JPH0735768A - Capacitance-type sensor and manufacture thereof - Google Patents
Capacitance-type sensor and manufacture thereofInfo
- Publication number
- JPH0735768A JPH0735768A JP20263693A JP20263693A JPH0735768A JP H0735768 A JPH0735768 A JP H0735768A JP 20263693 A JP20263693 A JP 20263693A JP 20263693 A JP20263693 A JP 20263693A JP H0735768 A JPH0735768 A JP H0735768A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- thin film
- recess
- type sensor
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Fluid Pressure (AREA)
- Pressure Sensors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、静電容量型センサ及び
その製造方法に関する。具体的には、検知部の変位に比
例して生じる静電容量の変化を検出して、自動車の加速
度や空気等のゲージ圧等の物理量を測定するために用い
られる静電容量型センサ及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance type sensor and its manufacturing method. Specifically, a capacitance-type sensor used to detect a change in capacitance that occurs in proportion to the displacement of the detection unit and measure a physical quantity such as a vehicle acceleration or a gauge pressure of air, and the like. It relates to a manufacturing method.
【0002】[0002]
【従来の技術とその問題点】従来、シリコン製の検知基
板52とシリコン製若しくはガラス製の固定基板53を
接合した静電容量型の圧力センサ51において、例えば
図5(a)に示すように、可動電極54と接続された極
めて薄い金属配線(厚さ0.05μm以下)55を検知
基板52の上面に設け、検知基板52と固定基板53と
の間から金属配線55を検知基板52上の外部引き出し
電極56に接続させていた。2. Description of the Related Art Conventionally, in a capacitance type pressure sensor 51 in which a detection substrate 52 made of silicon and a fixed substrate 53 made of silicon or glass are joined, as shown in FIG. , An extremely thin metal wiring (thickness of 0.05 μm or less) 55 connected to the movable electrode 54 is provided on the upper surface of the detection substrate 52, and the metal wiring 55 is provided between the detection substrate 52 and the fixed substrate 53 on the detection substrate 52. It was connected to the external lead electrode 56.
【0003】しかしながら、このような構造にあっては
平坦な検知基板52及び固定基板53の接合面の間に金
属配線55を設けているので、図5(b)に示すように
両基板52,53間に金属配線55を挟み込むことにな
り、金属配線55の周辺部がそれぞれ密着せず、その厚
さに比例した非接着部を生じていた。このため、接合面
に隙間57を生じ圧力センサ51の気密性を著しく劣化
させ、圧力センサ51の安定性、信頼性を損なうことと
なっていた。However, in such a structure, since the metal wiring 55 is provided between the flat bonding surfaces of the detection substrate 52 and the fixed substrate 53, as shown in FIG. Since the metal wiring 55 is sandwiched between the portions 53, the peripheral portions of the metal wiring 55 are not in close contact with each other, and a non-bonded portion proportional to the thickness is formed. Therefore, a gap 57 is formed on the joint surface, and the airtightness of the pressure sensor 51 is significantly deteriorated, and the stability and reliability of the pressure sensor 51 are impaired.
【0004】また、金属配線55は検知基板52及び固
定基板53の表面に設けたSiO2による薄い絶縁膜5
8,58を挟んで設けられているために、検知基板52
と金属配線55との間あるいは固定基板53と金属配線
55との間に静電容量が発生する。この静電容量は、圧
力センサ51に対して寄生容量として働き、圧力センサ
51の特性を著しく悪化させていた。The metal wiring 55 is a thin insulating film 5 made of SiO 2 provided on the surfaces of the detection substrate 52 and the fixed substrate 53.
Since it is provided so as to sandwich 8, 58, the detection substrate 52
Capacitance is generated between the metal wiring 55 and the metal wiring 55 or between the fixed substrate 53 and the metal wiring 55. This electrostatic capacitance acts as a parasitic capacitance on the pressure sensor 51, and significantly deteriorates the characteristics of the pressure sensor 51.
【0005】また、図6(a)に示すように、検知基板
52の接合面に形成したSiO2による薄い絶縁膜58
の内側にリンなどを注入してn+拡散層63を形成し、
さらにその内側にボロンなどによるp+拡散層62を形
成して外部引き出し電極56に接続させる別の構造をし
た圧力センサ61がある。Further, as shown in FIG. 6A, a thin insulating film 58 made of SiO 2 formed on the joint surface of the detection substrate 52.
Phosphorus or the like is injected into the inside of the to form the n + diffusion layer 63,
Further, there is a pressure sensor 61 having another structure in which a p + diffusion layer 62 made of boron or the like is formed inside and connected to the external lead electrode 56.
【0006】しかしながら、このような構造では検知基
板52に拡散層62,63を形成させて、可動電極54
と外部引き出し電極56とをつないでいるために検知基
板52との絶縁ができないばかりか、pn接合により大
きな静電容量を生じることになる。このpn接合による
大きな静電容量は圧力センサ61に対して寄生容量とし
て働き、やはり、圧力センサ61の特性を著しく低下さ
せる原因となっていた。However, in such a structure, the movable substrate 54 is formed by forming the diffusion layers 62 and 63 on the detection substrate 52.
Since the external lead-out electrode 56 is connected to the detection substrate 52, the detection substrate 52 cannot be insulated, and a large capacitance is generated by the pn junction. The large capacitance due to the pn junction acts as a parasitic capacitance with respect to the pressure sensor 61, which also causes the characteristics of the pressure sensor 61 to be significantly deteriorated.
【0007】[0007]
【発明が解決しようとする課題】本発明は叙上の従来例
の欠点に鑑みてなされたものであり、その目的とすると
ころは、検知基板に設けた金属配線の下側あるいは金属
配線と対向する固定基板の領域にも、石英ガラス、低融
点ガラスやポリイミド樹脂などの溶融可能な絶縁物を埋
め込むことにより、上記問題点を解決することを目的と
している。SUMMARY OF THE INVENTION The present invention has been made in view of the drawbacks of the above-mentioned conventional examples, and an object thereof is to face the lower side of the metal wiring provided on the detection substrate or to face the metal wiring. By embedding a meltable insulator such as quartz glass, low melting point glass or polyimide resin also in the area of the fixed substrate, the above problem is solved.
【0008】[0008]
【課題を解決するための手段】本発明の静電容量型セン
サは、2枚の基板を接合し、前記両基板にそれぞれ設け
た電極間の静電容量の変化として物理量を検知する静電
容量型センサにおいて、いずれか一方の前記基板の接合
面に当該基板に設けた前記電極を外部に引き出すための
引き出し線を配線し、一方の基板の前記引き出し線が配
線された領域又は残る一方の基板の前記引き出し線と対
向する領域の少なくとも一方の領域に、溶融可能な絶縁
物を埋め込んだ絶縁部を形成したことを特徴としてい
る。SUMMARY OF THE INVENTION An electrostatic capacitance type sensor of the present invention is an electrostatic capacitance sensor which joins two substrates and detects a physical quantity as a change in electrostatic capacitance between electrodes provided on both substrates. In a type sensor, a lead line for drawing the electrode provided on the substrate to the outside is provided on the bonding surface of one of the substrates, and a region where the lead line of one substrate is wired or the remaining one substrate Is characterized in that an insulating portion in which a meltable insulating material is embedded is formed in at least one of the areas facing the lead lines.
【0009】本発明の第1の静電容量型センサの製造方
法は、請求項1に記載の静電容量型センサを製造する方
法であって、前記絶縁部を形成する基板の接合面に凹部
を形成し、前記接合面全面に溶融可能な絶縁物の薄膜を
形成し、前記凹部以外の薄膜をエッチングにより除去
し、さらに前記凹部内に残った薄膜を溶融して前記絶縁
物を前記凹部内に埋め込み、前記絶縁部を形成すること
を特徴としている。A first method of manufacturing a capacitance type sensor according to the present invention is a method of manufacturing a capacitance type sensor according to claim 1, wherein a concave portion is formed on a bonding surface of a substrate on which the insulating portion is formed. Forming a meltable insulating thin film on the entire bonding surface, removing the thin film other than the recess by etching, and further melting the thin film remaining in the recess to melt the insulator in the recess. And the insulating portion is formed.
【0010】本発明の第2の静電容量型センサの製造方
法は、請求項1に記載の静電容量型センサを製造する方
法であって、前記絶縁部を形成する基板の接合面に凹部
を形成し、前記接合面全面に溶融可能な絶縁物の薄膜を
形成し、前記薄膜をプラズマエッチングのような物理的
エッチング法により平坦化したのち、前記凹部以外の前
記薄膜をエッチングにより除去することにより前記絶縁
物を前記凹部内に残して、前記絶縁部を形成することを
特徴としている。A second method of manufacturing a capacitance type sensor according to the present invention is a method of manufacturing a capacitance type sensor according to claim 1, wherein the concave portion is formed on the bonding surface of the substrate on which the insulating portion is formed. Forming a thin film of a meltable insulator on the entire bonding surface, planarizing the thin film by a physical etching method such as plasma etching, and then removing the thin film other than the concave portion by etching. Thus, the insulating portion is formed by leaving the insulator in the recess.
【0011】また、本発明の第3の静電容量型センサの
製造方法は、請求項1に記載の静電容量型センサを製造
する方法であって、前記絶縁部を形成する基板の接合面
に凹部を形成し、前記接合面全面に溶融可能な絶縁物の
薄膜を形成し、前記薄膜を研磨して前記凹部以外の前記
薄膜を除去することにより前記絶縁物を前記凹部内に残
して、前記絶縁部を形成することことを特徴としてい
る。A third method of manufacturing a capacitive sensor according to the present invention is the method of manufacturing a capacitive sensor according to claim 1, wherein the bonding surface of the substrate on which the insulating portion is formed is joined. To form a concave portion, to form a meltable thin film of an insulating material on the entire bonding surface, and polishing the thin film to remove the thin film other than the concave portion to leave the insulating material in the concave portion, It is characterized in that the insulating portion is formed.
【0012】[0012]
【作用】本発明の静電容量型センサにおいては、少なく
ともいずれか一方の基板の接合面の引き出し線の配線領
域あるいは引き出し線と対向する領域に設けられた絶縁
物を一旦溶融させた後再固化させることにより、引き出
し線を絶縁部に埋め込むことができ、引き出し線の部分
で基板間に生じる隙間を絶縁物で埋めることができる。
したがって、例えば基板間に生じた隙間から真空等一定
基準圧にした電極間に空気等が入り込まず、静電容量型
センサの気密性を高めることとなり、静電容量型センサ
の安定性、信頼性を向上させることができる。In the capacitance type sensor of the present invention, the insulator provided in the wiring region of the lead line or the region facing the lead line on the bonding surface of at least one of the substrates is once melted and then resolidified. By doing so, the lead wire can be embedded in the insulating portion, and the gap generated between the substrates at the lead wire portion can be filled with the insulator.
Therefore, for example, air or the like does not enter between the electrodes that are kept at a constant reference pressure such as a vacuum from the gap generated between the substrates, and the airtightness of the capacitance type sensor is enhanced, and the stability and reliability of the capacitance type sensor are improved. Can be improved.
【0013】また、引き出し線は絶縁部によって当該配
線された基板若しくは接合された基板と絶縁されること
になる。したがって、引き出し線と両基板との間に発生
する寄生容量を極めて小さくすることができるので、静
電容量型センサの感度の低下等を防ぎ、静電容量型セン
サの特性を向上させることができる。Further, the lead line is insulated by the insulating portion from the wired substrate or the bonded substrate. Therefore, the parasitic capacitance generated between the leader line and both substrates can be made extremely small, so that the sensitivity of the capacitance type sensor can be prevented from lowering and the characteristics of the capacitance type sensor can be improved. .
【0014】本発明の製造方法によれば、上記構造をし
た静電容量型センサを簡単に製造することができる。ま
た、第1の製造方法によれば、少ない製造工程で絶縁部
を得ることができる。第2の製造方法によれば、表面が
平坦な絶縁部を得ることができる。また、第3の製造方
法によれば、表面が平坦な絶縁部を少ない製造工程で得
ることができる。According to the manufacturing method of the present invention, the capacitance type sensor having the above structure can be easily manufactured. Further, according to the first manufacturing method, the insulating portion can be obtained with a small number of manufacturing steps. According to the second manufacturing method, it is possible to obtain an insulating portion having a flat surface. Further, according to the third manufacturing method, it is possible to obtain an insulating portion having a flat surface with a small number of manufacturing steps.
【0015】[0015]
【実施例】図1に本発明の一実施例である圧力センサ1
を示す。図1(a)は圧力センサ1の断面図、図1
(b)は圧力センサ1を構成する検知基板2を示す平面
図であって、圧力センサ1は、角枠状の枠内全面に弾性
的に支持されたダイヤフラム部4が形成されたシリコン
製の検知基板2の上に、シリコン製の固定基板3が重ね
られている。固定基板3の周辺部にはSiO2による絶
縁膜7が形成され、低温接合法などにより検知基板2に
接合されている。また、ダイヤフラム部4の上面にはA
lなどをスパッタリングすることによって可動電極5が
形成されている。検知基板2の上面には外部引き出し電
極9が設けられていて、可動電極5は可動電極5と一体
として設けられた引き出し線10によって外部引き出し
電極9に接続されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a pressure sensor 1 according to an embodiment of the present invention.
Indicates. FIG. 1A is a sectional view of the pressure sensor 1, FIG.
FIG. 1B is a plan view showing a detection substrate 2 that constitutes the pressure sensor 1. The pressure sensor 1 is made of silicon in which a diaphragm portion 4 elastically supported on the entire surface of a rectangular frame is formed. A fixed substrate 3 made of silicon is overlaid on the detection substrate 2. An insulating film 7 made of SiO 2 is formed on the peripheral portion of the fixed substrate 3 and is joined to the detection substrate 2 by a low temperature joining method or the like. In addition, the upper surface of the diaphragm portion 4 has A
The movable electrode 5 is formed by sputtering 1 or the like. An external extraction electrode 9 is provided on the upper surface of the detection substrate 2, and the movable electrode 5 is connected to the external extraction electrode 9 by an extraction line 10 provided integrally with the movable electrode 5.
【0016】固定基板3の内側には、ダイヤフラム部4
がその厚さ方向に自由に微小変位できるように窪み8が
形成されており、窪み8には可動電極5と対向して固定
電極6が形成され、可動電極5と固定電極6との間に小
さなギャップを隔ててコンデンサが構成されている。A diaphragm portion 4 is provided inside the fixed substrate 3.
Has a recess 8 formed therein so that it can be freely displaced in its thickness direction. A fixed electrode 6 is formed in the recess 8 so as to face the movable electrode 5, and a fixed electrode 6 is formed between the movable electrode 5 and the fixed electrode 6. The capacitors are configured with a small gap in between.
【0017】図1(c)は、図1(b)のA−A′線に
相当する箇所において圧力センサ1を一部破断した断面
図である。検知基板2の接合面(図1(b)中の破線部
分)の一部には、後述するようにエッチング処理が施さ
れて溝状の凹部11が形成され、凹部11に加熱により
溶融可能な絶縁物である、例えばポリイミド樹脂16が
埋め込まれて絶縁部12が形成されている。また、固定
基板3の接合面にも溝状の凹部13にポリイミド樹脂1
6が埋め込まれた別な絶縁部14が形成されている。引
き出し線10は絶縁部14のポリイミド樹脂16中に埋
入されており、検知基板2及び固定基板3とは隙間なく
接合されている。FIG. 1C is a sectional view of the pressure sensor 1 which is partially broken at a portion corresponding to the line AA 'in FIG. 1B. A part of the bonding surface (broken line portion in FIG. 1B) of the detection substrate 2 is subjected to etching treatment as described later to form a groove-shaped recess 11, and the recess 11 can be melted by heating. For example, a polyimide resin 16 which is an insulator is embedded to form the insulating portion 12. Further, the polyimide resin 1 is formed in the groove-shaped recess 13 on the joint surface of the fixed substrate 3.
Another insulating portion 14 in which 6 is embedded is formed. The lead wire 10 is embedded in the polyimide resin 16 of the insulating portion 14, and is joined to the detection substrate 2 and the fixed substrate 3 without a gap.
【0018】図2(a)(b)(c)(d)は圧力セン
サ1の絶縁部14の作成方法を示す一部破断した断面図
であって、以下図2に従って圧力センサ1の作成方法に
ついて述べる。まず、シリコンウエハにエッチング処理
を施して窪み8を形成した固定基板3を作成する。この
固定基板3の接合面に、絶縁部14を形成するための凹
部13をドライエッチングにより約1.5mmの深さに
形成する(図2(a))。次に、固定基板3の接合面全
面にポリイミド樹脂16の薄膜15を形成する(図2
(b))。この薄膜15上をフォトレジストで覆った
後、フォトエッチングを行って凹部13以外の薄膜15
を除去して、凹部13内に薄膜15の一部を残す(図2
(c))。次に固定基板3に約200℃の熱処理を行っ
て、この残った薄膜15の一部を溶融させ、その表面が
ほぼ平坦になった状態で冷却し、当該凹部13内にポリ
イミド樹脂16が埋め込まれた絶縁部14を形成する
(図2(d))。2 (a), (b), (c), and (d) are partially cutaway sectional views showing a method for producing the insulating portion 14 of the pressure sensor 1. The method for producing the pressure sensor 1 will be described below with reference to FIG. I will describe. First, the fixed substrate 3 in which the depression 8 is formed by etching the silicon wafer is created. A recess 13 for forming the insulating portion 14 is formed on the bonding surface of the fixed substrate 3 by dry etching to a depth of about 1.5 mm (FIG. 2A). Next, the thin film 15 of the polyimide resin 16 is formed on the entire bonding surface of the fixed substrate 3 (FIG. 2).
(B)). After covering the thin film 15 with a photoresist, the thin film 15 other than the recess 13 is subjected to photoetching.
Is removed to leave a part of the thin film 15 in the recess 13 (see FIG. 2).
(C)). Next, the fixed substrate 3 is heat-treated at about 200 ° C. to melt a part of the remaining thin film 15 and cool it with its surface being substantially flat, and the polyimide resin 16 is embedded in the recess 13. The insulated portion 14 is formed (FIG. 2D).
【0019】一方、別なシリコンウエハにエッチング処
理を施してダイヤフラム部4を精度よく形成させる。こ
の検知基板2にも絶縁部14と同様にしてポリイミド樹
脂16を埋め込んだ絶縁部12を形成し、絶縁部12の
表面にアルミニウムなどをスパッタリングして可動電極
5とともに引き出し線10を形成する。次にそれぞれの
絶縁部12,14を対向させて両基板2,3を100〜
200℃の低温接合を行い、再度約200℃以上の熱処
理を施して絶縁部12,14をリフローさせ、図1
(c)のような構造を有する圧力センサ1を作成する。On the other hand, another silicon wafer is subjected to an etching process to form the diaphragm portion 4 with high precision. Similarly to the insulating portion 14, the insulating portion 12 in which the polyimide resin 16 is embedded is formed on the detection substrate 2, and aluminum or the like is sputtered on the surface of the insulating portion 12 to form the lead wire 10 together with the movable electrode 5. Next, the insulating parts 12 and 14 are made to face each other, and the two substrates 2 and 3 are connected to each other by
A low temperature bonding of 200 ° C. is performed, and a heat treatment of about 200 ° C. or more is performed again to reflow the insulating parts 12 and 14, and FIG.
The pressure sensor 1 having the structure as shown in (c) is prepared.
【0020】しかして、このようにして作成された圧力
センサ1に空気等の流体の圧力が導入されると、導入さ
れた圧力によりダイヤフラム部4が変位を生じる。この
変位は圧力センサ1に構成された当該コンデンサの静電
容量Cの大きさを変化させ、この変化を検知基板2上の
外部引き出し電極9と固定電極6と接続された別な外部
引き出し電極(図示せず)に接続された検知回路等で検
知することにより当該導入された圧力の大きさを知るこ
とができる。When the pressure of the fluid such as air is introduced into the pressure sensor 1 thus produced, the diaphragm 4 is displaced by the introduced pressure. This displacement changes the magnitude of the electrostatic capacitance C of the capacitor included in the pressure sensor 1, and this change causes another external extraction electrode 9 connected to the external extraction electrode 9 and the fixed electrode 6 on the detection substrate 2 ( The magnitude of the introduced pressure can be known by detecting with a detection circuit or the like connected to (not shown).
【0021】この圧力センサ1にあっては、引き出し線
10と検知基板2との間には厚い絶縁層をなすポリイミ
ド樹脂16が挟み込まれているので、確実に両者間を絶
縁することができ、引き出し線10と検知基板2との間
に静電容量が寄生することがない。また、引き出し線1
0と固定基板3との間にもポリイミド樹脂16が挟み込
まれることになるので、引き出し線10と固定基板3と
の間にも静電容量が寄生することがない。このため、圧
力センサ1の感度の低下を防ぎ、直線性などのセンサ特
性を向上させることができる。In this pressure sensor 1, since the polyimide resin 16 forming a thick insulating layer is sandwiched between the lead wire 10 and the detection substrate 2, it is possible to surely insulate the both. No electrostatic capacitance is parasitic between the lead wire 10 and the detection substrate 2. Also, leader line 1
Since the polyimide resin 16 is also sandwiched between 0 and the fixed substrate 3, no electrostatic capacitance is parasitic between the lead wire 10 and the fixed substrate 3. Therefore, it is possible to prevent the sensitivity of the pressure sensor 1 from deteriorating and improve the sensor characteristics such as linearity.
【0022】さらに、両基板2,3を接合させたのちに
熱処理を施してポリイミド樹脂16を再度溶融させてい
るので、検知基板2に配線された引き出し線10がポリ
イミド樹脂16中に取り囲まれるとともに、さらに溶融
されたポリイミド樹脂16が両基板2,3間の隙間に入
り込むことになる。この状態で冷却すると、引き出し線
10によって両基板2,3間に隙間を生じることがな
く、しかも、両基板2,3間を緻密に接合することがで
きるので、圧力センサ1の信頼性を向上させることもで
きる。Furthermore, after the two substrates 2 and 3 are joined together, heat treatment is performed to re-melt the polyimide resin 16, so that the lead wire 10 wired on the detection substrate 2 is surrounded by the polyimide resin 16. The further melted polyimide resin 16 will enter the gap between the substrates 2 and 3. When cooled in this state, the lead wire 10 does not create a gap between the two substrates 2 and 3, and moreover, the two substrates 2 and 3 can be closely joined, so that the reliability of the pressure sensor 1 is improved. You can also let it.
【0023】また、絶縁部14は図3に示すようにして
作成することもできる。窪み8を形成した固定基板3に
凹部13をドライエッチングにより形成する(図3
(a))。次に固定基板3の接合面全面にポリイミド樹
脂16よりエッチング速度の遅いシリコン層、例えば、
SiNx層21を凹部13の深さよりも厚く形成して、
SiNx層21の上からポリイミド樹脂16の薄膜15
を形成させる(図3(b))。次に、薄膜15の上から
表面が平坦となるようにフォトレジスト膜22で覆い
(図3(c))、プラズマエッチング処理によってポリ
イミド樹脂16の薄膜15を平坦化する(図3
(d))。そして、ポリイミド樹脂16の薄膜15をド
ライエッチングし、接合面のSiNx層21が除去され
た時点でエッチングをストップさせて、凹部13内にポ
リイミド樹脂16の薄膜15を残して絶縁部14を形成
することができる(図3(e))。なお、絶縁部12も
同様にして作成できる。The insulating portion 14 can also be formed as shown in FIG. A recess 13 is formed in the fixed substrate 3 having the recess 8 by dry etching (FIG. 3).
(A)). Next, a silicon layer having a slower etching rate than the polyimide resin 16 is formed on the entire bonding surface of the fixed substrate 3, for example,
The SiN x layer 21 is formed thicker than the depth of the recess 13,
From the top of the SiN x layer 21, a thin film 15 of polyimide resin 16
Are formed (FIG. 3B). Next, the thin film 15 is covered with a photoresist film 22 so that the surface is flat (FIG. 3C), and the thin film 15 of the polyimide resin 16 is flattened by plasma etching (FIG. 3C).
(D)). Then, the thin film 15 of the polyimide resin 16 is dry-etched, the etching is stopped when the SiN x layer 21 on the bonding surface is removed, and the thin film 15 of the polyimide resin 16 is left in the recess 13 to form the insulating portion 14. This can be done (FIG. 3 (e)). The insulating portion 12 can also be created in the same manner.
【0024】さらに絶縁部14の別な作成方法を図4に
示す。窪み8を形成した固定基板3にドライエッチング
により凹部13を形成し(図4(a))、固定基板3の
接合面全面にポリイミド樹脂16の薄膜15を凹部13
の深さよりも厚く形成する(図4(b))。この後、薄
膜15を研磨して、接合面を露出させて凹部13内に薄
膜15を残すことにより絶縁部14を形成することとし
てもよい。 なお、絶縁部12も同様にして作成でき
る。Further, another method of forming the insulating portion 14 is shown in FIG. A recess 13 is formed by dry etching on the fixed substrate 3 in which the recess 8 is formed (FIG. 4A), and a thin film 15 of polyimide resin 16 is formed on the entire bonding surface of the fixed substrate 3 in the recess 13.
Is formed to be thicker than the depth (FIG. 4B). After that, the thin film 15 may be polished to expose the bonding surface and leave the thin film 15 in the recess 13 to form the insulating portion 14. The insulating portion 12 can also be created in the same manner.
【0025】このように様々な方法で絶縁部を形成する
ことができる。また、ポリイミド樹脂に限らず、その他
石英ガラスや低融点ガラスなどの溶融可能な絶縁物を用
いることができる。また、できるだけ低い温度で溶融さ
せることのできる絶縁物が好ましく、低温接合時の温度
より低い温度で溶融できる絶縁物を用いれば、一度の熱
処理を行うことで隙間のない圧力センサを得ることがで
きる。As described above, the insulating portion can be formed by various methods. Further, not only polyimide resin but also other meltable insulators such as quartz glass and low melting point glass can be used. Further, an insulator that can be melted at a temperature as low as possible is preferable, and if an insulator that can be melted at a temperature lower than the temperature at the time of low-temperature bonding is used, a pressure sensor without a gap can be obtained by performing heat treatment once. .
【0026】なお、このような構造は圧力センサのみな
らず、静電容量型の加速度センサにも応用することがで
きるのはいうまでもない。Needless to say, such a structure can be applied not only to a pressure sensor but also to a capacitance type acceleration sensor.
【0027】[0027]
【発明の効果】本発明の静電容量型センサにおいては、
少なくともいずれか一方の基板の接合面の引き出し線の
配線領域あるいは引き出し線と対向する領域に設けられ
た絶縁物を一旦溶融させた後再固化させることにより、
引き出し線を絶縁部に埋め込むことができ、引き出し線
の部分で基板間に生じる隙間を絶縁物で埋めることがで
きる。したがって、例えば基板間に生じた隙間から真空
等一定基準圧にした電極間に空気等が入り込まず、静電
容量型センサの気密性を高めることとなり、静電容量型
センサの安定性、信頼性を向上させることができる。According to the capacitance type sensor of the present invention,
By once melting and then re-solidifying the insulator provided in the wiring region of the lead line of the bonding surface of at least one of the substrates or in the region facing the lead line,
The lead wire can be embedded in the insulating portion, and a gap generated between the substrates at the lead wire portion can be filled with an insulator. Therefore, for example, air or the like does not enter between the electrodes that are kept at a constant reference pressure such as a vacuum from the gap generated between the substrates, and the airtightness of the capacitance type sensor is enhanced, and the stability and reliability of the capacitance type sensor are improved. Can be improved.
【0028】また、引き出し線は絶縁部によって当該配
線された基板若しくは接合された基板と絶縁されること
になる。したがって、引き出し線と両基板との間に発生
する寄生容量を極めて小さくすることができるので、静
電容量型センサの感度の低下等を防ぎ、静電容量型セン
サの特性を向上させることができる。Further, the lead line is insulated by the insulating portion from the wired substrate or the bonded substrate. Therefore, the parasitic capacitance generated between the leader line and both substrates can be made extremely small, so that the sensitivity of the capacitance type sensor can be prevented from lowering and the characteristics of the capacitance type sensor can be improved. .
【0029】また、本発明の製造方法によれば、上記構
造をした静電容量型センサを簡単に製造することができ
る。Further, according to the manufacturing method of the present invention, the capacitance type sensor having the above structure can be easily manufactured.
【図1】(a)は本発明の一実施例である圧力センサの
断面図、(b)は同上の圧力センサの検知基板を示す平
面図、(c)は図1(b)のA−A´線の相当する箇所
において同上の圧力センサを一部破断した断面図であ
る。1A is a cross-sectional view of a pressure sensor according to an embodiment of the present invention, FIG. 1B is a plan view showing a detection substrate of the same pressure sensor, and FIG. 1C is a sectional view of FIG. FIG. 6 is a cross-sectional view in which the pressure sensor of the above is partially broken at a position corresponding to the line A ′.
【図2】(a)(b)(c)(d)は、本発明の一実施
例である圧力センサの製造方法を示す一部破断した断面
図である。2 (a), (b), (c), and (d) are partially cutaway cross-sectional views showing a method of manufacturing a pressure sensor according to an embodiment of the present invention.
【図3】(a)(b)(c)(d)(e)は、本発明の
別な実施例である圧力センサの製造方法を示す一部破断
した断面図である。3 (a), (b), (c), (d), and (e) are partially cutaway sectional views showing a method of manufacturing a pressure sensor which is another embodiment of the present invention.
【図4】(a)(b)(c)は、本発明のさらに別な実
施例である圧力センサの製造方法を示す一部破断した断
面図である。4 (a), (b) and (c) are partially cutaway sectional views showing a method of manufacturing a pressure sensor which is still another embodiment of the present invention.
【図5】(a)は従来例である圧力センサの検知基板を
示す平面図、(b)は同上の圧力センサの一部破断した
断面図である。5A is a plan view showing a detection substrate of a conventional pressure sensor, and FIG. 5B is a partially cutaway sectional view of the above pressure sensor.
【図6】(a)は別な従来例である圧力センサの検知基
板を示す平面図、(b)は同上の圧力センサの一部破断
した断面図である。FIG. 6A is a plan view showing a detection substrate of another conventional pressure sensor, and FIG. 6B is a partially cutaway sectional view of the above pressure sensor.
2 検知基板 5 可動電極 7 絶縁膜 10 引き出し線 12 絶縁部 15 薄膜 2 Detection Substrate 5 Movable Electrode 7 Insulating Film 10 Leading Wire 12 Insulating Part 15 Thin Film
Claims (4)
ぞれ設けた電極間の静電容量の変化として物理量を検知
する静電容量型センサにおいて、 いずれか一方の前記基板の接合面に当該基板に設けた前
記電極を外部に引き出すための引き出し線を配線し、 一方の基板の前記引き出し線が配線された領域又は残る
一方の基板の前記引き出し線と対向する領域の少なくと
も一方の領域に、溶融可能な絶縁物を埋め込んだ絶縁部
を形成したことを特徴とする静電容量型センサ。1. A capacitance type sensor which joins two substrates and detects a physical quantity as a change in capacitance between electrodes provided on the both substrates, wherein one of the substrates has a joining surface. A lead line for drawing out the electrode provided on the substrate to the outside is wired, and in at least one region of the region where the lead line of one substrate is wired or the region opposite to the lead line of the remaining one substrate. A capacitive sensor having an insulating portion in which a meltable insulating material is embedded.
造する方法であって、 前記絶縁部を形成する基板の接合面に凹部を形成し、前
記接合面全面に溶融可能な絶縁物の薄膜を形成し、前記
凹部以外の薄膜をエッチングにより除去し、さらに前記
凹部内に残った薄膜を溶融して前記絶縁物を前記凹部内
に埋め込み、前記絶縁部を形成することを特徴とする静
電容量型センサの製造方法。2. The method for manufacturing the capacitance type sensor according to claim 1, wherein a recess is formed in a joint surface of a substrate on which the insulating portion is formed, and the whole insulator is meltable. Is formed, the thin film other than the recess is removed by etching, and the thin film remaining in the recess is melted to embed the insulator in the recess to form the insulating portion. Manufacturing method of capacitance type sensor.
造する方法であって、 前記絶縁部を形成する基板の接合面に凹部を形成し、前
記接合面全面に溶融可能な絶縁物の薄膜を形成し、前記
薄膜をプラズマエッチングのような物理的エッチング法
により平坦化したのち、前記凹部以外の前記薄膜をエッ
チングにより除去することにより前記絶縁物を前記凹部
内に残して、前記絶縁部を形成することを特徴とする静
電容量型センサの製造方法。3. The method for manufacturing the capacitance type sensor according to claim 1, wherein a recess is formed in a joint surface of a substrate forming the insulating portion, and the meltable insulator is formed on the entire joint surface. Thin film is formed, the thin film is planarized by a physical etching method such as plasma etching, and then the thin film other than the recess is removed by etching to leave the insulator in the recess, A method for manufacturing a capacitance type sensor, comprising forming a portion.
造する方法であって、 前記絶縁部を形成する基板の接合面に凹部を形成し、前
記接合面全面に溶融可能な絶縁物の薄膜を形成し、前記
薄膜を研磨して前記凹部以外の前記薄膜を除去すること
により前記絶縁物を前記凹部内に残して、前記絶縁部を
形成することを特徴とする静電容量型センサの製造方
法。4. The method for manufacturing the capacitance type sensor according to claim 1, wherein a concave portion is formed on a joint surface of a substrate on which the insulating portion is formed, and the meltable insulator is formed on the entire joint surface. Forming a thin film, and polishing the thin film to remove the thin film other than the concave portion to leave the insulator in the concave portion to form the insulating portion. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20263693A JPH0735768A (en) | 1993-07-23 | 1993-07-23 | Capacitance-type sensor and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20263693A JPH0735768A (en) | 1993-07-23 | 1993-07-23 | Capacitance-type sensor and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0735768A true JPH0735768A (en) | 1995-02-07 |
Family
ID=16460623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20263693A Pending JPH0735768A (en) | 1993-07-23 | 1993-07-23 | Capacitance-type sensor and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0735768A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000138381A (en) * | 1998-11-02 | 2000-05-16 | Toyota Central Res & Dev Lab Inc | Sealed container and its manufacture |
US7157781B2 (en) * | 2002-05-14 | 2007-01-02 | Denso Corporation | Enhancement of membrane characteristics in semiconductor device with membrane |
JPWO2012164975A1 (en) * | 2011-06-03 | 2015-02-23 | アルプス電気株式会社 | Capacitance type pressure sensor and manufacturing method thereof |
CN117129119A (en) * | 2023-10-26 | 2023-11-28 | 西安中星测控有限公司 | MCS pressure sensor based on glass fusion technology and manufacturing method thereof |
-
1993
- 1993-07-23 JP JP20263693A patent/JPH0735768A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000138381A (en) * | 1998-11-02 | 2000-05-16 | Toyota Central Res & Dev Lab Inc | Sealed container and its manufacture |
US7157781B2 (en) * | 2002-05-14 | 2007-01-02 | Denso Corporation | Enhancement of membrane characteristics in semiconductor device with membrane |
JPWO2012164975A1 (en) * | 2011-06-03 | 2015-02-23 | アルプス電気株式会社 | Capacitance type pressure sensor and manufacturing method thereof |
CN117129119A (en) * | 2023-10-26 | 2023-11-28 | 西安中星测控有限公司 | MCS pressure sensor based on glass fusion technology and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5218455B2 (en) | Semiconductor dynamic quantity sensor and manufacturing method thereof | |
USRE41213E1 (en) | Dynamic amount sensor and process for the production thereof | |
US5243861A (en) | Capacitive type semiconductor accelerometer | |
US7294895B2 (en) | Capacitive dynamic quantity sensor and semiconductor device | |
JP4710147B2 (en) | Semiconductor pressure sensor | |
JP2002500961A (en) | Micromechanical structural elements | |
US7535096B2 (en) | Glass substrate and capacitance-type pressure sensor using the same | |
JP3638290B2 (en) | Semiconductor dynamic sensor | |
JPH02150754A (en) | Production of sensitive element | |
JPH0735768A (en) | Capacitance-type sensor and manufacture thereof | |
US7319581B2 (en) | Capacitive pressure sensor | |
JPH10111203A (en) | Capacitive semiconductor sensor and its production | |
JP3401992B2 (en) | Semiconductor strain sensor | |
JP2000004028A (en) | Manufacture of semiconductor mechanical sensor and semiconductor pressure sensor | |
JP2519393B2 (en) | Method for manufacturing semiconductor dynamic quantity sensor | |
JPH06289049A (en) | Acceleration sensor | |
JPH02240971A (en) | Semiconductor pressure sensor | |
JPH1022512A (en) | Capacitance type pressure sensor | |
JPH1151966A (en) | Semiconductor acceleration sensor and manufacture thereof | |
JP3725059B2 (en) | Semiconductor dynamic quantity sensor | |
JPH0831609B2 (en) | Electrostatic bonding method and semiconductor pressure sensor | |
JP4783914B2 (en) | Semiconductor dynamic quantity sensor and manufacturing method of semiconductor dynamic quantity sensor | |
JP6142736B2 (en) | Semiconductor pressure sensor | |
JPH07280684A (en) | Electrostatic capacity type sensor and manufacture thereof | |
JP2024005410A (en) | Inertial sensor, method for manufacturing inertial sensor, and inertial measurement unit |