JPH08106902A - Thin film electrode for battery and its manufacture - Google Patents

Thin film electrode for battery and its manufacture

Info

Publication number
JPH08106902A
JPH08106902A JP6238934A JP23893494A JPH08106902A JP H08106902 A JPH08106902 A JP H08106902A JP 6238934 A JP6238934 A JP 6238934A JP 23893494 A JP23893494 A JP 23893494A JP H08106902 A JPH08106902 A JP H08106902A
Authority
JP
Japan
Prior art keywords
thin film
active material
carrier
electrode
film electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6238934A
Other languages
Japanese (ja)
Inventor
Karun Maruhotora
マルホトラ・カルン
Kazuko Higaki
和子 檜垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP6238934A priority Critical patent/JPH08106902A/en
Publication of JPH08106902A publication Critical patent/JPH08106902A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/122

Abstract

PURPOSE: To efficiently manufacture at low cost a battery with high charge/ discharge performance by forming an active material thin film deposited on the surface of a carrier in liquid phase reaction by sintering. CONSTITUTION: A mixed solution is prepared by adding an acid to a solution containing an active material made of a specified metal. A carrier of a specified metal is immersed in the mixed solution. An active material thin film with a specified thickness is deposited on the surface of the carrier in liquid phase reaction. The carrier is taken out from the mixed solution, and baked in the air at specified temperature. An electrode without peeling off from the carrier, with uniform thin film, large discharge capacity can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電池用薄膜電極、特に、
リチウム一次若しくは二次電池又は太陽電池用活物質及
びその製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a thin film electrode for a battery, in particular,
The present invention relates to an active material for a lithium primary or secondary battery or a solar cell and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、リチウム電池の電極としては、
活物質に炭素系導電剤及び結着剤などを加えて混合し、
その合剤をシート状に成形したり、メッシュ等の集電体
に圧着したものを正極とし、負極活物質として金属リチ
ウムを用い、これをニッケル、ステンレス鋼などの集電
体に圧着したものが採用されている。
2. Description of the Related Art Generally, as an electrode of a lithium battery,
Add a carbon-based conductive agent and a binder to the active material and mix,
The mixture is formed into a sheet or pressed onto a current collector such as a mesh as a positive electrode, metallic lithium is used as a negative electrode active material, and this is pressed onto a current collector such as nickel or stainless steel. Has been adopted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記構
造の電極では、導電剤や結着剤等を添加することにより
電解液を余分に加えなければならず、また、活物質以外
の添加による電池性能への影響も考慮しなければならな
い。しかも、導電剤や結着剤等の添加により電極の容積
が増加するため活物質の充填密度が低下し、必然的に単
位重量当たりの電池容量を低下させる原因ともなってい
る。他方、導電剤や結着剤を添加しない粉末活物質のみ
で電極を形成した場合、単位重量当たりの容量は大きく
なるが、電極の機械的強度の低下を招き、充放電を行う
二次電池の場合には、充放電に伴う結晶の収縮、膨張な
ど結晶構造の変化により集電体から剥離し、充放電サイ
クルの増加に伴い性能が劣化するという問題がある。そ
こで、電極形成方法として、化学蒸着法等の超薄膜形成
方法を用いることも考えられるが、この方法では、反応
に高温を必要とし、雰囲気の制御が困難で、量産化がで
きず、コストが高くなる等の問題がある。
However, in the electrode having the above structure, the electrolytic solution must be additionally added by adding a conductive agent, a binder or the like, and the battery performance by addition of other than the active material is also increased. The impact on Moreover, since the volume of the electrode is increased by the addition of the conductive agent, the binder, etc., the packing density of the active material is lowered, which inevitably causes the battery capacity per unit weight to be lowered. On the other hand, when the electrode is formed only of the powdered active material to which no conductive agent or binder is added, the capacity per unit weight becomes large, but the mechanical strength of the electrode is lowered, and the secondary battery that is charged and discharged is charged. In this case, there is a problem that the crystal structure changes such as shrinkage and expansion of the crystal due to charge and discharge, resulting in separation from the current collector and deterioration of performance as the charge and discharge cycle increases. Therefore, it is possible to use an ultra-thin film forming method such as a chemical vapor deposition method as an electrode forming method, but this method requires a high temperature for the reaction, the atmosphere is difficult to control, mass production cannot be performed, and the cost is low. There are problems such as high price.

【0004】従って、本発明は、活物質のみで形成さ
れ、一次又は二次電池に適用した場合に集電体又は担体
から剥離することがなく、優れた充放電特性を有する電
池を安価に製造できる電極を得ることを目的とするもの
である。また、本発明の他の目的は、活物質のみからな
る電極を安価に、効率良く製造できるようにすることに
ある。
Therefore, according to the present invention, a battery having excellent charge and discharge characteristics can be manufactured at a low cost, which is formed of only an active material and does not peel off from a current collector or a carrier when applied to a primary or secondary battery. The purpose is to obtain a possible electrode. Another object of the present invention is to make it possible to inexpensively and efficiently manufacture an electrode made of only an active material.

【0005】[0005]

【課題を解決するための手段】本発明は、前記課題を達
成する手段として、液相反応により担体の表面に析出さ
せてなる金属酸化物薄膜で電極を構成するようにしたも
のである。
As a means for achieving the above object, the present invention comprises an electrode formed of a metal oxide thin film deposited on the surface of a carrier by a liquid phase reaction.

【0006】担体としては、ステンレス鋼、アルミニウ
ム、銅、ニッケルなどの金属、セラミックス、合成樹脂
などを使用でき、また、これらはプレート、フイルム、
箔、スクリーンなど任意の形態を採用することができ
る。
As the carrier, metals such as stainless steel, aluminum, copper and nickel, ceramics, synthetic resins and the like can be used, and these can be used for plates, films,
Any form such as a foil or a screen can be adopted.

【0007】前記活物質については、一次電池の場合、
その正極活物質として従来公知の任意のものを使用でき
るが、代表的なものとしては、金属酸化物、硫化銅など
の硫化物、フッ化黒鉛などのハロゲン化物、クロム酸銀
などの複合酸化物があげられる。また、二次電池の場
合、正極活物質としては、金属酸化物又は複合酸化物の
他、TiS2、MoS2などの一般式:MX2で表される遷
移金属ジカルコゲナイド、NbSe3などの一般式:MX3
で表される遷移金属トリカルコゲナイドなどが挙げられ
るが、酸化物又は複合酸化物を使用するのが好適であ
る。酸化物系活物質としては、Fe23、MnO2、CuO
2、V25、V613、LiOH-MnO2、LixNiO
y(x=0〜1.5、y=1〜2)及びLixMn24(x
=0〜2)を使用するのが好適である。
Regarding the active material, in the case of a primary battery,
As the positive electrode active material, any conventionally known material can be used, but typical examples thereof include metal oxides, sulfides such as copper sulfide, halides such as fluorinated graphite, and composite oxides such as silver chromate. Can be given. In the case of a secondary battery, as the positive electrode active material, in addition to metal oxides or composite oxides, transition metal dichalcogenides represented by the general formula: MX 2 such as TiS 2 and MoS 2 , NbSe 3 and the like are generally used. Formula: MX 3
The transition metal trichalcogenide represented by the formula (1) and the like are mentioned, but it is preferable to use an oxide or a composite oxide. Fe 2 O 3 , MnO 2 , CuO is used as the oxide-based active material.
2 , V 2 O 5 , V 6 O 13 , LiOH-MnO 2 , Li x NiO
y (x = 0 to 1.5, y = 1 to 2) and Li x Mn 2 O 4 (x
= 0-2) is preferably used.

【0008】好ましい実施態様においては、担体表面上
の活物質薄膜は5μm以下の膜厚に設定される。
In a preferred embodiment, the thin film of active material on the surface of the carrier is set to have a thickness of 5 μm or less.

【0009】本発明に係る前記薄膜電極は、活物質を構
成する金属の水酸化物を液相反応により担体表面に析出
させて薄膜を形成し、該薄膜を空気中300〜500℃
で焼成することにより製造することができる。
In the thin film electrode according to the present invention, a metal hydroxide constituting an active material is deposited on the surface of a carrier by a liquid phase reaction to form a thin film, and the thin film is in air at 300 to 500 ° C.
It can be manufactured by firing at.

【0010】前記液相反応は、活物質となる金属のフッ
化物を含有する溶液に酸を加え、その混合液に担体を浸
漬して行うのが好適である。この場合、析出温度は20
〜35℃に維持するのが望ましい。代表的な酸として
は、硼酸が挙げられる。
The liquid phase reaction is preferably carried out by adding an acid to a solution containing a metal fluoride as an active material and immersing the carrier in the mixed solution. In this case, the deposition temperature is 20
It is desirable to maintain ~ 35 ° C. A typical acid is boric acid.

【0011】[0011]

【作用】本発明に係る電極は、活物質が真比重の10〜
90%の範囲の充填密度で均一な薄膜であるため、二次
電池の電極として繰り返し使用した場合でも、集電体と
して機能する担体から剥離することがなく、サイクル寿
命が著しく向上する。また、導電剤や結着剤を含有せず
活物質のみからなる薄膜であるため、機械的強度を高め
ると共に、単位重量当たりの容量を増大させ、もって充
放電特性を向上させることになる。また、本発明に従
い、薄膜形成浴に担体を浸漬すると、その表面に綿状構
造の薄膜が形成され、これを焼成することにより活物質
薄膜が形成される。電極形成操作を低温で、かつ、連続
的に行うことが可能となり、大面積の電極を形成するこ
とを可能にしている。
In the electrode according to the present invention, the active material has a true specific gravity of 10 to 10
Since it is a uniform thin film with a packing density in the range of 90%, it does not peel off from the carrier that functions as a current collector even when it is repeatedly used as an electrode of a secondary battery, and the cycle life is significantly improved. Further, since the thin film is made of only the active material without containing a conductive agent or a binder, the mechanical strength is increased, the capacity per unit weight is increased, and the charge / discharge characteristics are improved. Further, according to the present invention, when the carrier is immersed in a thin film forming bath, a thin film having a cotton-like structure is formed on the surface thereof, and the active material thin film is formed by baking the thin film. The electrode forming operation can be continuously performed at a low temperature, and an electrode having a large area can be formed.

【0012】[0012]

【実施例1】出発原料としてFeCl3を用い、これを水
に溶解して0.1M水溶液を調製し、60〜90℃の温度
範囲で2時間保持し、オキシ水酸化鉄(FeOOH)を
析出させた。この反応液を蒸発乾燥させて析出物(Fe
OOH)を得、これを30℃のフッ化水素アンモニウム
水溶液にモル濃度比FeOOH:NH4F・HF=1:5
の割合で添加してフッ化鉄として溶解させ、その溶液に
3BO3を0.5モル加えて薄膜形成浴を調製した。こ
の浴に担体としてステンレス基板を浸漬し、27℃の恒
温槽中で数時間保持し、それぞれ厚さ1〜3μmのFeO
OH薄膜を析出させた。次いで、ステンレス基板を浴か
ら取り出し、空気中300〜500℃で3時間焼成し
て、Fe23を活物質とする電極を得た。
Example 1 FeCl 3 was used as a starting material, and this was dissolved in water to prepare a 0.1 M aqueous solution, which was kept at a temperature range of 60 to 90 ° C. for 2 hours to precipitate iron oxyhydroxide (FeOOH). It was The reaction solution was evaporated to dryness to obtain a precipitate (Fe
OOH) was obtained, and this was added to an aqueous solution of ammonium hydrogen fluoride at 30 ° C. in a molar concentration ratio of FeOOH: NH4F · HF = 1: 5.
Was added to dissolve it as iron fluoride, and 0.5 mol of H 3 BO 3 was added to the solution to prepare a thin film forming bath. A stainless steel substrate is immersed in this bath as a carrier and kept in a constant temperature bath at 27 ° C. for several hours to obtain FeO each having a thickness of 1 to 3 μm.
An OH thin film was deposited. Then, the stainless steel substrate was taken out of the bath and baked in air at 300 to 500 ° C. for 3 hours to obtain an electrode using Fe 2 O 3 as an active material.

【0013】得られた電極を減圧乾燥させた後、Fe
0.47mg/cmを正極活物質とするセル
(ボタン型電池ーR2025)を組み立てた。電解液と
して、プロピレンカーボネート(PC)と1、2−ジメ
トキシエタン(DME)の容積比1:1の混合溶媒に過
塩素酸リチウム(LiClO)を溶解させた非プロトン性
有機電解液を用いた。
The obtained electrode was dried under reduced pressure and then Fe 2
A cell (button-type battery-R2025) having O 3 0.47 mg / cm 2 as a positive electrode active material was assembled. As the electrolytic solution, an aprotic organic electrolytic solution prepared by dissolving lithium perchlorate (LiClO 4 ) in a mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) at a volume ratio of 1: 1 was used. .

【0014】セルについて一次電池、二次電池としての
各特性、即ち、電圧ー容量特性を測定した。その結果を
図1及び図2に示す。図1は、一次電池とした場合の電
圧ー容量特性を示し、放電電流密度を0.044mA/mm
2(実線)、0.5mA/mm2(一点鎖線)としてそれぞ
れ評価した。図2は二次電池とした場合の電圧ー容量特
性を示し、放電電流密度を0.044mA/mm2(実
線)、0.5mA/mm2(一点鎖線)としてそれぞれ評価
した。
The characteristics of the cell as a primary battery and a secondary battery, that is, the voltage-capacity characteristics were measured. The results are shown in FIGS. 1 and 2. Figure 1 shows the voltage-capacity characteristics of a primary battery with a discharge current density of 0.044 mA / mm.
2 (solid line) and 0.5 mA / mm 2 (dashed line) were evaluated. Figure 2 shows a voltage-to-capacitance characteristics when a secondary battery, the discharge current density 0.044mA / mm 2 (solid line) was evaluated respectively as 0.5 mA / mm 2 (dashed line).

【0015】図1、図2から明らかなように、本発明に
よれば、一次電池及び二次電池のいずれも実用に供し得
る電圧ー容量特性が得られることが解る。
As is apparent from FIGS. 1 and 2, according to the present invention, it is understood that the voltage-capacity characteristics that can be put to practical use can be obtained for both the primary battery and the secondary battery.

【0016】次に、二次電池のセルについて、充放電電
流密度を0.5mA/cm2(5.6C:11分で充電、11
分で放電)、充放電電位幅2.0〜0.0Vの条件で評価
試験を行った。得られた結果を、比較例についての結果
と共に、図3に示す。
Next, with respect to the cells of the secondary battery, the charging / discharging current density was 0.5 mA / cm 2 (5.6 C: charged in 11 minutes, 11
Discharge) and a charge / discharge potential width of 2.0 to 0.0 V was evaluated. The obtained results are shown in FIG. 3 together with the results of the comparative example.

【0017】なお、比較例1はステンレス基板に活物質
Fe23のみをスピンコートした電極(厚さ8μm)を正
極電極として用いたもの、比較例2、3は、活物質Fe2
3に導電剤としてアセチレンブラックを、結着剤とし
て弗素樹脂を加えた成形電極を正極電極として用いたも
ので、比較例2は充放電電流密度が0.05mA/cm2
時、比較例3は充放電電流密度が0.5mA/mm2の時の
結果である。
[0017] In Comparative Example 1 that uses only the active material Fe 2 O 3 on a stainless substrate spin-coated electrodes (thickness 8 [mu] m) as a positive electrode, Comparative Examples 2 and 3, the active material Fe 2
A molded electrode obtained by adding acetylene black as a conductive agent to O 3 and a fluorine resin as a binder was used as a positive electrode. Comparative Example 2 was a comparative example when the charge / discharge current density was 0.05 mA / cm 2. No. 3 is the result when the charge / discharge current density is 0.5 mA / mm 2 .

【0018】図3の結果から、本発明に係る電極を用い
たセルは、比較例のものに比べて、放電容量が著しく大
きく、また、充放電サイクルに伴う劣化も著しく小さい
ことがわかる。
From the results shown in FIG. 3, it can be seen that the cell using the electrode according to the present invention has a remarkably large discharge capacity as compared with the cell of the comparative example, and the deterioration with charging / discharging cycle is remarkably small.

【0019】[0019]

【実施例2】次に、本発明の電極を太陽電池に用いた実
施例について説明する。実施例1の薄膜形成浴を用い、
この浴に担体として透明導電性ガラスを浸漬し、27℃
の恒温槽中で数時間保持し、FeOOHを析出させた。
次いで、透明導電性ガラスを浴から取り出し、空気中3
00〜500℃で3時間焼成して、Fe23を活物質と
する電極を得た。なお、透明導電性ガラスとしてフッ素
を含有するSnO2ガラスを用いた。得られた電極を減圧
乾燥させた後、図4に示す構造の太陽電池を製作した。
図中、1は透明導電性ガラス、2は膜厚5μmのαーFe
23電極、3は絶縁体、4はテトラ-n-ブチル-アンモ
ニウムペルクロレート0.1Mをアセトニトリルに溶解
した溶液にルテニウムビピリジン0.5mMを添加して
なる電解液、5は白金板で、セル面積は1cm2である。
Example 2 Next, an example of using the electrode of the present invention in a solar cell will be described. Using the thin film forming bath of Example 1,
Immerse transparent conductive glass as a carrier in this bath at 27 ° C
The FeOOH was deposited by holding the same in a constant temperature bath for several hours.
Then, the transparent conductive glass is taken out of the bath and placed in air for 3
It was fired at 00 to 500 ° C. for 3 hours to obtain an electrode using Fe 2 O 3 as an active material. Note that SnO 2 glass containing fluorine was used as the transparent conductive glass. After drying the obtained electrode under reduced pressure, a solar cell having a structure shown in FIG. 4 was manufactured.
In the figure, 1 is transparent conductive glass, 2 is α-Fe with a film thickness of 5 μm
2 O 3 electrode, 3 insulator, 4 electrolyte of tetra-n-butyl-ammonium perchlorate 0.1M in acetonitrile added with 0.5 mM ruthenium bipyridine, 5 a platinum plate, The cell area is 1 cm 2 .

【0020】得られた太陽電池に透明導電性ガラス側か
ら(イ)250W/m2、(ロ)1KW/m2の光を入射さ
せ、電圧ー電流特性を測定した。その結果を図5に示
す。図5から本発明の電極は太陽電池の電極として利用
できることがわかる。
Light (A) 250 W / m 2 and (B) 1 KW / m 2 were made to enter the obtained solar cell from the transparent conductive glass side, and the voltage-current characteristics were measured. The result is shown in FIG. From FIG. 5, it can be seen that the electrode of the present invention can be used as an electrode of a solar cell.

【0021】なお、前記実施例では、活物質のうち酸化
物系のFe23、MnO2などを例示したが、NiOy(y
=1〜2)やMnO2の薄膜を形成し、後にLi+を電気
化学的に挿入することによってLixNiOy(x≦1.
5、y≦1〜2)、LixMn24(x≦2)とし、これ
らを活物質薄膜とすることもできる。
In the above examples, oxide-based Fe 2 O 3 , MnO 2 and the like were exemplified as the active material, but NiO y (y
= 1 to 2) or a MnO 2 thin film is formed, and Li + is electrochemically inserted after that to form Li x Ni 0 y (x ≦ 1.
5, y ≦ 1-2) and Li x Mn 2 O 4 (x ≦ 2), and these can be used as the active material thin film.

【0022】[0022]

【発明の効果】以上の説明から明らかなように、本発明
によれば、活物質の充填密度が高いため担体からの剥離
が生じず、二次電池の電極として使用しても充放電サイ
クルに伴う劣化を抑制でき、しかも、均一な薄膜として
形成されるため放電容量の大きな電池を得ることができ
る。さらに、本発明によれば、電極を液相反応により形
成でき、しかも、低温で行うことができるため、連続的
に大面積の電極を生産することができるという、優れた
効果が得られる。
As is apparent from the above description, according to the present invention, since the packing density of the active material is high, peeling from the carrier does not occur, and even when it is used as an electrode of a secondary battery, it does not cause a charge / discharge cycle. It is possible to suppress the accompanying deterioration and obtain a battery having a large discharge capacity because it is formed as a uniform thin film. Further, according to the present invention, since the electrodes can be formed by a liquid phase reaction and can be performed at a low temperature, an excellent effect that an electrode having a large area can be continuously produced can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の電極を用いた一次電池のセルの電圧
容量特性図である。
FIG. 1 is a voltage capacity characteristic diagram of a cell of a primary battery using the electrode of the present invention.

【図2】 本発明の電極を用いた二次電池のセルの電圧
容量特性図である。
FIG. 2 is a voltage capacity characteristic diagram of a cell of a secondary battery using the electrode of the present invention.

【図3】 本発明及び従来の電極をそれぞれ用いたセル
の充放電特性図である。
FIG. 3 is a charge / discharge characteristic diagram of a cell using the present invention and a conventional electrode.

【図4】 本発明の電極を用いた太陽電池の構造を示す
概略説明図である。
FIG. 4 is a schematic explanatory view showing a structure of a solar cell using the electrode of the present invention.

【図5】 本発明の電極を用いた図4に示す太陽電池の
電圧ー電流特性図である。
5 is a voltage-current characteristic diagram of the solar cell shown in FIG. 4 using the electrode of the present invention.

【符号の説明】[Explanation of symbols]

1 透明導電性ガラス 2 薄膜電極 3 絶縁体 4 電解液 5 白金板 1 Transparent conductive glass 2 Thin film electrode 3 Insulator 4 Electrolyte 5 Platinum plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/58 4/66 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01M 4/58 4/66 A

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 液相反応により担体の表面に析出させて
なる活物質薄膜からなる電池用薄膜電極。
1. A thin film electrode for a battery comprising an active material thin film deposited on the surface of a carrier by a liquid phase reaction.
【請求項2】 前記担体が金属、セラミックス及び合成
樹脂の一種である請求項1記載の電池用薄膜電極。
2. The thin film electrode for a battery according to claim 1, wherein the carrier is one of metal, ceramics and synthetic resin.
【請求項3】 前記担体がステンレス鋼、アルミニウ
ム、銅及びニッケルからなる群から選ばれた一種である
請求項1記載の電池用薄膜電極。
3. The thin film electrode for a battery according to claim 1, wherein the carrier is one selected from the group consisting of stainless steel, aluminum, copper and nickel.
【請求項4】 前記活物質が金属酸化物、硫化物、ハロ
ゲン化物、複合酸化物、一般式:MX2で表される遷移
金属ジカルコゲナイド及び一般式:MX3で表される遷
移金属トリカルコゲナイドからなる群から選ばれた一種
である請求項1〜3のいずれかに記載の電池用薄膜電
極。
4. The active material is a metal oxide, a sulfide, a halide, a composite oxide, a transition metal dichalcogenide represented by the general formula: MX 2 and a transition metal trichalcogenide represented by the general formula: MX 3. The thin film electrode for a battery according to claim 1, which is one selected from the group consisting of:
【請求項5】 前記活物質がFe23、MnO2、Cu
2、V25、V613、LiOH-MnO2、LixNiOy
(x=0〜1.5、y=1〜2)及びLixMn24(x
=0〜2)からなる群から選ばれた一種である請求項1
〜3のいずれかに記載の電池用薄膜電極。
5. The active material is Fe 2 O 3 , MnO 2 , Cu.
O 2 , V 2 O 5 , V 6 O 13 , LiOH-MnO 2 , Li x NiO y
(X = 0 to 1.5, y = 1 to 2) and Li x Mn 2 O 4 (x
= 0 to 2), which is a kind selected from the group consisting of
The thin film electrode for a battery according to any one of 1 to 3.
【請求項6】 前記薄膜が5μm以下の薄膜である請求
項1〜5のいずれかに記載の電池用薄膜電極。
6. The thin film electrode for a battery according to claim 1, wherein the thin film is a thin film having a thickness of 5 μm or less.
【請求項7】 活物質を構成する金属の水酸化物を液相
反応により担体表面に析出させて薄膜を形成し、該薄膜
を空気中300〜500℃で焼成することを特徴とする
電池用薄膜電極の製造方法。
7. A battery characterized in that a metal hydroxide constituting an active material is deposited on a surface of a carrier by a liquid phase reaction to form a thin film, and the thin film is baked in air at 300 to 500 ° C. Method for manufacturing thin film electrode.
【請求項8】 前記液相反応を、活物質となる金属のフ
ッ化物を含有する溶液に酸を加え、その混合液に担体を
浸漬して行う請求項7記載の電池用薄膜電極の製造方
法。
8. The method for producing a thin film electrode for a battery according to claim 7, wherein the liquid phase reaction is carried out by adding an acid to a solution containing a metal fluoride serving as an active material and immersing the carrier in the mixed solution. .
JP6238934A 1994-10-03 1994-10-03 Thin film electrode for battery and its manufacture Pending JPH08106902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6238934A JPH08106902A (en) 1994-10-03 1994-10-03 Thin film electrode for battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6238934A JPH08106902A (en) 1994-10-03 1994-10-03 Thin film electrode for battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH08106902A true JPH08106902A (en) 1996-04-23

Family

ID=17037456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6238934A Pending JPH08106902A (en) 1994-10-03 1994-10-03 Thin film electrode for battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH08106902A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144710A (en) * 1997-11-04 1999-05-28 Tdk Corp Electrode structure for electrochemical element
WO2004017336A1 (en) * 2002-08-06 2004-02-26 Nippon Sheet Glass Company Limited Process for producing ferromagnetic fine-particle exothermic element
JP2008204777A (en) * 2007-02-20 2008-09-04 National Institute Of Advanced Industrial & Technology Active material for lithium battery and its manufacturing method, and lithium battery using the active material
JP2011129344A (en) * 2009-12-17 2011-06-30 Toyota Motor Corp Lithium ion secondary battery
WO2019172160A1 (en) * 2018-03-07 2019-09-12 デノラ・ペルメレック株式会社 Electrolysis electrode and method for manufacturing same
WO2022107325A1 (en) * 2020-11-20 2022-05-27 日本電信電話株式会社 Primary battery
US11965256B2 (en) 2020-10-15 2024-04-23 Kyoto University Anode for alkaline water electrolysis and method for producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144710A (en) * 1997-11-04 1999-05-28 Tdk Corp Electrode structure for electrochemical element
WO2004017336A1 (en) * 2002-08-06 2004-02-26 Nippon Sheet Glass Company Limited Process for producing ferromagnetic fine-particle exothermic element
JP2008204777A (en) * 2007-02-20 2008-09-04 National Institute Of Advanced Industrial & Technology Active material for lithium battery and its manufacturing method, and lithium battery using the active material
JP2011129344A (en) * 2009-12-17 2011-06-30 Toyota Motor Corp Lithium ion secondary battery
WO2019172160A1 (en) * 2018-03-07 2019-09-12 デノラ・ペルメレック株式会社 Electrolysis electrode and method for manufacturing same
CN111868308A (en) * 2018-03-07 2020-10-30 迪诺拉永久电极股份有限公司 Electrode for electrolysis and method for producing same
CN111868308B (en) * 2018-03-07 2021-07-20 迪诺拉永久电极股份有限公司 Electrode for electrolysis and method for producing same
US11866834B2 (en) 2018-03-07 2024-01-09 De Nora Permelec Ltd Electrolysis electrode and method for manufacturing same
US11965256B2 (en) 2020-10-15 2024-04-23 Kyoto University Anode for alkaline water electrolysis and method for producing same
WO2022107325A1 (en) * 2020-11-20 2022-05-27 日本電信電話株式会社 Primary battery

Similar Documents

Publication Publication Date Title
EP0573040B1 (en) A positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte lithium secondary battery employing the positive electrode
Plichta et al. The Rechargeable Li x TiS2/LiAlCl4/Li1− x CoO2 Solid‐State Cell
JP3244291B2 (en) Battery
JPH01304660A (en) Electrochemical cell
JPH08106902A (en) Thin film electrode for battery and its manufacture
JP3721734B2 (en) Non-aqueous electrolyte secondary battery
CN110492099B (en) Layered polyanion positive electrode material, preparation method, potassium ion battery positive electrode, potassium ion battery and application
JPH0982360A (en) Nonaqueous electrolyte secondary battery
JPH06168722A (en) Nonaqueous electrolyte battery
JP2001250554A (en) Non aqueous electrolyte secondary cell having heat resistance
JP2003217580A (en) Electrode for lithium secondary battery and its manufacturing method
JP3451602B2 (en) Non-aqueous electrolyte battery
JPH0770329B2 (en) Non-aqueous electrolyte secondary battery
KR100681455B1 (en) Electrode for lithium secondary microbatteries and preparation method thereof
JPH0896817A (en) Battery using ion conductive high polymer compound
JPH05325961A (en) Lithium battery
JP2003331841A (en) Positive active material for lithium ion secondary battery and its manufacturing method, and lithium ion secondary battery
JPH06150929A (en) Non-aqueous electrolyte secondary battery
JP2819027B2 (en) All-solid secondary battery
JPH06325766A (en) Chemical cell
JP2002184392A (en) Nonaqueous secondary cell
JP3052670B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and nonaqueous electrolyte lithium secondary battery using the positive electrode
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JPH10214629A (en) Lithium secondary battery
JPH0650635B2 (en) Non-aqueous electrolyte secondary battery