JPH08106904A - Manufacture of hydrogen storage alloy electrode - Google Patents

Manufacture of hydrogen storage alloy electrode

Info

Publication number
JPH08106904A
JPH08106904A JP6239767A JP23976794A JPH08106904A JP H08106904 A JPH08106904 A JP H08106904A JP 6239767 A JP6239767 A JP 6239767A JP 23976794 A JP23976794 A JP 23976794A JP H08106904 A JPH08106904 A JP H08106904A
Authority
JP
Japan
Prior art keywords
electrode
alloy
hydrogen
hydrogen storage
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6239767A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
浩志 渡辺
Teruhiko Imoto
輝彦 井本
Takahiro Isono
隆博 磯野
Shin Fujitani
伸 藤谷
Ikuro Yonezu
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6239767A priority Critical patent/JPH08106904A/en
Publication of JPH08106904A publication Critical patent/JPH08106904A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a manufacturing process of a hydrogen storage alloy electrode having high mechanical strength and current collecting capability of a sintered electrode, not need a large facilities such as a high temperature furnace and an atmosphere control device, capable of manufacturing in a short time, or with high productivity. CONSTITUTION: In a manufacturing process of a hydrogen storage alloy electrode, an alloy particle capable of absorbing/desorbing hydrogen or a mixture with an alloy particle which does not absorb hydrogen or a metal particle is pressed to form a molding 2. The molding 2 is interposed between a pair of electrodes 11, and a current of 10A/mm<2> or more is passed across the electrodes 11 for 0.1-10sec to melt bond hydrogen storage alloy particles themselves, the hydrogen storage alloy particle with the alloy particle not absorb hydrogen, or with the metal particle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素を可逆的に吸蔵及
び放出する、所謂水素吸蔵合金を利用した電池の負極に
用いられる水素吸蔵電極の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage electrode used for a negative electrode of a battery using a so-called hydrogen storage alloy that stores and releases hydrogen reversibly.

【0002】[0002]

【従来の技術】従来、二次電池として、ニッケル−カド
ミウム(Ni/Cd)電池や、鉛(Pb/H2SO4)蓄電池が用いられ
ている。ニッケル−カドミウム電池、鉛蓄電池は、大電
流で放電が可能であり、急速充電も出来るため、多くの
コードレス機器の電源として用いられている。しかしな
がら、電子機器の小型化、軽量化、携帯化及び高性能化
に伴い、軽量で高容量、高エネルギー密度の二次電池の
開発が望まれている。この目的を達成する電池として注
目されているのが、ニッケル−水素電池に代表される金
属−水素電池である。
2. Description of the Related Art Conventionally, nickel-cadmium (Ni / Cd) batteries and lead (Pb / H 2 SO 4 ) storage batteries have been used as secondary batteries. Nickel-cadmium batteries and lead-acid batteries can be discharged with a large current and can be rapidly charged, and are used as a power source for many cordless devices. However, with the miniaturization, weight reduction, portability and high performance of electronic devices, development of a lightweight, high capacity, high energy density secondary battery is desired. A metal-hydrogen battery typified by a nickel-hydrogen battery attracts attention as a battery that achieves this object.

【0003】金属−水素電池は、ニッケル−水素電池を
例に挙げると、これは水素吸蔵合金を可逆性電極(負極)
材料として用い、ニッケル正極板と水素吸蔵合金負極板
を渦巻き状に巻き付けた構造の電池であり、電解液とし
て、水酸化カリウム水溶液が用いられている。ニッケル
−水素化物電池の理論電圧は、ニッケル−カドミウム電
池(1.32V)とほぼ同等の1.318Vであり、作動時の電圧
は、何れの電池でも約1.2Vであり、両電池は機器に互換
性をもって使用できる。ニッケル−水素化物電池の重量
当たりのエネルギー密度は、ニッケル−カドミウム電池
とあまり差がないが、容積当たりのエネルギー密度は、
ニッケル−カドミウム電池の約1.5〜2倍である。ニッ
ケル−水素化物電池は密閉化が容易であり、過充電や過
放電に強いという特徴がある。
The metal-hydrogen battery is, for example, a nickel-hydrogen battery, which uses a hydrogen storage alloy as a reversible electrode (negative electrode).
The battery has a structure in which a nickel positive electrode plate and a hydrogen storage alloy negative electrode plate are spirally wound as a material, and an aqueous potassium hydroxide solution is used as an electrolytic solution. The theoretical voltage of the nickel-hydride battery is 1.318V, which is almost the same as the nickel-cadmium battery (1.32V), and the operating voltage is approximately 1.2V for both batteries, and both batteries are compatible with the equipment. Can be used with. The energy density per weight of the nickel-hydride battery is not so different from that of the nickel-cadmium battery, but the energy density per volume is
It is about 1.5 to 2 times that of nickel-cadmium batteries. Nickel-hydride batteries are easy to seal and have the characteristics of being resistant to overcharge and overdischarge.

【0004】金属−水素電池のサイクル寿命、充放電性
能等の電池性能は、負極材料である水素吸蔵合金の特性
に依存するところが大きく、負極全体の導電性や電極を
構成する粒子間の結合強度等が、特に電池性能を左右す
る。
Battery performance such as cycle life and charge / discharge performance of the metal-hydrogen battery largely depends on the characteristics of the hydrogen storage alloy which is the negative electrode material, and the conductivity of the entire negative electrode and the bonding strength between the particles constituting the electrode. Etc. particularly affect the battery performance.

【0005】水素吸蔵合金電極を製造する従来の方法
は、先ず水素を吸蔵及び放出する合金粒子を加圧成形し
た後に、真空、不活性ガス雰囲気又は水素雰囲気におい
て、合金の融点以下の温度で焼結することにより、多孔
質な合金電極を作製する。又、別の方法として、水素吸
蔵合金粉末を型の中で冷間プレスし、次に不活性ガス
(例、アルゴンガス)雰囲気の中で、約600℃で3ton/cm2
において熱間プレスし、続いてアルゴン存在下で冷却し
て、電極試料を成形する方法も知られている(特公昭56-
36786)。その他の別の水素吸蔵合金電極の作成方法とし
て、水素吸蔵合金粉末を粗粉砕後、ボールミル等で微粉
末とした後、ポリビニルアルコール(PVA)樹脂溶液と
混合し、このペースト状合金をパンチングメタル(穴開
き板)の両面に塗布し、加圧乾燥後、リード線を取り付
けて電極としている(特公平6-42367)。
A conventional method for producing a hydrogen-absorbing alloy electrode is to first pressure-mold alloy particles that absorb and release hydrogen, and then burn the alloy particles in a vacuum, an inert gas atmosphere or a hydrogen atmosphere at a temperature below the melting point of the alloy. By binding, a porous alloy electrode is produced. As another method, cold-press the hydrogen-absorbing alloy powder in a mold, and then inactive gas.
3ton / cm 2 at about 600 ℃ in an atmosphere (eg, argon gas)
There is also known a method of forming an electrode sample by hot-pressing in, followed by cooling in the presence of argon (Japanese Patent Publication No. 56-
36786). As another method for producing a hydrogen-absorbing alloy electrode, the hydrogen-absorbing alloy powder is roughly pulverized, then made into a fine powder by a ball mill or the like, and then mixed with a polyvinyl alcohol (PVA) resin solution, and this paste-like alloy is punched metal ( It is applied on both sides of a perforated plate), dried under pressure, and then attached with lead wires to form electrodes (Japanese Patent Publication No. 6-42367).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
水素吸蔵合金電極の製造方法には、以下に挙げる問題が
ある。焼結又は熱間プレスによる製造方法で製造された
水素吸蔵電極は、電極の機械的強度に優れ、充放電サイ
クルの繰り返しによる電極の電気容量の低下は起こりに
くいが、焼結は、真空、不活性ガス雰囲気又は水素雰囲
気等の雰囲気の制御が必要であり、焼結や熱間プレスに
は、高温炉、雰囲気制御装置等の大規模な設備が必要で
ある。又、電極製造には、熱間プレスで数分、焼結では
数時間程度の時間が必要となる。更に、焼結の方法によ
れば、電極を構成する合金粒子は、加圧力及び加熱値に
より、合金粒子同士の接触面積の小さい部分は融着面積
も小さく、接触面積の大きい部分は、融着面積も大きい
ので、粒子の融着部分の抵抗値にばらつきがあり、電極
の導電性が不均一となる。
However, the conventional method for producing a hydrogen storage alloy electrode has the following problems. The hydrogen storage electrode manufactured by the sintering or hot pressing manufacturing method has excellent mechanical strength of the electrode, and the electric capacity of the electrode is unlikely to decrease due to repeated charge / discharge cycles. It is necessary to control the atmosphere such as an active gas atmosphere or a hydrogen atmosphere, and sintering and hot pressing require large-scale equipment such as a high temperature furnace and an atmosphere control device. In addition, it takes several minutes for hot pressing to manufacture the electrode and several hours for sintering. Further, according to the sintering method, the alloy particles forming the electrode have a small fusion area in a contact area between the alloy particles and a fusion area in a large contact area due to the applied pressure and the heating value. Since the area is large, the resistance value of the fused portion of the particles varies, and the conductivity of the electrode becomes non-uniform.

【0007】図6及び図7を用いて説明すると、図6に
示す如く、合金粒子(6)を加圧すると、(a)又は(b)の
様な接触状態となる。(a)は、合金粒子(6)(6)同士の
接触面積(t1)が小さい箇所(61)の拡大断面図であっ
て、(b)は、合金粒子(6)(6)同士の接触面積(s1)が
大きい箇所(62)の拡大断面図である。図6の(a)又は
(b)の様な接触状態にある合金粒子(6)は、焼結によっ
て加熱されることにより、図7の(a)、(b)に示すよう
に、合金粒子の材質が同じであれば、粒子接触箇所の電
気抵抗(粒子の材質、粒子同士の接触面積、接触圧力、
表面被膜の度合い等によって異なる)に関係なく融着す
る。即ち、接触面積(図6の(a)のt1)の小さい箇所(6
1)は、融着面積(t2)も小さいままであり、接触面積(図
6の(b)のs1)の大きい箇所(62)は、融着面積(s2)も
大きいままである。従って、融着部分の面積が不均一と
なり、上記の如き、粒子の融着部分の抵抗値にばらつき
が生じ、電極の導電性が不均一となる。
This will be described with reference to FIGS. 6 and 7. As shown in FIG. 6, when the alloy particles (6) are pressurized, a contact state as shown in (a) or (b) is obtained. (a) is an enlarged cross-sectional view of a portion (61) where the contact area (t 1 ) between the alloy particles (6) and (6) is small, and (b) shows the alloy particles (6) and (6). It is an expanded sectional view of a place (62) where the contact area (s 1 ) is large. 6 (a) or
When the alloy particles (6) in the contact state as shown in (b) are heated by sintering, as shown in (a) and (b) of FIG. , The electrical resistance of the particle contact point (particle material, contact area between particles, contact pressure,
It will be fused regardless of the degree of surface coating). That is, the contact area (t 1 in FIG. 6A) is small (6
In 1), the fusion area (t 2 ) remains small, and in the area (62) where the contact area (s 1 in FIG. 6B) is large, the fusion area (s 2 ) also remains large. . Therefore, the area of the fused portion becomes non-uniform, the resistance value of the fused portion of the particles varies as described above, and the conductivity of the electrode becomes non-uniform.

【0008】又、ペースト塗付電極では、製造の連続作
業性は優れているが、電極の機械的強度が弱く、充放電
サイクルの繰り返しにより、活物質と集電体との密着性
が低下し、サイクル寿命が低下するという問題がある。
本発明の目的は、焼結式電極の優れた機械的強度及び電
気容量を有し、高温炉や雰囲気制御装置等の大規模な設
備を必要とせず、更に短時間で製造出来る水素吸蔵合金
電極の製造方法を明らかにするものである。
In addition, although the paste-coated electrode is excellent in continuous workability in manufacturing, the mechanical strength of the electrode is weak and the adhesion between the active material and the current collector is deteriorated due to repeated charge / discharge cycles. However, there is a problem that the cycle life is shortened.
An object of the present invention is to provide a hydrogen storage alloy electrode which has excellent mechanical strength and electric capacity of a sintered electrode, does not require large-scale equipment such as a high temperature furnace and an atmosphere control device, and can be manufactured in a shorter time. It is intended to clarify the manufacturing method of.

【0009】[0009]

【課題を解決する為の手段】上記課題を解決するため
に、本発明の水素吸蔵合金電極の製造方法に於ては、水
素を吸蔵及び放出する合金粒子を単独で、又は水素を吸
蔵しない合金粒子若しくは金属粒子と混合した後に、加
圧して成形体(2)とし、該成形体(2)を一対の電極(11)
間に挟み、該電極(11)間に10A/mm2以上の電流を0.1秒以
上10秒以下で通じて、成形体(2)中の水素吸蔵合金粒子
同士、又は水素吸蔵合金粒子と水素を吸蔵しない合金粒
子若しくは金属粒子を互いに融着させる。
In order to solve the above-mentioned problems, in the method for producing a hydrogen-absorbing alloy electrode of the present invention, alloy particles that absorb and release hydrogen are used alone or alloys that do not absorb hydrogen. After mixing with particles or metal particles, pressure is applied to form a molded body (2), and the molded body (2) is used as a pair of electrodes (11).
It is sandwiched between them and a current of 10 A / mm 2 or more is passed between the electrodes (11) for 0.1 seconds or more and 10 seconds or less, so that the hydrogen storage alloy particles in the molded body (2) or the hydrogen storage alloy particles and hydrogen are separated from each other. The alloy particles or metal particles that do not occlude are fused together.

【0010】[0010]

【作用】粒子間の接触箇所に電流が流れるときの電気抵
抗は、前述の通り、粒子の材質、粒子同士の接触面積、
接触圧力、表面被膜の度合い等によって異なるものであ
るので、接触面積が大きくても、表面被膜の度合い等に
よっては、電気抵抗は大きいこともある。本発明の水素
吸蔵合金電極の製造方法に於ては、水素吸蔵合金粒子
間、又は水素吸蔵合金粒子と水素を吸蔵しない合金粒子
若しくは金属粒子との間の融着に、10A/mm2以上の電流
を用いている。通常、合金粒子間に小さい電流を通じさ
せた場合、粒子間の電気抵抗の小さい部分(以下、「昜
通電部」)に電流が流れるだけである。しかしながら、1
0A/mm2以上の電流を成形体に流すと、昜通電部に優先的
に電流が通じて、接触部分が発熱し融着することは勿論
であるが、電気抵抗の大きい部分(以下、「難通電部」)
にも電流が通じる。難通電部は、電流が通じると発熱
し、粒子が融けて粒子同士が結合する。
[Function] As described above, the electric resistance when an electric current flows at the contact point between particles, the material of particles, the contact area between particles,
Since it varies depending on the contact pressure, the degree of the surface coating, etc., even if the contact area is large, the electric resistance may be large depending on the degree of the surface coating. In the method for producing a hydrogen storage alloy electrode of the present invention, between hydrogen storage alloy particles, or for fusion between hydrogen storage alloy particles and alloy particles or metal particles that do not store hydrogen, 10 A / mm 2 or more It uses electric current. Normally, when a small current is passed between the alloy particles, the current only flows in the portion having a small electric resistance between the particles (hereinafter referred to as the “current-carrying portion”). However, 1
When an electric current of 0 A / mm 2 or more is applied to the molded body, the electric current is preferentially passed through the energizing portion, and the contact portion is of course heated and fused, but the portion with a large electric resistance (hereinafter, `` Difficult-to-power section '')
The electric current also passes through. When a current is passed through the hard-to-carry part, the heat is generated, and the particles melt and the particles bond to each other.

【0011】[0011]

【発明の効果】本発明の方法によって、作製された電極
の構造は、焼結と同様、多孔体であって、粒子同士は、
融着により結合されている。融着した部分の電気抵抗
は、融着前の電気抵抗に比べて低くなる。なぜなら、融
着前の粒子接触部分は、表面が酸化等により被膜が形成
されており、導電性が悪いが、粒子接触部分が融着する
と粒子同士が局部的に一体化して、被膜の抵抗はなくな
るためである。成形体に電流を流した場合、成形体を構
成する粒子間の難通電部は、昜通電部に比べて、電流が
通じ難いが、電流が通じた場合、抵抗が大きいので加熱
し易い。10A/mm2未満の電流を成形体に通じた場合、昜
通電部にのみ電流が通じるが、10A/mm2以上の電流を成
形体に通じた場合、昜通電部だけでなく、難通電部にも
電流が通じる。従って、昜通電部には優先的に電流が通
じて、発熱、融着するが、難通電部も、通電することに
より発熱し融着して、粒子間の電気抵抗を低下させる。
このため、合金粒子の融着部の電気抵抗の最大値が平均
的に低下し、電極の総抵抗値が低下する。従って、電極
全体の電気抵抗が均一となり、電極における合金粒子の
利用率が上昇し、電極の容量が上昇する。
As in the case of sintering, the structure of the electrode produced by the method of the present invention is a porous body, and the particles are
It is joined by fusion. The electric resistance of the fused portion is lower than the electric resistance before the fusion. Because, the particle contact portion before fusion, the surface is formed a coating by oxidation or the like, the conductivity is poor, but when the particle contact portion is fused particles are locally integrated with each other, the resistance of the coating is Because it will disappear. When an electric current is applied to the molded body, the hard-to-carry portion between the particles forming the molded body is less likely to pass an electric current than the electric current-carrying portion. However, when the electric current is passed, the resistance is large and the heating is easy. When a current of less than 10 A / mm 2 is passed through the molded body, the current is passed only to the current-carrying part, but when a current of 10 A / mm 2 or more is passed through the molded body, not only the current-carrying part but also the hard-to-carry part The electric current also passes through. Therefore, an electric current is preferentially passed through the electrifying portion to generate heat and fuse, but the hard-to-conduct portion also produces heat and fuses when energized to reduce the electrical resistance between particles.
Therefore, the maximum value of the electric resistance of the fused portion of the alloy particles is decreased on average, and the total resistance value of the electrode is decreased. Therefore, the electric resistance of the entire electrode becomes uniform, the utilization rate of alloy particles in the electrode increases, and the capacity of the electrode increases.

【0012】上記現象を図6及び図8を用いて説明す
る。ここでは、粒子の電気抵抗は、粒子間の接触面積に
よってのみ決定されるものとする。図6に示す如く、合
金粒子(6)は加圧した段階で(a)又は(b)の様な接触状
態となる。(a)は、合金粒子(6)(6)同士の接触面積
(t1)が小さい箇所(61)であり、難通電部を象徴的に示
す部分の拡大断面図であって、(b)は、合金粒子(6)
(6)同士の接触面積(s1)が大きい箇所(62)であり、昜
通電部を象徴的に示す部分の拡大断面図である。合金粒
子(6)は、10A/mm2以上の電流を通じた際に、電流の流
れやすい部分即ち昜通電部(62)には、優先的に電流が通
じて、粒子間の接触部分を融着させるが、電流が流れ難
い部分即ち難通電部(61)にも、電流が通じる。難通電部
(61)に通じた電流は、接触部分の抵抗により発熱し、粒
子同士を融着させる。粒子間の接触面積は融着により、
昜通電部(62)が、図8の(b)に示す如く、s3となり、
難通電部(61)が、図8の(a)に示す如く、t3となる。
前述の焼結による融着部分の面積(図7のs2)と上記図
6のs1及び図8のs3との面積の大きさを比較すると、
1<s2≒s3となり、図7のt2、図6のt1及び図8
のt3との面積の大きさを比較すると、t1<t2<<t3
となる。従って、従来の焼結による融着よりも、融着面
積が平均的に大きくなることにより、粒子接触部分の抵
抗値のばらつきが小さくなるので、電極全体の抵抗値が
均一となり、又、融着面積が平均的に大きくなることに
より、抵抗値が平均的に小さくなり、電極全体の総抵抗
値も低下するのである。従って、電極の電子電導性及び
電気容量が向上する。
The above phenomenon will be described with reference to FIGS. 6 and 8. Here, the electrical resistance of the particles shall be determined only by the contact area between the particles. As shown in FIG. 6, the alloy particles (6) are brought into a contact state as shown in (a) or (b) when pressurized. (a) is the contact area between alloy particles (6) and (6)
FIG. 3B is an enlarged cross-sectional view of a portion (61) where (t 1 ) is small and symbolically shows a difficult-to-energize portion.
(6) An enlarged cross-sectional view of a portion (62) where the contact area (s 1 ) between the two is large, and which symbolically shows the Du current-carrying portion. When a current of 10 A / mm 2 or more is applied to the alloy particles (6), the current flows preferentially to the part where the current easily flows, that is, the current-carrying part (62), and the contact part between the particles is fused. However, the current also flows to the portion where the current hardly flows, that is, the hard-to-carry portion (61). Hard-to-carry part
The current flowing through (61) generates heat due to the resistance of the contact portion, and the particles are fused to each other. The contact area between particles is due to fusion
The energizing part (62) becomes s 3 as shown in (b) of FIG.
The hard-to-carry part (61) becomes t 3 as shown in FIG.
Comparing the area size of the fusion-bonded portion (s 2 of FIG. 7) by the above-mentioned sintering with the area size of s 1 of FIG. 6 and s 3 of FIG.
s 1 <s 2 ≒ s 3 next, t 2 in FIG. 7, t 1 and 8 of Figure 6
Comparing the size of the area with t 3 of t 1 , t 1 <t 2 << t 3
Becomes Therefore, since the fusion area becomes larger on average than the fusion by conventional sintering, the variation in the resistance value of the particle contact portion becomes smaller, and the resistance value of the entire electrode becomes uniform and By increasing the area on average, the resistance value decreases on average, and the total resistance value of the entire electrode also decreases. Therefore, the electron conductivity and the electric capacity of the electrode are improved.

【0013】又、本発明の製造方法による電極の機械的
強度は、従来の焼結式電極と同等、又はそれ以上であ
る。ペースト塗付電極に比べると優れている。更に、電
極の製造が、大規模な設備を必要とせず、又、連続作業
も可能であるため、量産性にも優れている。又、成形体
の加熱、融着が極めて短時間で行なえるため、金属の溶
融部分が酸素や窒素等の酸化物の被膜に覆われることが
少ない。従って、電極の製造が大気中で行なえる。
The mechanical strength of the electrode produced by the manufacturing method of the present invention is equal to or higher than that of the conventional sintered electrode. Superior to paste-coated electrodes. Further, the manufacturing of the electrode does not require a large-scale facility, and since continuous work is possible, it is excellent in mass productivity. Further, since heating and fusing of the molded body can be performed in an extremely short time, the molten portion of the metal is less likely to be covered with the oxide film such as oxygen or nitrogen. Therefore, the electrodes can be manufactured in the atmosphere.

【0014】[0014]

【実施例】以下、本発明の一実施例につき、図面に沿っ
て詳述する。本発明の水素吸蔵合金電極の製造に用いる
装置(1)について、図1を用いて説明する。尚、装置
(1)は、説明の為に用いるものであって、本発明は、該
装置(1)にのみ適用されると限定するものではない。図
1は、電極製造装置(1)であって、一対の対向する円柱
状の銅電極(11a)(11b)を接近離間可能に設けた装置電
極部(11)と、該装置電極部(11)に電源を供給する電源(1
2)と、銅電極(11a)(11b)に夫々配備され、銅電極(11
a)(11b)間の距離を可変にし、又銅電極(11a)(11b)
間の距離を小さくする方向に加圧可能な昇降加圧手段(1
3a)(13b)とから形成される。銅電極(11a)(11b)は、
直径30mmの円柱状の銅製の電極であり、夫々導線(14a)
(14b)に接続されて、電源(12)に通じている。又、銅電
極(11a)(11b)の外側端面には、夫々銅電極(11a)(11
b)間の距離を可変にし、又銅電極(11a)(11b)を内向
きに加圧する昇降加圧手段(13a)(13b)が配備されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. An apparatus (1) used for manufacturing the hydrogen storage alloy electrode of the present invention will be described with reference to FIG. The device
(1) is used for the purpose of explanation, and the present invention is not limited to being applied only to the device (1). FIG. 1 shows an electrode manufacturing apparatus (1) including a device electrode portion (11) provided with a pair of opposing columnar copper electrodes (11a) (11b) that can be moved toward and away from each other, and the device electrode portion (11). Power supply (1
2) and the copper electrodes (11a) and (11b) respectively.
The distance between a) and (11b) is variable, and the copper electrodes (11a) and (11b)
Lifting / pressurizing means (1
3a) and (13b). The copper electrodes (11a) (11b) are
It is a cylindrical copper electrode with a diameter of 30 mm, and each has a conductor (14a)
It is connected to (14b) and leads to the power supply (12). In addition, the copper electrodes (11a) (11b) are provided on the outer end faces of the copper electrodes (11a) (11b), respectively.
Elevating / pressurizing means (13a) (13b) for varying the distance between b) and pressing the copper electrodes (11a) (11b) inward are provided.

【0015】又、上記装置(1)の電極(11a)(11b)間
に、水素吸蔵合金粒子を含有する成形体(2)を挟み込
む。成形体(2)は以下の方法で作製した。市販のミッシ
ュメタルMm(La、Ce、Nd、Pr等の希土類元素
の混合物)、Ni、Co、AI及びMnを各々一定元素
比Mm:Ni:Co:Al:Mnが1:3.1:0.9:0.
4:0.6となるように秤量して混合、プレスした後に、ア
ーク溶解炉により加熱溶解させ、MmNi3.1Co0.9
0.4Mn0.6合金を作製する。該合金を機械的に粉砕し
て、25μm〜150μmの合金粉末を得る。該合金粉末を直
径20mm、厚さ2mmのペレット状とし、1ton/cm2の圧力
で加圧成形して成形体(2)を作製する。該成形体(2)を
銅電極(11a)(11b)間に挟み、昇降加圧手段(13a)(13
b)によって、約0.5ton/cm2の圧力で加圧すると共に、
各銅電極(11a)(11b)と成形体(2)の接触面に流れる電
流が50A/mm2となるように、電源(12)から電流を1秒間
隔で0.5秒間5パルス流す(図9)。上記操作によって、
本発明の水素吸蔵合金の製造方法による電極A(3)が作
製される。
A molded body (2) containing hydrogen-absorbing alloy particles is sandwiched between the electrodes (11a) and (11b) of the device (1). The molded body (2) was produced by the following method. Commercially available misch metal Mm (mixture of rare earth elements such as La, Ce, Nd, Pr, etc.), Ni, Co, AI and Mn each have a constant element ratio Mm: Ni: Co: Al: Mn of 1: 3.1: 0.9: 0. .
After weighing, mixing and pressing so that it becomes 4: 0.6, it is heated and melted in an arc melting furnace, and MmNi 3.1 Co 0.9 A
An l 0.4 Mn 0.6 alloy is prepared. The alloy is mechanically crushed to obtain alloy powder of 25 μm to 150 μm. The alloy powder is formed into a pellet having a diameter of 20 mm and a thickness of 2 mm, and pressure-molded at a pressure of 1 ton / cm 2 to prepare a molded body (2). The molded body (2) is sandwiched between the copper electrodes (11a) and (11b), and the lifting / pressurizing means (13a) (13a)
According to b), the pressure is increased to about 0.5 ton / cm 2 , and
Five pulses of electric current are applied from the power supply (12) for 0.5 seconds at 1 second intervals so that the current flowing on the contact surface between each copper electrode (11a) (11b) and the molded body (2) becomes 50 A / mm 2 (Fig. 9). ). By the above operation,
Electrode A (3) is produced by the method for producing a hydrogen storage alloy of the present invention.

【0016】該電極A(3)の電気容量及びサイクル寿命
の性能を試験セルA(4)の負極電極として用いることに
よって示す。試験セルA(4)は、図3に示す如く、円筒
状の密閉容器(41)と、該密閉容器(41)内部に吊り下げ支
持されている正極(42)及び負極A(30)と、密閉容器(41)
に突設された圧力計(45)及びリリーフバルブ(逃し弁)(4
6)を配備するリリーフ管(44)から構成されている。円筒
状の密閉容器(41)は、絶縁性であり、内部に30wt%の水
酸化カリウム水溶液Lを充填しており、後述の負極A(3
0)及び正極(42)が浸漬されており、又、水酸化カリウム
水溶液Lの上方空間には、窒素ガスが充満しており、負
極A(30)に水酸化カリウム水溶液が所定の圧力(0.5MPa)
でかかるようにされている。又、密閉容器(41)の上蓋(5
1)には、3つの孔(52)(53)(54)が開設されている。
The capacity and cycle life performance of the electrode A (3) is shown by using it as the negative electrode of the test cell A (4). As shown in FIG. 3, the test cell A (4) includes a cylindrical closed container (41), a positive electrode (42) and a negative electrode A (30) suspended and supported inside the closed container (41). Airtight container (41)
Pressure gauge (45) and relief valve (relief valve) (4
It consists of a relief pipe (44) for deploying 6). The cylindrical airtight container (41) is insulative and filled with a 30 wt% potassium hydroxide aqueous solution L therein.
0) and the positive electrode (42) are immersed, and the upper space of the potassium hydroxide aqueous solution L is filled with nitrogen gas, and the negative electrode A (30) is filled with the potassium hydroxide aqueous solution at a predetermined pressure (0.5 MPa)
It is supposed to take place. Moreover, the upper lid (5
Three holes (52) (53) (54) are opened in 1).

【0017】図2に示す如く、電極A(3)は、電極A
(3)を電池の負極Aとして用いるために、ニッケルメッ
シュ(31)で包み、一端にニッケル板によって構成される
負極リード(32)を溶接する。負極A(30)は、該負極リー
ド(32)によって、密閉容器(41)の上蓋(51)の孔(53)から
密閉容器(41)の略円筒中心に配備されるように吊り下げ
支持されている。負極リード(32)は、上蓋(51)の上面に
おいて負極リード端子(34)に接続されている。
As shown in FIG. 2, the electrode A (3) is
In order to use (3) as the negative electrode A of the battery, it is wrapped with a nickel mesh (31) and a negative electrode lead (32) composed of a nickel plate is welded at one end. The negative electrode A (30) is suspended and supported by the negative electrode lead (32) from the hole (53) of the upper lid (51) of the hermetically sealed container (41) so as to be disposed in the substantially cylindrical center of the hermetically sealed container (41). ing. The negative electrode lead (32) is connected to the negative electrode lead terminal (34) on the upper surface of the upper lid (51).

【0018】正極(42)は、負極A(30)よりも十分に理論
容量の大きな公知の円筒状の焼結式ニッケル極を用い
る。正極(42)の環端には、正極リード(43)が溶接されて
いる。正極リード(43)の他端が、密閉容器(41)の上蓋(5
1)の孔(54)に嵌合し、正極(42)の円筒中心と密閉容器(4
1)円筒中心が略一致し、負極A(30)を円筒内の略中央に
位置するように吊り下げ支持している。正極リード(43)
は、上蓋(51)の上面で正極リード端子(47)に接続されて
いる。
As the positive electrode (42), a known cylindrical sintered nickel electrode having a theoretical capacity sufficiently larger than that of the negative electrode A (30) is used. A positive electrode lead (43) is welded to the ring end of the positive electrode (42). The other end of the positive electrode lead (43) is connected to the upper lid (5
It fits into the hole (54) of 1) and the center of the positive electrode (42) and the closed container (4
1) The centers of the cylinders are substantially coincident with each other, and the negative electrode A (30) is suspended and supported so as to be located at the substantially center of the cylinder. Positive electrode lead (43)
Are connected to the positive electrode lead terminal (47) on the upper surface of the upper lid (51).

【0019】更に、密閉容器(41)の孔(52)に接続して、
リリーフ管(44)が突設されている。該リリーフ管(44)
は、密閉容器(41)の内圧を測定する圧力計(45)と、密閉
容器(41)の内圧が所定の圧力以上に上昇することを防止
するリリーフバルブ(46)を具えている。
Further, by connecting to the hole (52) of the closed container (41),
The relief pipe (44) is projected. The relief pipe (44)
The pressure gauge (45) measures the internal pressure of the closed container (41) and the relief valve (46) for preventing the internal pressure of the closed container (41) from rising above a predetermined pressure.

【0020】該電極A(3)の性能を比較するために、従
来のペースト式電極Bを製作した。ペースト式電極B
は、電極A(3)と同様のMmNi3.1Co0.9Al0.4
0.6合金を機械的に粉砕して、粒径25μm〜150μmの合
金粉末を得る。該合金粉末10gに、結着剤として合金重
量に対してPVA(ポリビニルアルコール)重量が1wt%
となるPVA水溶液と、導電剤としてニッケル粉末12g
を混合して合金ペーストを作製する。該合金ペーストを
ニッケルのパンチングメタルの両面に塗付して、室温で
24時間乾燥後、圧延して、厚さ1.5mmのペースト式電極
Bとする。該ペースト式電極Bを15mm四方に切断し、一
端にニッケル板からなる負極リード(32)を溶接して、ペ
ースト式負極Bを作製した。試験セルA(4)と同様の構
成であって、負極のみが、ペースト式負極Bとなってい
る比較セルBを組み立てる。
In order to compare the performance of the electrode A (3), a conventional paste type electrode B was manufactured. Paste type electrode B
Is MmNi 3.1 Co 0.9 Al 0.4 M similar to the electrode A (3).
The n 0.6 alloy is mechanically crushed to obtain an alloy powder having a particle size of 25 μm to 150 μm. The weight of PVA (polyvinyl alcohol) as a binder was 1 wt% with respect to the weight of the alloy in 10 g of the alloy powder.
PVA aqueous solution and 12g of nickel powder as conductive agent
Are mixed to prepare an alloy paste. Apply the alloy paste to both sides of nickel punching metal, and
After drying for 24 hours, it is rolled to obtain a paste type electrode B having a thickness of 1.5 mm. The paste type electrode B was cut into 15 mm squares, and a negative electrode lead (32) made of a nickel plate was welded to one end of the paste type electrode B to prepare a paste type negative electrode B. A comparative cell B having the same structure as the test cell A (4) but having only the negative electrode as the paste type negative electrode B is assembled.

【0021】該電極A(3)を用いた試験セルA(4)と、
従来のペースト式電極Bを用いた比較セルBによって、
比較のために充放電サイクル試験を行なった。以下、試
験方法及び結果を示す。
A test cell A (4) using the electrode A (3),
By the comparison cell B using the conventional paste type electrode B,
A charge / discharge cycle test was performed for comparison. The test methods and results are shown below.

【0022】試験方法は、試験セルA(4)及び比較セル
Bの負極リード端子(34)及び正極リード端子(47)から夫
々充電及び放電を1サイクルとして行ない、各セルの放
電容量が規定の値以下になったときのサイクル回数をサ
イクル寿命として比較する。充放電の1サイクルは、充
電を1g当り30mA(30mA/g)の電流を13時間、放電電流を4
0mA/gとし、放電終止電圧が1Vとなるまで放電する。
In the test method, charging and discharging are performed from the negative electrode lead terminal (34) and the positive electrode lead terminal (47) of the test cell A (4) and the comparison cell B respectively as one cycle, and the discharge capacity of each cell is specified. The number of cycles when the value becomes less than or equal to the value is compared as the cycle life. One cycle of charge / discharge is 30 mA (30 mA / g) per 1 g for 13 hours, and discharge current is 4
Discharge at 0mA / g until the final discharge voltage reaches 1V.

【0023】上記試験の結果を図4に示す。図4は、横
軸にサイクル数、縦軸に放電容量を示し、試験セルA
(4)のデータを実線で、比較セルBのデータを点線で示
す。試験セルA(4)は、比較セルBに比べて、初期段階
(サイクル数3回まで)の放電容量が大きい。これは、電
極の活性化がペースト式電極Bに比べて早いことを意味
する。又、活性化完了後の放電容量が試験セルA(4)は
一定であり、サイクル寿命も長いが、比較セルBの放電
容量は、サイクルの進行に伴う劣化が早く、寿命が短い
ことがわかる。
The results of the above test are shown in FIG. FIG. 4 shows the number of cycles on the horizontal axis and the discharge capacity on the vertical axis.
The data of (4) is shown by a solid line, and the data of the comparison cell B is shown by a dotted line. The test cell A (4) has an initial stage as compared with the comparison cell B.
Large discharge capacity (up to 3 cycles). This means that the activation of the electrode is faster than that of the paste type electrode B. Further, it can be seen that the discharge capacity after the completion of activation is constant in the test cell A (4) and the cycle life is long, but the discharge capacity of the comparison cell B is rapidly deteriorated as the cycle progresses and the life is short. .

【0024】更に、本発明の製造方法による水素吸蔵合
金電極について、製造の条件に種々の変更を加え、最適
な製造条件を求めた。まず、合金粒子径についてである
が、合金粒子の径は、10μmから500μm程度が望まし
い。粒子径が500μmよりも大きいと、充放電時に粒子が
電極から脱落しやすく、又、加工時の充填密度が低下
し、容量も低下する。粒子径が10μmよりも小さいと、
加工時の一体化が困難となる。
Further, regarding the hydrogen storage alloy electrode according to the production method of the present invention, various changes were made to the production conditions, and the optimum production conditions were determined. First, regarding the alloy particle diameter, the diameter of the alloy particles is preferably about 10 μm to 500 μm. When the particle size is larger than 500 μm, the particles are likely to drop off from the electrode during charging / discharging, and the packing density during processing is lowered, and the capacity is also lowered. If the particle size is smaller than 10 μm,
Integration during processing becomes difficult.

【0025】又、水素吸蔵合金粒子に、該水素吸蔵合金
とは異なる金属又は合金(例:Ni等)を添加してもよ
い。この場合、電極の導電性がより向上し、或いは、水
素吸蔵、放出反応に対する触媒作用が高まるため、電極
が高活性化し、サイクル寿命が向上する。ただし、電極
の充填密度は、添加しない場合に比べ、相対的に低下す
るため、電極の高活性化やサイクル寿命を優先させたい
場合に、必要に応じて添加すればよい。
Further, a metal or an alloy different from the hydrogen storage alloy (eg Ni) may be added to the hydrogen storage alloy particles. In this case, the conductivity of the electrode is further improved, or the catalytic action for hydrogen storage / release reaction is enhanced, so that the electrode is highly activated and the cycle life is improved. However, the packing density of the electrode is relatively lower than that in the case where it is not added. Therefore, when it is desired to prioritize high activation and cycle life of the electrode, it may be added as necessary.

【0026】更に、銅電極間で成形体を加圧して、電流
を流す際の電流は、10A/mm2から10,000A/mm2が適当であ
り、望ましくは、50A/mm2から5,000A/mm2の範囲内であ
る。又、通電時間は、0.1秒から10秒が適当であり、望
ましくは、0.5秒から2秒の範囲内である。更に、通電
パルス数は、1回から30回が適当であり、望ましくは、
5回から20回の範囲内である。又、パルスとパルスの間
隔は、0.5秒から10秒が適当であり、望ましくは、1秒
から5秒である。電流が大き過ぎたり通電時間が長過ぎ
ると、合金組織が変形して、特性が劣化する。又、電流
が小さすぎたり、通電時間が短か過ぎると、合金粒子同
士が融着しないため、十分な効果が得られない。
Furthermore, when the molded body is pressed between the copper electrodes and a current is passed, a current of 10 A / mm 2 to 10,000 A / mm 2 is suitable, and preferably 50 A / mm 2 to 5,000 A / It is within the range of mm 2 . Further, the energization time is suitably 0.1 to 10 seconds, preferably 0.5 to 2 seconds. Further, the number of energizing pulses is appropriately 1 to 30 times, and preferably,
It is within the range of 5 to 20 times. Further, the interval between pulses is suitably 0.5 to 10 seconds, preferably 1 to 5 seconds. If the current is too large or the energization time is too long, the alloy structure is deformed and the characteristics deteriorate. On the other hand, if the current is too small or the energization time is too short, the alloy particles do not fuse with each other, and a sufficient effect cannot be obtained.

【0027】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。
The description of the above embodiments is for the purpose of illustrating the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. The configuration of each part of the present invention is not limited to the above-mentioned embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims.

【0028】本実施例では、電極製造装置(1)の装置電
極として、銅電極を用いているが、銅は導電性に優れ、
他の金属とは付着し難いために用いたのであって、銅以
外の金属を用いることも出来る。又、電極製造装置(1)
は、円板上の銅電極に替えて、図5に示す如く、回転駆
動手段(16)を配備したロール状の回転可能な電極(15)と
することにより、シート状の電極(33)を作製することも
出来る。更に、実施例中では、銅電極間に挟んだ水素吸
蔵合金の成形体を加圧しているが、これは、成形体と銅
電極との接触部分の電気抵抗を下げるため、及び粒子融
着時の成形体の体積減少時に電流が流れ難くなることを
防ぐために行なっているものであるので、加圧しなくて
も加工を行なうことは出来る。
In this embodiment, a copper electrode is used as the device electrode of the electrode manufacturing apparatus (1), but copper is excellent in conductivity,
Since it is difficult to adhere to other metals, it is possible to use metals other than copper. Also, electrode manufacturing equipment (1)
The sheet-shaped electrode (33) is replaced by a roll-shaped rotatable electrode (15) provided with a rotation driving means (16) as shown in FIG. 5, instead of the copper electrode on the disk. It can also be made. Furthermore, in the examples, the compact of the hydrogen storage alloy sandwiched between the copper electrodes is pressed, but this is to reduce the electrical resistance of the contact portion between the compact and the copper electrode, and during particle fusion. Since it is performed to prevent the current from becoming difficult to flow when the volume of the molded body is reduced, the processing can be performed without applying pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】電極製造装置の概念図である。FIG. 1 is a conceptual diagram of an electrode manufacturing apparatus.

【図2】電極Aを加工して負極Aとしたときの斜視図で
ある。
FIG. 2 is a perspective view when an electrode A is processed into a negative electrode A.

【図3】負極Aを具えた試験セルAを一部断面した斜視
図である。
FIG. 3 is a perspective view of a partial cross section of a test cell A including a negative electrode A.

【図4】試験セルAと比較セルBのサイクル寿命試験の
結果のグラフである。
FIG. 4 is a graph of the results of the cycle life test of test cell A and comparative cell B.

【図5】ロール状の装置電極を用いた場合の電極製造装
置の概念図である。
FIG. 5 is a conceptual diagram of an electrode manufacturing apparatus when a roll-shaped apparatus electrode is used.

【図6】融着前の合金粒子同士の接触部分の断面図であ
って、(a)は、電気抵抗の大きい部分の拡大断面図、
(b)は、電気抵抗の小さい部分の拡大断面図である。
FIG. 6 is a cross-sectional view of a contact portion between alloy particles before fusion, in which (a) is an enlarged cross-sectional view of a portion having a large electric resistance;
(b) is an enlarged sectional view of a portion having a small electric resistance.

【図7】焼結によって合金粒子同士を融着させたときの
融着部分の断面図であって、(a)は、電気抵抗の大きい
部分の融着部の拡大断面図、(b)は、電気抵抗の小さい
部分の融着部の拡大断面図である。
FIG. 7 is a cross-sectional view of a fusion-bonded portion when alloy particles are fused by sintering, (a) is an enlarged cross-sectional view of a fusion-bonded portion of a portion having high electric resistance, and (b) is FIG. 4 is an enlarged cross-sectional view of a fusion-bonded portion of a portion having low electric resistance.

【図8】電流によって合金粒子同士を融着させたときの
融着部分の断面図であって、(a)は、電気抵抗の大きい
部分の融着部の拡大断面図、(b)は、電気抵抗の小さい
部分の融着部の拡大断面図である。
FIG. 8 is a cross-sectional view of a fused portion when alloy particles are fused with each other by an electric current, (a) is an enlarged sectional view of a fused portion of a portion having a large electric resistance, and (b) is FIG. 4 is an enlarged cross-sectional view of a fusion-bonded portion in a portion having low electric resistance.

【図9】成形体に流す電流のパルスを示す図である。FIG. 9 is a diagram showing a pulse of a current passed through a molded body.

【符号の説明】[Explanation of symbols]

(1) 電極製造装置 (11) 装置電極部 (13) 昇降加圧手段 (2) 成形体 (3) 電極A (30) 負極A (4) 試験セルA (6) 合金粒子 (1) Electrode manufacturing device (11) Device electrode part (13) Lifting / pressurizing means (2) Molded body (3) Electrode A (30) Negative electrode A (4) Test cell A (6) Alloy particles

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shin Fujita, 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Ikuro Yonezu, 2-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素を吸蔵及び放出する合金粒子を単独
で、又は水素を吸蔵しない合金粒子若しくは金属粒子と
混合した後に、加圧して成形体(2)とし、該成形体(2)
を一対の電極(11)間に挟み、該電極(11)間に10A/mm2
上の電流を0.1秒以上10秒以下で通じて、成形体(2)中
の水素吸蔵合金粒子同士、又は水素吸蔵合金粒子と水素
を吸蔵しない合金粒子若しくは金属粒子を互いに融着さ
せることを特徴とする水素吸蔵合金電極の製造方法。
1. An alloy particle that absorbs and releases hydrogen, alone or after mixing with alloy particles or metal particles that do not absorb hydrogen, and then pressurizing the molded body (2) to obtain the molded body (2).
Is sandwiched between a pair of electrodes (11), and a current of 10 A / mm 2 or more is passed between the electrodes (11) for 0.1 second or more and 10 seconds or less, so that the hydrogen storage alloy particles in the molded body (2), or A method for producing a hydrogen storage alloy electrode, comprising fusing hydrogen storage alloy particles and alloy particles or metal particles that do not store hydrogen together.
JP6239767A 1994-10-04 1994-10-04 Manufacture of hydrogen storage alloy electrode Pending JPH08106904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6239767A JPH08106904A (en) 1994-10-04 1994-10-04 Manufacture of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6239767A JPH08106904A (en) 1994-10-04 1994-10-04 Manufacture of hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH08106904A true JPH08106904A (en) 1996-04-23

Family

ID=17049611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6239767A Pending JPH08106904A (en) 1994-10-04 1994-10-04 Manufacture of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH08106904A (en)

Similar Documents

Publication Publication Date Title
US5529857A (en) Hydrogen-absorbing alloy electrode and process for producing the same
JPH0992272A (en) Electrode of secondary battery, its manufacture and secondary battery
JP2000268848A (en) Alkaline storage battery with spiral electrode body
JPH08106904A (en) Manufacture of hydrogen storage alloy electrode
JPH0212765A (en) Manufacture of hydrogen storage electrode
JP3093801B2 (en) Battery manufacturing method and battery
JPH02236955A (en) Nickel oxide-hydrogen alkaline storage battery
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JP2631324B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP3432847B2 (en) Hydrogen storage alloy electrode
JP3377591B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JP3416448B2 (en) Method for producing hydrogen storage alloy particles
JPH0815077B2 (en) Sealed alkaline storage battery
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JP2642144B2 (en) Method for producing hydrogen storage electrode
JP3013412B2 (en) Negative electrode for metal hydride battery and method for producing the same
JPH01248473A (en) Manufacture of electrode for battery
JP3519836B2 (en) Hydrogen storage alloy electrode
JP3475033B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2848465B2 (en) Metal-hydrogen alkaline storage battery
JPH03263760A (en) Hydrogen storage alloy electrode
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPH0562674A (en) Alkaline storage battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030225