JPH08107217A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JPH08107217A
JPH08107217A JP24031794A JP24031794A JPH08107217A JP H08107217 A JPH08107217 A JP H08107217A JP 24031794 A JP24031794 A JP 24031794A JP 24031794 A JP24031794 A JP 24031794A JP H08107217 A JPH08107217 A JP H08107217A
Authority
JP
Japan
Prior art keywords
wiring
acceleration sensor
film
substrate
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24031794A
Other languages
Japanese (ja)
Inventor
Kenji Kato
健二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP24031794A priority Critical patent/JPH08107217A/en
Publication of JPH08107217A publication Critical patent/JPH08107217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE: To relieve film stress, and reduce the warp of a beam part of an acceleration sensor, by laying a Ti based wiring durable to etching solution, instead of A wiring, in the wiring part of a semiconductor acceleration sensor. CONSTITUTION: In a part of an Si substrate, a diffusion resistor 4 is formed, on the resistor 4, an SiO2 oxide film 5 is formed, and a Ti film 8 is formed. Since Ti is a metal durable to etching, a protective film is not necessary to be formed on the whole surface of the Ti wiring 8. Nitride film passivation 7 is formed in the uppermost part of only the contact part of the Ti wiring part 8 and the diffusion resistor 4. That is, the cantilever part of an acceleration sensor of the Ti wiring 8 is constituted as a two-layered structure of an oxide film 5 and the Ti wiring 8. As compared with the conventional Al wiring of three-layered structure, film stress can be relieved. Thereby the warp of the beam part of the acceleration sensor can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体基板上に形成
した、加速度を検出する超小型の半導体加速度センサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-compact semiconductor acceleration sensor for detecting acceleration formed on a semiconductor substrate.

【0002】[0002]

【従来の技術】図1に本発明の加速度センサの構造を示
す。加速度センサは重り部3がある力を受けると片持ち
梁2がたわみ、梁の付け根付近に取り付けた拡散抵抗4
がたわみ量に応じた応力をうけ、その応力がかかること
で抵抗値が変化する。その抵抗値の変化分を電気的に出
力としてとりだしている。
2. Description of the Related Art FIG. 1 shows the structure of an acceleration sensor according to the present invention. The acceleration sensor bends the cantilever 2 when the weight 3 receives a certain force, and the diffusion resistance 4 attached near the base of the beam.
Receives a stress according to the amount of deflection, and the resistance value changes due to the stress. The change in the resistance value is electrically taken out as an output.

【0003】従来の加速度センサのプロセスチャートを
図5に示す。図5(g)に示すように半導体基板を異方
性エッチングさせて図1に示すような片持ち梁のカンチ
レバーを形成させる場合、図5(g)に示すようにSi
を裏面からエッチングさせていくとエッチング液がSi
基板を貫通したときに、配線部の上にまでエッチング液
が浸入していくので、Al配線6の上にAl配線保護の
ための窒化膜7を図5(g)のように形成しておく必要
がある。ここで従来用いていたAl配線6の梁の断面図
(図1のA…Bに沿って)を図4に示す。図4において
加速度センサの配線部はIC工程で一般に使われている
Al配線6を用いていたため、前記梁上のSi基板の膜
構成はSi上に絶縁膜であるSiO2 の酸化膜5、Al
配線6、Al配線保護のための窒化膜7の3層膜構造を
していた。
A process chart of a conventional acceleration sensor is shown in FIG. When anisotropically etching a semiconductor substrate as shown in FIG. 5G to form a cantilever of a cantilever as shown in FIG. 1, Si is used as shown in FIG.
Etching is performed from the back side,
When the substrate is penetrated, the etching solution penetrates into the wiring portion, so a nitride film 7 for protecting the Al wiring is formed on the Al wiring 6 as shown in FIG. 5 (g). There is a need. FIG. 4 shows a cross-sectional view (along A--B in FIG. 1) of the beam of the Al wiring 6 which is conventionally used. In FIG. 4, since the wiring part of the acceleration sensor uses the Al wiring 6 which is generally used in the IC process, the film structure of the Si substrate on the beam is such that the SiO 2 oxide film 5 and Al which are insulating films are formed on Si.
The wiring 6 and the nitride film 7 for protecting the Al wiring have a three-layer film structure.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来、前記A
l配線・3層膜構造の片持ち梁の加速度センサを形成す
ると、各層膜の熱膨張係数が異なるために各層膜で歪が
生じ、その膜応力により前記梁部にそりが生じるという
課題があった。
However, in the past, the above-mentioned A
When a cantilever acceleration sensor having a 1-wiring / three-layer film structure is formed, distortion occurs in each layer film due to the difference in thermal expansion coefficient of each layer film, and the film stress causes warpage in the beam portion. It was

【0005】本発明の目的は、従来のこのような課題を
解決するため、Al配線とAl配線保護のための窒化膜
に代わって、Ti配線と拡散抵抗部のコンタクト部とそ
の近傍のみにSiへの液浸入を防ぐための窒化膜を形成
する事によって、膜応力を軽減させ、前記加速度センサ
の梁部のそりを減少させることである。
In order to solve such a conventional problem, an object of the present invention is to replace the Al wiring and the nitride film for protecting the Al wiring with Si only in the contact portion of the Ti wiring and the diffusion resistance portion and in the vicinity thereof. By forming a nitride film for preventing liquid infiltration into the structure, film stress is reduced and warpage of the beam portion of the acceleration sensor is reduced.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、配線部において、Al配線に代わってエッチング液
に耐え得るTi系配線を敷くことにより、従来のAl配
線に必要であった保護膜の窒化膜を省くことが可能とな
り、前記3層膜構造から酸化膜とTi配線との2層膜構
造とすることにより、窒化膜でかかっていた膜応力がな
くなる分だけそりの減少を図れるようにした。又、前記
加速度センサのTi配線部と拡散抵抗部とのコンタクト
部において、膜段差による液浸入を防ぐためにコンタク
ト部のみに窒化膜を形成することにより液浸入によるT
i配線の断線の防止を図れるようにした。
In order to solve the above problems, in the wiring portion, a Ti-based wiring that can withstand an etching solution is laid in place of the Al wiring, so that a protective film required for the conventional Al wiring is provided. It becomes possible to omit the nitride film of the above, and by changing the above-mentioned three-layer film structure to a two-layer film structure of an oxide film and Ti wiring, it is possible to reduce the warpage as much as the film stress applied to the nitride film is eliminated. did. Further, at the contact portion between the Ti wiring portion and the diffusion resistance portion of the acceleration sensor, a nitride film is formed only on the contact portion in order to prevent the liquid intrusion due to the film step, so that the T
It is designed to prevent disconnection of i wiring.

【0007】[0007]

【作用】前記のように構成された半導体加速度センサに
おいては、保護膜としての窒化膜の大部分を省くことが
可能となり、膜構成としては従来の3層膜構造から2層
膜構造になることにより各層膜の熱膨張係数の違いによ
る膜応力が軽減され、前記加速度センサの梁部のそりが
減少することとなる。
In the semiconductor acceleration sensor configured as described above, most of the nitride film as the protective film can be omitted, and the film structure is changed from the conventional three-layer film structure to the two-layer film structure. Thereby, the film stress due to the difference in the thermal expansion coefficient of each layer film is reduced, and the warp of the beam portion of the acceleration sensor is reduced.

【0008】[0008]

【実施例】以下に、本発明の実施例を図に基づいて説明
する。図1は前記片持ち梁の加速度センサの斜視図であ
る。図1において、Si基板1上に片持ち梁2及び重り
部3が形成されている。重り部を支える梁の付け根付近
には拡散抵抗4が形成されている。又、片持ち梁2の上
面には金属配線が形成されており、その部分断面図を従
来のAlの場合を図4に、本発明のTiの場合を図2に
示した。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of the cantilever acceleration sensor. In FIG. 1, a cantilever 2 and a weight portion 3 are formed on a Si substrate 1. A diffusion resistance 4 is formed near the base of the beam that supports the weight. Further, a metal wiring is formed on the upper surface of the cantilever 2. A partial sectional view of the conventional Al is shown in FIG. 4, and a case of Ti of the present invention is shown in FIG.

【0009】図5では、本発明と比較のために、従来の
Al配線の加速度センサのプロセスチャートを示してい
る。(a)でSi基板1上面に絶縁膜である酸化膜5、
下面に酸化膜5と窒化膜7を形成している。そのSi基
板上面に拡散抵抗4を形成するためにイオン・インプラ
グネイションを行い(b)、Si基板上面とSi基板下
面にパターニングを行って(c)、(d)でAl配線6
とAl配線保護のための窒化膜7を形成している。その
後(e)でビーム(梁)厚分のギャップエッチングと窒
化膜7のパターニングを行い、ストッパーとしてとパッ
ト部10の保護のための上面のガラス9の接合を行い
(f)、(g)でSi基板1の下面側からエッチングを
行い、エッチング液がSi基板1を貫通し、Si基板1
の上面と上面ガラス9の間に浸入する。そして最後にス
トッパーとしての下面ガラス11をSi基板下面に接合
する(h)。
FIG. 5 shows a process chart of a conventional Al wiring acceleration sensor for comparison with the present invention. In (a), the oxide film 5, which is an insulating film, is formed on the upper surface of the Si substrate 1,
An oxide film 5 and a nitride film 7 are formed on the lower surface. Ion implantation is performed to form the diffusion resistance 4 on the upper surface of the Si substrate (b), patterning is performed on the upper surface of the Si substrate and the lower surface of the Si substrate (c), and the Al wiring 6 is formed in (d).
And a nitride film 7 is formed to protect the Al wiring. Then, in (e), gap etching for the beam thickness and patterning of the nitride film 7 are performed, and the upper glass 9 for joining as a stopper and for protecting the pad portion 10 is joined (f) and (g). Etching is performed from the lower surface side of the Si substrate 1, the etching liquid penetrates the Si substrate 1,
It penetrates between the upper surface and the upper surface glass 9. Finally, the lower surface glass 11 as a stopper is bonded to the lower surface of the Si substrate (h).

【0010】図3に本発明のTi配線の加速度センサの
プロセスチャートを示す。従来のAl配線のプロセスと
違うところは図5(e)では窒化膜7がAl配線全体を
覆うようにパターニングされているが、図3(e)では
窒化膜7が前記コンタクト部とその近傍のみにパターニ
ングされている点である。
FIG. 3 shows a process chart of the Ti wiring acceleration sensor of the present invention. 5 (e), the nitride film 7 is patterned so as to cover the entire Al wiring, but in FIG. 3 (e), the nitride film 7 is formed only on the contact portion and its vicinity. It is the point that is patterned.

【0011】又、図4は前記従来の加速度センサの梁部
のAl配線における拡散抵抗部分の断面図である。Si
基板1の一部に拡散抵抗4が形成されており、その上に
SiO2 の酸化膜5があり、さらにAl配線6、そして
最上部にエッチング液によるAl配線保護のための窒化
膜7が形成され、全部で3層膜構造となっている。
FIG. 4 is a sectional view of a diffusion resistance portion in the Al wiring of the beam portion of the conventional acceleration sensor. Si
A diffusion resistance 4 is formed on a part of the substrate 1, an SiO 2 oxide film 5 is formed on the diffusion resistance 4, an Al wiring 6 is formed, and a nitride film 7 for protecting the Al wiring by an etching solution is formed on the uppermost portion. And has a three-layer film structure in total.

【0012】同様に、図2は前記本発明の加速度センサ
の梁部のTi配線における拡散抵抗部分の断面図であ
る。Si基板1の一部に拡散抵抗4が形成されており、
その上にSiO2 の酸化膜5があり、さらにTi配線8
が形成されている。また、Tiはエッチング液に耐え得
る金属なのでTi配線部分の全面に対して保護膜を形成
する必要はなくなり、最上部でTi配線部と拡散抵抗部
とのコンタクト部のみに窒化膜パッシベーション7が形
成されている。
Similarly, FIG. 2 is a sectional view of a diffusion resistance portion in the Ti wiring of the beam portion of the acceleration sensor of the present invention. A diffusion resistor 4 is formed on a part of the Si substrate 1,
There is a SiO 2 oxide film 5 on top of it, and Ti wiring
Are formed. Further, since Ti is a metal that can withstand the etching solution, it is not necessary to form a protective film on the entire surface of the Ti wiring portion, and the nitride film passivation 7 is formed only on the contact portion between the Ti wiring portion and the diffusion resistance portion at the uppermost portion. Has been done.

【0013】すなわち、Ti配線の加速度センサの片持
ち梁部は酸化膜5とTi配線8との2層膜構造となり、
3層膜構造の従来のAl配線に比べて膜応力を軽減させ
ることができる。そのために、前記加速度センサの梁部
のそりを減少させることが可能となる。
That is, the cantilever portion of the Ti wiring acceleration sensor has a two-layer film structure of the oxide film 5 and the Ti wiring 8.
The film stress can be reduced as compared with the conventional Al wiring having a three-layer film structure. Therefore, it is possible to reduce the warp of the beam portion of the acceleration sensor.

【0014】[0014]

【発明の効果】以上のように、本発明は、加速度センサ
の配線部において、従来のAl配線での3層膜構造から
Ti配線の2層膜構造という構成にしたので、膜応力に
よるそりが軽減され他軸にかかる加速度の感度を小さく
する効果がある。又、そりを軽減させることにより耐久
性を高める効果がある。
As described above, according to the present invention, in the wiring portion of the acceleration sensor, the conventional three-layer film structure of Al wiring is changed to the two-layer film structure of Ti wiring. This has the effect of reducing the sensitivity of acceleration applied to other axes. Further, there is an effect of increasing durability by reducing the warpage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加速度センサの斜視図である。FIG. 1 is a perspective view of an acceleration sensor according to the present invention.

【図2】本発明のTi配線部の断面説明図である。FIG. 2 is a cross-sectional explanatory view of a Ti wiring portion of the present invention.

【図3】本発明のプロセスチャートである。FIG. 3 is a process chart of the present invention.

【図4】従来の方法のAl配線部の断面説明図である。FIG. 4 is a cross-sectional explanatory view of an Al wiring portion of a conventional method.

【図5】従来の方法のプロセスチャートである。FIG. 5 is a process chart of a conventional method.

【符号の説明】[Explanation of symbols]

1 Si基板 2 片持ち梁 3 重り部 4 拡散抵抗 5 酸化膜 6 Al配線 7 窒化膜 8 Ti配線 9 上面ガラス 10 パット部 11 下面ガラス DESCRIPTION OF SYMBOLS 1 Si substrate 2 Cantilever 3 Weight part 4 Diffusion resistance 5 Oxide film 6 Al wiring 7 Nitride film 8 Ti wiring 9 Top glass 10 Pad part 11 Bottom glass

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成され、重り部を支え
る梁の付け根付近に拡散抵抗が形成されており、前記梁
の変位に応じて前記拡散抵抗に生じる抵抗値の変化を検
出することによって加速度を検出する半導体加速度セン
サにおいて、前記半導体加速度センサの配線部に、チタ
ン系の金属を用いることを特徴とする半導体加速度セン
サ。
1. A diffusion resistance is formed in the vicinity of the root of a beam that is formed on a semiconductor substrate and supports a weight portion. By detecting a change in resistance value that occurs in the diffusion resistance according to the displacement of the beam, A semiconductor acceleration sensor for detecting acceleration, wherein a titanium-based metal is used for a wiring portion of the semiconductor acceleration sensor.
【請求項2】 前記半導体加速度センサの配線部と前記
拡散抵抗部とのコンタクト部とそのコンタクト部近傍
に、窒化膜を形成することを特徴とする請求項1記載の
半導体加速度センサ。
2. The semiconductor acceleration sensor according to claim 1, wherein a nitride film is formed in a contact portion between the wiring portion of the semiconductor acceleration sensor and the diffusion resistance portion and in the vicinity of the contact portion.
JP24031794A 1994-10-04 1994-10-04 Semiconductor acceleration sensor Pending JPH08107217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24031794A JPH08107217A (en) 1994-10-04 1994-10-04 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24031794A JPH08107217A (en) 1994-10-04 1994-10-04 Semiconductor acceleration sensor

Publications (1)

Publication Number Publication Date
JPH08107217A true JPH08107217A (en) 1996-04-23

Family

ID=17057674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24031794A Pending JPH08107217A (en) 1994-10-04 1994-10-04 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JPH08107217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294892A (en) * 2005-04-12 2006-10-26 Dainippon Printing Co Ltd Uniaxial semiconductor acceleration sensor
CN104316725A (en) * 2014-11-13 2015-01-28 中国科学院上海微系统与信息技术研究所 High-resonant-frequency and high-impact accelerometer based on monocrystalline silicon piece (111) and manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294892A (en) * 2005-04-12 2006-10-26 Dainippon Printing Co Ltd Uniaxial semiconductor acceleration sensor
CN104316725A (en) * 2014-11-13 2015-01-28 中国科学院上海微系统与信息技术研究所 High-resonant-frequency and high-impact accelerometer based on monocrystalline silicon piece (111) and manufacturing method

Similar Documents

Publication Publication Date Title
US7010976B2 (en) Acceleration sensor and manufacturing method thereof
US7019231B2 (en) Inertial sensor
JP2811768B2 (en) Semiconductor type acceleration sensor and method of manufacturing the same
JP2008140867A (en) Semiconductor device mixedly mounted with micro electro mechanical system sensor
JP3020107B2 (en) Semiconductor device
JP4518738B2 (en) Acceleration sensor
JPH08107217A (en) Semiconductor acceleration sensor
JP4650843B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2929820B2 (en) Method for manufacturing semiconductor device
JP2650455B2 (en) Semiconductor pressure sensor
JP3335810B2 (en) Semiconductor pressure sensor
JP2003207516A (en) Semiconductor acceleration sensor and method of manufacturing the same
JPH0634403B2 (en) Method for manufacturing semiconductor device
US7765870B2 (en) Acceleration sensor and method of manufacturing the same
JPH11304616A (en) Semiconductor pressure sensor
JPH0735768A (en) Capacitance-type sensor and manufacture thereof
JPH10242534A (en) Micro device having hollow beam and its manufacture
JPH0332214B2 (en)
JP2748074B2 (en) Resistance type pressure sensor element
JP3023444B2 (en) Semiconductor acceleration sensor
JPH0548118A (en) Semiconductor pressure sensor
JPS59138383A (en) Semiconductor pressure sensor
JP2848059B2 (en) Manufacturing method of semiconductor acceleration sensor
JPH0712842A (en) Semiconductor capacitive sensor and fabrication thereof
JPS62199037A (en) Wiring structure of semiconductor device