples the same film structure as that shown, illustrating the sheet resistance after ITO deposition measurement results of (Ω / □) in Table 2. 中間膜としてDC−SiN 膜を用いると、ITO膜のシート抵抗値は、中間膜としてRF−SiO 膜やRF−SiN 膜を用いた場合と同様、中間膜のないものより低くなった。 With DC-SiN x film as the intermediate layer, the sheet resistance of the ITO film, as in the case of using the RF-SiO 2 film and RF-SiN x film as the intermediate layer, it is lower than those without the intermediate layer .
【0031】 [0031]
ITOからなる透明導電膜4の耐久性試験については、表2で示されるサンプルについて、恒温恒湿曹内にて温度60℃、湿度90%の雰囲気に保ち240時間放置し、ITO薄膜のシート抵抗値(Ω/□)と表面状態変化を調べた。 The durability test of the transparent conductive film 4 made of ITO, for the samples shown in Table 2, the temperature 60 ° C. in a constant temperature and humidity 曹内, left for 240 hours kept at an atmosphere of 90% humidity, the ITO thin film sheet resistance It examined the value (Ω / □) and the surface state change. 基板温度が120℃のサンプルについての結果を表3に、また、基板温度が70℃のサンプルについての結果を表4に記す。 The results for a sample of the substrate temperature of 120 ° C. Table 3, also, the substrate temperature is referred to the results of the sample of 70 ° C. Table 4.
【0032】 [0032]
表3、4より、全てのサンプルにおいて、外観上の表面状態の変化はみられないが、中間膜3としてDC−SiN 膜を用いると、中間膜としてRF−SiO 膜やRF−SiN 膜を用いた場合と同様、ITO膜の抵抗上昇を抑えうることが分かった。 From Table 3 and 4, in all samples, although the change of the surface state is not observed in the appearance, the use of DC-SiN x film as the intermediate layer 3, RF-SiO 2 film and RF-SiN x as the intermediate layer as with the film, it was found to be suppressed increase in resistance of the ITO film.
【0033】 [0033]
前記耐久性試験前後でITOから成る透明導電膜4の表面から基板に届く程度の傷をカッターで1〜2mm□間隔で100個の碁盤の目状につけて、JIS−Z1522(1989)に示す基準を満たすテープにより、テープ剥離テストを行った。 The wearing of a transparent conductive film 4 of a surface made of a durability test ITO before and after the 100 grid pattern wounds enough to reach the substrate 1 to 2 mm □ intervals with a cutter, the criteria shown in JIS-Z1522 (1989) by the tape that meet the, it was subjected to a tape peeling test. この結果、全てのサンプルについて100個中1個もITO薄膜の剥離みられなかった。 As a result, it was not observed separation of even the ITO thin film 1 100 in all samples.
【0034】 [0034]
本発明の透明導電膜付き樹脂基板において、樹脂基板1と透明導電膜4との付着力、耐久性のもうひとつの尺度として、耐薬品性試験を試みた。 In the transparent conductive film-coated resin substrate of the present invention, adhesion between the resin substrate 1 and the transparent conductive film 4, as another measure of durability, it attempted to chemical resistance tests. 耐酸性としては2重量%の塩酸中に浸漬し、耐アルカリ性では0.6重量%の水酸化ナトリウム水溶液中に浸漬 、そして耐溶剤性は透明導電金属酸化物薄膜成膜側にアセトンを滴下 、それぞれ常温で1時間放置後、その表面状態を観察した。 The acid resistance was immersed in a 2 wt% hydrochloric acid, the alkali resistance was immersed in a 0.6 wt% aqueous sodium hydroxide, and solvent resistance dropwise acetone transparent conductive metal oxide thin film deposition side and, 1 hour after standing at room temperature, respectively, for observation of surface conditions.
【0035】 [0035]
以上の耐薬品性試験を表2で示される基板温度が70℃のサンプル4種について行った結果を表5に示す。 The chemical resistance tests above shows the results conducted on samples four substrate temperature 70 ° C. as shown in Table 2 to Table 5. なお、表2で示される基板温度が120℃のサンプル4種について行ったところ表5と同じ結果を得た。 The substrate temperature indicated in Table 2 were obtained the same results as in Table 5 was carried out on samples four 120 ° C..
【0036】 [0036]
表5の結果から、中間膜3としてDC−SiN 膜を用いると、中間膜としてRF−SiO 膜やRF−SiN 膜を用いた場合と同様、耐薬品性、耐溶剤性が良くなることが分かった。 From the results of Table 5, the use of DC-SiN x film as the intermediate layer 3, similarly to the case of using the RF-SiO 2 film and RF-SiN x film as the intermediate layer, chemical resistance, solvent resistance is improved it was found.
【0037】 [0037]
本発明の透明導電膜付き樹脂基板において、中間膜3のガス遮断性能を調べるため、表2で示される基板温度120℃のサンプル4種について、ITO膜の成膜後に、ITO膜中に取り込まれたC量をC/In比として、SIMSで測定した結果を表6に示す。 In the transparent conductive film-coated resin substrate of the present invention, to examine the gas barrier performance of the intermediate film 3, for example four substrate temperature 120 ° C. as shown in Table 2, after forming the ITO film, incorporated into the ITO film C-amount of the C / an in ratio, shown in Table 6 the results of measurement by SIMS. Cの取り込み量が少ないほど、ITO成膜中に樹脂基板1から出るC系アウトガスの遮断性能が優れることが分かった。 Higher uptake of C is small, breaking performance of C outgas emanating from the resin substrate 1 has been found to be excellent in the ITO film formation.
【0038】 [0038]
表6より中間膜3としてDC−SiN 膜を用いると、中間膜を用いない場合や、中間膜としてRF−SiO 膜やRF−SiN 膜を用いた場合よりも、ITO膜中に取り込まれたC量が少量で、アウトガス遮断性能に優れることが分かった。 With DC-SiN x film from Table 6 as the intermediate layer 3, and the case of not using an intermediate film, than with the RF-SiO 2 film and RF-SiN x film as the intermediate layer, incorporated into the ITO film C amount of it in a small amount was found to be excellent in outgassing interruption performance.
【0039】 [0039]
さらに、本発明の透明導電膜付き樹脂基板について、表1に示される電極パターニング済み基板(中間膜がDC−SiN のもの)を用いて液晶表示素子の模擬セルを作成し、その耐久性を評価した結果、問題なく作動した。 Further, the transparent conductive film-coated resin substrate of the present invention to create a simulated cell of the liquid crystal display device using the electrode patterned substrate shown in Table 1 (as an intermediate layer is DC-SiN x), the durability thereof As a result of evaluation, it was working without any problems.
【0040】 [0040]
次に、膜厚を変化させ、また、原子比N/Siを変化させた以外は前記と同様にして、DCマグネトロンスパッタリング法によるDC−SiN 膜とRF放電スパッタリング法によるRF−SiO 膜とを成膜した。 Then, by changing the film thickness, also except for changing the atomic ratio N / Si is in the same manner as described above, the RF-SiO 2 film by DC-SiN x film and the RF discharge sputtering by DC magnetron sputtering the film was formed. 得られた各種サンプルについて、従来のエチレン/ビニルアルコール系(EVA)膜のガス透過度を基準とした相対ガス透過度をそれぞれ測定した。 The obtained various samples, the conventional ethylene / vinyl alcohol (EVA) film of gas permeability relative to the relative gas permeability was measured. 結果を図2に示す。 The results are shown in Figure 2. なお、図2において、原子比N/Siが1.3と1.36との結果は、ほぼ同一の結果であったので同じプロットで表している。 In FIG. 2, the results of the atomic ratio N / Si is 1.3 and 1.36 are represented by the same plot so were nearly identical results.
【0041】 [0041]
図2より分かるように、原子比N/Siが1.3以上1.36以下では、広い膜厚範囲で優れたガス遮断性が得られ、特に、膜厚が、30〜50nmでは、従来のRF−SiO 膜やEVA膜よりも優れたガス遮断性が得られる。 As can be seen from Figure 2, the atomic ratio of N / Si is 1.3 or more 1.36 or less, excellent gas barrier properties over a wide range of film thickness is obtained, in particular, the film thickness is, in 30 to 50 nm, the conventional excellent gas barrier properties than RF-SiO 2 film and EVA film can be obtained. さらに、原子比N/Siが1.33の場合では、極めて優れたガス遮断性が得られる。 Further, the atomic ratio N / Si is in the case of 1.33, excellent gas barrier properties can be obtained.
【0042】 [0042]
以上の各種DC−SiN 膜を用いて液晶表示素子の模擬セルを作成し、その耐久性を評価した結果、問題なく作動した。 Create a simulated cell of the liquid crystal display device using the above various DC-SiN x film, as a result of evaluating the durability, it worked flawlessly.
【0043】 [0043]
【表1】 [Table 1]
【0044】 [0044]
【表2】 [Table 2]
【0045】 [0045]
【表3】 [Table 3]
【0046】 [0046]
【表4】 [Table 4]
【0047】 [0047]
【表5】 [Table 5]
【0048】 [0048]
【表6】 [Table 6]
【0049】 [0049]
【発明の効果】 【Effect of the invention】
本発明の透明導電膜付き樹脂基板は、樹脂層と透明導電膜の間に不純物ドープSiターゲットを用いてDC放電スパッタリングにより不純物ドープSiN 膜を設けることで透明導電膜の付着力が向上し、透明導電膜のパターニング性が向上し良好な透明電極パターンが形成できるという効果がある。 With a transparent conductive film resin substrate of the present invention is to improve adhesion of the transparent conductive film by providing the impurity doped the SiN x film by DC discharge sputtering with a doped Si target during the resin layer and the transparent conductive film, there is an effect that a good transparent electrode pattern is improved patterning of the transparent conductive film can be formed.
【0050】 [0050]
また、SiN 膜の作製時に、DC放電スパッタリング法を用いるため、制御が容易で、成膜速度も著しく速いため生産性に優れるという効果も有する。 Also has during the production of the SiN x film, for using the DC discharge sputtering method, control is easy, also an effect that the film formation rate is excellent in significantly faster for productivity. さらに、RF放電を利用しないために、非常に高価なマッチングボックスが不用となり、装置コストの低減がはかれるという経済的効果も有する。 Furthermore, a in order not to use the RF discharge, becomes very expensive matching box is unnecessary, economical effect can be reduced equipment cost.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】本発明に係る透明導電樹脂基板の断面図【図2】N/Si原子比と相対ガス透過度との関係を示す図【符号の説明】 Figure [EXPLANATION OF SYMBOLS] showing the relationship between FIG. 1 is a cross-sectional view of a transparent conductive resin substrate according to the present invention [2] N / Si atomic ratio and the relative gas permeability
1:透明樹脂基板2:樹脂保護層3:SiN からなる中間膜4:透明導電膜 1: transparent resin substrate 2: resin protective layer 3: intermediate layer 4 made of SiN x: transparent conductive film

Claims (1)

  1. 透明樹脂基板と透明導電金属酸化物薄膜層の間にSiN xからなる中間膜を設けた透明導電膜付き樹脂基板の製造方法において、該中間膜は不純物ドープSiターゲットを用いてN 2および/またはNH 3を含むガスによりDC放電スパッタリング法により形成されることを特徴とする透明導電膜付き樹脂基板の製造方法。 In the method for manufacturing a transparent conductive film-coated resin substrate having an intermediate film is provided consisting of SiN x between the transparent resin substrate and the transparent conductive metal oxide thin film layer, the intermediate layer by using a doped Si target N 2 and / or with a transparent conductive film resin substrate manufacturing method, characterized by being formed by a DC discharge sputtering with a gas containing NH 3.
JP03261495A 1994-02-21 1995-02-21 With a transparent conductive film resin substrate and a manufacturing method thereof Expired - Fee Related JP3627273B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2284494 1994-02-21
JP6-22844 1994-02-21
JP03261495A JP3627273B2 (en) 1994-02-21 1995-02-21 With a transparent conductive film resin substrate and a manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03261495A JP3627273B2 (en) 1994-02-21 1995-02-21 With a transparent conductive film resin substrate and a manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07278790A JPH07278790A (en) 1995-10-24
JP3627273B2 true JP3627273B2 (en) 2005-03-09

Family

ID=26360128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03261495A Expired - Fee Related JP3627273B2 (en) 1994-02-21 1995-02-21 With a transparent conductive film resin substrate and a manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3627273B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1017108B1 (en) * 1998-12-25 2009-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices and methods of manufacturing the same
US6891236B1 (en) 1999-01-14 2005-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP4137551B2 (en) 2002-08-09 2008-08-20 日東電工株式会社 Transparent conductive substrate surface protective film and the surface protective film with the transparent conductive substrate
EA009303B1 (en) * 2006-05-15 2007-12-28 Владимир Яковлевич ШИРИПОВ Method of application of silicon nitride films under vacuum (embodiments)
JP5812217B1 (en) * 2014-04-17 2015-11-11 三菱マテリアル株式会社 Method of manufacturing a sputtering target and sputtering target

Also Published As

Publication number Publication date
JPH07278790A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
Lewis et al. Applications and processing of transparent conducting oxides
US6355125B1 (en) Method for making an electric or electronic module comprising a glass laminate
US7262131B2 (en) Dielectric barrier layer films
KR101143281B1 (en) Transparent conductive multilayer body and transparent touch panel
US5777779A (en) Electrochromic device and method for manufacturing the same
JP4392127B2 (en) Segmented glass laminate
KR100944920B1 (en) Transparent conductive laminate
CN1134818C (en) Anti-reflection member, manufacturing method thereof and cathode-ray tube
JP4302812B2 (en) On flexible glass substrate anti - reflective co - flexible material including coating, its preparation and use, and the information display device using the same
EP0622645A1 (en) Thin film coating and method of marking
US20020022156A1 (en) Transparent conductive oxides for plastic flat panel displays
US6351068B2 (en) Transparent conductive laminate and electroluminescence light-emitting element using same
US6040056A (en) Transparent electrically conductive film-attached substrate and display element using it
KR101046897B1 (en) The transparent electroconductive film and touch panel
EP1056596B1 (en) Process for forming electrodes
KR100779441B1 (en) Transparent conductive laminate
US7056603B2 (en) Touch panel
EP1038663B1 (en) Method of making an electronic module comprising a glass laminate
US20070292606A1 (en) Electrochromic Device with Self-forming Ion transfer Layer and Lithium Fluoro-Nitride Electrolyte
CN1198768C (en) Method of forming niobium doped tin oxide coatings on glass and coated glass formed thereby
US8518221B2 (en) Method of making ITO-coated article for use with electronic device
US4952423A (en) Production of a transparent electric conductor
JP3247876B2 (en) Glass substrate with a transparent conductive film
KR101007170B1 (en) Crystalline transparent conductive thin film, a method of manufacturing the same, transparent electroconductive film and touch panel
WO1989012033A1 (en) Transparent conductive coatings

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees