JPH08105342A - Air-fuel ratio control device of internal combustion engine - Google Patents

Air-fuel ratio control device of internal combustion engine

Info

Publication number
JPH08105342A
JPH08105342A JP24385594A JP24385594A JPH08105342A JP H08105342 A JPH08105342 A JP H08105342A JP 24385594 A JP24385594 A JP 24385594A JP 24385594 A JP24385594 A JP 24385594A JP H08105342 A JPH08105342 A JP H08105342A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
cylinder
control
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24385594A
Other languages
Japanese (ja)
Inventor
Keita Yoshizawa
敬太 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP24385594A priority Critical patent/JPH08105342A/en
Publication of JPH08105342A publication Critical patent/JPH08105342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE: To accurately control an air-fuel ratio to be lean by restraining the air-fuel ratio dispersion between cylinders with a simple constitution. CONSTITUTION: Air-fuel ratio feedback control is performed by oxygen sensors 9 and 10 for a first cylinder and second to forth cylinders respectively, and the deviation A (=α2-α1) between their respective air-fuel ratio feedback correction coefficient α1 and α2 is stored for each running condition. At the next control of air-fuel ratio to be lean, based on the value B, the sum of this deviation A and the air-fuel ratio feedback correction coefficient of the first cylinder, the width of pulses for fuel injection during the control of air-fuel ratio to be lean for the second to forth cylinders is rectified. With this constitution, the air-fuel ratio dispersion between cylinders is restrained with simple constitution, making accurate air-fuel ratio control to be lean possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の空燃比制御
装置に関し、特に機関吸入混合気の空燃比を希薄空燃比
(リーン空燃比)に制御する装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more particularly to an improvement of a device for controlling the air-fuel ratio of an engine intake air-fuel mixture to a lean air-fuel ratio (lean air-fuel ratio).

【0002】[0002]

【従来の技術】従来より、機関吸入混合気の空燃比を広
範囲に亘ってリニアに検出できる高価な広域空燃比セン
サを用いずに、安価かつ簡単な構成により多気筒内燃機
関の吸入混合気をリーン化(希薄空燃比化、例えば吸入
空気重量/燃料重量〔A/F〕=18程度に設定す
る。)する空燃比制御装置として、各気筒からの排気が
合流するより上流側の所定の1つの気筒の排気通路にの
み酸素センサ(理論空燃比に対してリッチであるかリー
ンであるかを検出するセンサ)を備え、リーン化制御を
行なう前に、この酸素センサからのリッチ・リーン判定
信号に基づいて目標空燃比(理論空燃比)が得られるよ
うに空燃比の制御量(例えば、燃料供給量、吸入空気流
量)を補正するフィードバック制御を行い、その後この
フィードバック制御における補正量を用いて機関毎或い
は経時劣化等による空燃比制御値のズレを修正しつつ、
フィードフォワード制御により他の気筒も含めて目標リ
ーン空燃比が得られるように空燃比を制御するものが知
られている。
2. Description of the Related Art Conventionally, an intake air-fuel mixture of a multi-cylinder internal combustion engine can be provided with a cheap and simple structure without using an expensive wide-range air-fuel ratio sensor capable of linearly detecting the air-fuel ratio of the engine intake air-fuel mixture. As an air-fuel ratio control device for leaning (raising lean air-fuel ratio, for example, setting intake air weight / fuel weight [A / F] = about 18), a predetermined one upstream from where the exhaust gas from each cylinder joins An oxygen sensor (a sensor that detects whether the air-fuel ratio is rich or lean) is provided only in the exhaust passage of one cylinder, and a rich / lean determination signal from this oxygen sensor is provided before performing lean control. Feedback control to correct the air-fuel ratio control amount (for example, fuel supply amount, intake air flow rate) so that the target air-fuel ratio (theoretical air-fuel ratio) can be obtained based on While modifying the deviation of the air-fuel ratio control value according to the engine or every time degradation such as by using a kick correction amount,
It is known to control the air-fuel ratio so as to obtain a target lean air-fuel ratio in other cylinders by feedforward control.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のような
空燃比制御装置においては、構成の簡略化、製品コスト
の低減を達成するために、1気筒の検出結果のみに基づ
いて空燃比制御値のズレを補正する構成であるため、気
筒間における部品精度や経時劣化等のバラツキについて
は全く対応することができず、精度よくリーン化制御を
行なうことができなかった。このため、例えば始動直後
のリーン化制御において触媒の早期活性化と未燃燃料
(HC)分の排出を十分に低減できなかったり(目標リ
ーン空燃比からのリッチ側へのズレがある場合)、運転
性が悪化する(目標リーン空燃比からのリーン側へのズ
レがある場合)という問題があった。なお、気筒毎の空
燃比を検出できるように全気筒に酸素センサを設けるよ
うにすれば、気筒間の空燃比バラツキ等を修正すること
ができるが、この場合は、構成が複雑化し、製品コスト
が増大する等の欠点がある。
However, in the air-fuel ratio control apparatus as described above, in order to simplify the configuration and reduce the product cost, the air-fuel ratio control value is determined based on only the detection result of one cylinder. Because of the configuration for correcting the deviation, it is not possible to deal with variations in parts accuracy between cylinders, deterioration with time, etc., and it is not possible to perform lean control with high accuracy. For this reason, for example, in the lean control immediately after the start, the early activation of the catalyst and the emission of the unburned fuel (HC) cannot be sufficiently reduced (when there is a deviation from the target lean air-fuel ratio to the rich side), There was a problem that drivability deteriorates (when there is a deviation from the target lean air-fuel ratio to the lean side). If oxygen sensors are provided in all cylinders so that the air-fuel ratio of each cylinder can be detected, variations in air-fuel ratio among the cylinders can be corrected, but in this case, the configuration becomes complicated and the product cost is reduced. There is a drawback such as an increase in

【0004】一方で、フィードフォワード制御によるリ
ーン化制御中に、運転状態(例えば、水温等)が徐々に
変化して所謂壁流燃料量が徐々に変化し排気空燃比が変
化しているような場合には、排気空燃比が目標リーン空
燃比からズレることになり、触媒活性特性や排気転換効
率の変化を招き、十分に触媒の活性化或いは排気特性を
改善できないという問題もある。
On the other hand, during lean control by the feedforward control, the operating state (for example, water temperature) gradually changes, so-called wall flow fuel amount gradually changes, and the exhaust air-fuel ratio changes. In this case, the exhaust air-fuel ratio deviates from the target lean air-fuel ratio, which causes changes in catalyst activation characteristics and exhaust conversion efficiency, and there is also a problem that catalyst activation or exhaust characteristics cannot be sufficiently improved.

【0005】本発明は、かかる従来の問題に鑑みなされ
たもので、構成の複雑化、製品コストの増大を抑制しつ
つ、気筒間の空燃比バラツキを抑制して高精度にリーン
化制御を行なうことができる内燃機関の空燃比制御装置
を提供することを第1の目的とする。また、当該装置に
おいて、制御精度の更なる高精度化を図ることも本発明
の目的である。
The present invention has been made in view of the above conventional problems, and suppresses the air-fuel ratio variation among the cylinders while suppressing the complication of the configuration and the increase of the product cost, and performs the lean control with high accuracy. It is a first object of the present invention to provide an air-fuel ratio control device for an internal combustion engine that can be used. Further, it is an object of the present invention to further improve the control accuracy in the device.

【0006】更に、本発明では、フィードフォワード制
御によるリーン化制御中においても、運転状態の変化に
追従させることができ、なおかつ簡単な構成で気筒間の
空燃比バラツキを抑制して高精度にリーン化制御を行な
うことができる内燃機関の空燃比制御装置を提供するこ
とを第2の目的とする。
Further, according to the present invention, even during the lean control by the feedforward control, it is possible to follow the change of the operating state, and the variation in the air-fuel ratio between the cylinders can be suppressed with a simple structure to achieve a highly accurate lean. It is a second object of the present invention to provide an air-fuel ratio control device for an internal combustion engine, which is capable of performing a charge control.

【0007】[0007]

【課題を解決するための手段】このため、請求項1に記
載の発明にかかる内燃機関の空燃比制御装置では、図1
に示すように、特定の1気筒の排気中の酸素濃度を検出
して機関吸入混合気の空燃比を検出する第1酸素センサ
Aと、当該第1酸素センサAの検出結果に基づいて、所
定の目標空燃比が得られるように前記特定の1気筒の空
燃比制御量を第1空燃比フィードバック補正値Bを介し
て増減補正する第1空燃比フィードバック制御手段C
と、全気筒合流後の排気中の酸素濃度を検出して機関吸
入混合気の空燃比を検出する第2酸素センサDと、当該
第2酸素センサDの検出結果に基づいて、所定の目標空
燃比が得られるように前記特定の1気筒以外の気筒の空
燃比制御量を第2空燃比フィードバック補正値Eを介し
て増減補正する第2空燃比フィードバック制御手段F
と、リーン化制御中に、前記所定の目標空燃比よりリー
ンな目標リーン空燃比が得られるように前記特定の1気
筒の空燃比制御量を、前記第1空燃比フィードバック補
正値Bに基づいて補正する第1リーン化制御手段Gと、
リーン化制御中に、前記目標リーン空燃比が得られるよ
うに前記特定の1気筒以外の気筒の空燃比制御量を、前
記第2空燃比フィードバック補正値Eに基づいて補正す
る第2リーン化制御手段Hと、を備えて構成した。
Therefore, in the air-fuel ratio control apparatus for an internal combustion engine according to the invention as defined in claim 1,
As shown in FIG. 2, a predetermined oxygen sensor A that detects the oxygen concentration in the exhaust gas of a specific cylinder to detect the air-fuel ratio of the engine intake air-fuel mixture, and a predetermined oxygen sensor A based on the detection result of the first oxygen sensor A A first air-fuel ratio feedback control means C for increasing / decreasing the air-fuel ratio control amount of the specific one cylinder via the first air-fuel ratio feedback correction value B so that the target air-fuel ratio of
And a second oxygen sensor D that detects the oxygen concentration in the exhaust gas after the merging of all cylinders to detect the air-fuel ratio of the engine intake air-fuel mixture, and based on the detection result of the second oxygen sensor D Second air-fuel ratio feedback control means F for increasing / decreasing the air-fuel ratio control amount of the cylinders other than the specific one cylinder via the second air-fuel ratio feedback correction value E so that the fuel ratio can be obtained.
Based on the first air-fuel ratio feedback correction value B, the air-fuel ratio control amount of the specific cylinder is controlled so that a target lean air-fuel ratio leaner than the predetermined target air-fuel ratio is obtained during lean control. First lean control means G for correction,
A second lean control that corrects the air-fuel ratio control amount of cylinders other than the specific one cylinder during lean control based on the second air-fuel ratio feedback correction value E so that the target lean air-fuel ratio is obtained. And means H.

【0008】請求項2に記載の発明では、図2に示すよ
うに、特定の1気筒の排気中の酸素濃度を検出して機関
吸入混合気の空燃比を検出する第1酸素センサAと、当
該第1酸素センサAの検出結果に基づいて、所定の目標
空燃比が得られるように前記特定の1気筒の空燃比制御
量を第1空燃比フィードバック補正値Bを介して増減補
正する第1空燃比フィードバック制御手段Cと、全気筒
合流後の排気中の酸素濃度を検出して機関吸入混合気の
空燃比を検出する第2酸素センサDと、当該第2酸素セ
ンサの検出結果に基づいて、所定の目標空燃比が得られ
るように前記特定の1気筒以外の気筒の空燃比制御量を
第2空燃比フィードバック補正値Eを介して増減補正す
る第2空燃比フィードバック制御手段Fと、前記第1空
燃比フィードバック補正値Bと、前記第2空燃比フィー
ドバック補正値Eと、の偏差Iを求める偏差算出手段J
と、前記偏差Iを運転状態毎に記憶する偏差記憶手段K
と、機関再始動後前記特定の1気筒の空燃比のリーン化
制御を行なう前に、前記第1酸素センサAの検出結果に
基づいて、前記所定の目標空燃比が得られるように前記
特定の1気筒の空燃比制御量を、第3空燃比フィードバ
ック補正値Lを介して増減補正するリーン化制御前空燃
比フィードバック制御手段Mと、リーン化制御中に、前
記所定の目標空燃比よりリーンな目標リーン空燃比が得
られるように前記特定の1気筒の空燃比制御量を、前記
第3空燃比フィードバック補正値Lに基づいて補正する
第3リーン化制御手段Nと、リーン化制御中に、前記目
標リーン空燃比が得られるように前記特定の1気筒以外
の気筒の空燃比制御量を、前記偏差記憶手段Kが記憶す
る偏差Iと、前記第3空燃比フィードバック補正値L
と、を合計した値Oに基づいて補正する第4リーン化制
御手段Pと、を備えて構成した。
According to the second aspect of the present invention, as shown in FIG. 2, a first oxygen sensor A for detecting the oxygen concentration in the exhaust gas of one specific cylinder to detect the air-fuel ratio of the engine intake air-fuel mixture, Based on the detection result of the first oxygen sensor A, the air-fuel ratio control amount of the specific one cylinder is increased / decreased via a first air-fuel ratio feedback correction value B so as to obtain a predetermined target air-fuel ratio. Based on the air-fuel ratio feedback control means C, the second oxygen sensor D that detects the oxygen concentration in the exhaust gas after all the cylinders have merged to detect the air-fuel ratio of the engine intake air-fuel mixture, and the detection result of the second oxygen sensor. A second air-fuel ratio feedback control means F for increasing / decreasing the air-fuel ratio control amount of cylinders other than the specific one cylinder via a second air-fuel ratio feedback correction value E so as to obtain a predetermined target air-fuel ratio, First air-fuel ratio feedback Correction value B and the second air-fuel ratio feedback correction value E and, in a deviation I deviation calculating means J
And a deviation storage means K for storing the deviation I for each operating state.
And before performing the lean control of the air-fuel ratio of the specific one cylinder after the engine is restarted, based on the detection result of the first oxygen sensor A, the specific target air-fuel ratio is obtained so as to obtain the predetermined target air-fuel ratio. Pre-lean control air-fuel ratio feedback control means M for increasing / decreasing the air-fuel ratio control amount of one cylinder via the third air-fuel ratio feedback correction value L and leaner than the predetermined target air-fuel ratio during lean control. Third lean control means N for correcting the air-fuel ratio control amount of the specific one cylinder based on the third air-fuel ratio feedback correction value L so as to obtain a target lean air-fuel ratio, and during lean control, The deviation I stored in the deviation storage means K and the third air-fuel ratio feedback correction value L for the air-fuel ratio control amounts of the cylinders other than the specific one cylinder so as to obtain the target lean air-fuel ratio.
And a fourth leaning control unit P that corrects based on the sum O of the above.

【0009】請求項3に記載の発明(第2発明)では、
図3に示すように、特定の1気筒の排気中の酸素濃度を
検出して機関吸入混合気の空燃比を検出する第1酸素セ
ンサAと、当該第1酸素センサAの検出結果に基づい
て、所定の目標空燃比が得られるように前記特定の1気
筒の空燃比制御量を第1空燃比フィードバック補正値B
を介して増減補正する第1空燃比フィードバック制御手
段Cと、全気筒合流後の排気中の酸素濃度を検出して機
関吸入混合気の空燃比を検出する第2酸素センサDと、
当該第2酸素センサDの検出結果に基づいて、所定の目
標空燃比が得られるように前記特定の1気筒以外の気筒
の空燃比制御量を第2空燃比フィードバック補正値Eを
介して増減補正する第2空燃比フィードバック制御手段
Fと、前記第1空燃比フィードバック補正値Bと、前記
第2空燃比フィードバック補正値Eと、の偏差を求める
偏差算出手段Jと、前記偏差を運転状態毎に記憶する偏
差記憶手段Kと、リーン化制御中に、前記第1酸素セン
サAの検出結果に基づいて、前記所定の目標空燃比が得
られるように前記特定の1気筒の空燃比制御量を、第4
空燃比フィードバック補正値Qを介して増減補正するリ
ーン化制御中空燃比フィードバック制御手段Rと、リー
ン化制御中に、前記所定の目標空燃比よりリーンな目標
リーン空燃比が得られるように前記特定の1気筒以外の
気筒の空燃比制御量を、前記偏差記憶手段Kが記憶する
偏差と、前記第4空燃比フィードバック補正値Qと、を
合計した値に基づいて補正する第5リーン化制御手段S
と、を備えて構成した。
In the invention described in claim 3 (second invention),
As shown in FIG. 3, based on the first oxygen sensor A that detects the oxygen concentration in the exhaust gas of a specific cylinder to detect the air-fuel ratio of the engine intake air-fuel mixture, and the detection result of the first oxygen sensor A. , A first air-fuel ratio feedback correction value B for the air-fuel ratio control amount of the specific one cylinder so that a predetermined target air-fuel ratio is obtained.
A first air-fuel ratio feedback control means C for increasing / decreasing correction via the second oxygen sensor D for detecting the air-fuel ratio of the engine intake air-fuel mixture by detecting the oxygen concentration in the exhaust gas after all the cylinders merge.
Based on the detection result of the second oxygen sensor D, the air-fuel ratio control amount of the cylinders other than the specific one cylinder is increased / decreased via the second air-fuel ratio feedback correction value E so that a predetermined target air-fuel ratio is obtained. Deviation calculating means J for obtaining a deviation between the second air-fuel ratio feedback control means F, the first air-fuel ratio feedback correction value B, and the second air-fuel ratio feedback correction value E, and the deviation for each operating state. The deviation storage means K to be stored and the air-fuel ratio control amount of the specific one cylinder so as to obtain the predetermined target air-fuel ratio based on the detection result of the first oxygen sensor A during lean control, Fourth
Leaning control hollow fuel ratio feedback control means R for increasing / decreasing correction via an air-fuel ratio feedback correction value Q, and the specific lean air-fuel ratio which is leaner than the predetermined target air-fuel ratio during leaning control. Fifth lean control means S for correcting the air-fuel ratio control amount of cylinders other than one cylinder based on the sum of the deviation stored in the deviation storage means K and the fourth air-fuel ratio feedback correction value Q.
And, and configured.

【0010】[0010]

【作用】上記の構成を備える請求項1に記載の発明は、
例えばストイキ(理論空燃比近傍)運転時において、特
定の1気筒に対応する前記第1空燃比フィードバック補
正値と、全気筒の平均的な前記第2空燃比フィードバッ
ク補正値と、を求める。そして、リーン化制御時には、
特定の1気筒については前記第1空燃比フィードバック
補正値を介してリーン化する一方で、残りの気筒につい
ては前記第2空燃比フィードバック補正値を介してリー
ン化する。即ち、特定の1気筒については、他の気筒の
経時劣化や部品バラツキ等から独立した第1空燃比フィ
ードバック補正値に基づいてリーン化制御を行なうこと
で当該特定の1気筒の経時劣化や部品バラツキ等を高精
度に修正しつつリーン化制御を行なえると共に、残りの
気筒については、第2空燃比フィードバック補正値(残
りの気筒の経時劣化や部品バラツキ等に大きく相関する
値)に基づいてリーン化制御を行なうことで、特定の1
気筒の経時劣化や部品バラツキ等の影響を小さくして、
高精度に当該残りの気筒の経時劣化や部品バラツキ等を
修正しつつリーン化制御を行なえるようになる。つま
り、2つの酸素センサを備えるという比較的簡単な構成
により、製品コストを大幅に増大させることなく、経時
劣化や部品バラツキ等を修正しつつ高精度にリーン化制
御を行なうことができるものである。
The invention according to claim 1 having the above-mentioned structure,
For example, during stoichiometric operation (near the stoichiometric air-fuel ratio), the first air-fuel ratio feedback correction value corresponding to a specific one cylinder and the average second air-fuel ratio feedback correction value for all cylinders are obtained. And during lean control,
One specific cylinder is made lean through the first air-fuel ratio feedback correction value, while the remaining cylinders are made lean through the second air-fuel ratio feedback correction value. That is, for a specific one cylinder, lean control is performed based on the first air-fuel ratio feedback correction value that is independent of deterioration with time of other cylinders, variation of parts, and the like, whereby deterioration with time and variation of parts of the specific one cylinder are performed. Etc. can be controlled with high accuracy while performing lean control for the remaining cylinders based on the second air-fuel ratio feedback correction value (a value that greatly correlates with the deterioration of the remaining cylinder over time and component variations). Specific control by controlling
Minimize the effects of cylinder deterioration over time and component variations,
The lean control can be performed with high accuracy while correcting the deterioration of the remaining cylinders with time and the variation of parts. That is, with a relatively simple configuration including two oxygen sensors, lean control can be performed with high accuracy while correcting deterioration over time, component variations, etc., without significantly increasing product cost. .

【0011】請求項2に記載の発明では、例えばストイ
キ運転時において、特定の1気筒の第1空燃比フィード
バック補正値と、全気筒の平均的な第2空燃比フィード
バック補正値と、を求め、尚且つ、前記第2空燃比フィ
ードバック補正値と、前記第1空燃比フィードバック補
正値と、の偏差を求め、運転状態に応じて当該偏差を記
憶するようにする。そして、機関再始動後リーン化制御
を行なう前に、前記第1酸素センサの検出結果に基づく
空燃比フィードバック制御を行い第3空燃比フィードバ
ック補正値を設定し、その後リーン化制御を行う際に、
特定の1気筒については前記第3空燃比フィードバック
補正値に基づき、他の気筒の経時劣化や部品バラツキ等
から独立した高精度なリーン化制御を行なう一方、残り
の気筒に対しては、前記記憶した偏差と、前記第3空燃
比フィードバック補正値と、の合計値(残りの気筒の経
時劣化や部品バラツキ等に大きく相関する値)を求め、
当該合計値に基づいてリーン化制御を行なうことで、第
1気筒の経時劣化や部品バラツキ等の影響を小さくし
て、高精度に当該残りの気筒の経時劣化や部品バラツキ
等を修正しつつリーン化制御を行なう。なお、特定の1
気筒が今回の空燃比状態を把握すべく、第3空燃比フィ
ードバック制御手段による空燃比フィードバック制御を
行なっている間に、残りの気筒については、早期からリ
ーン化制御を開始しておいて(例えば、第2空燃比フィ
ードバック補正値に基づいて)、その後、前記合計値に
よる高精度なリーン化制御に切り換えることが可能とな
る。従って、再始動時等の触媒の早期活性化・未燃燃料
の排出の低減を促進させることができる。
According to the second aspect of the present invention, for example, during stoichiometric operation, a first air-fuel ratio feedback correction value for a specific one cylinder and an average second air-fuel ratio feedback correction value for all cylinders are obtained, Further, the deviation between the second air-fuel ratio feedback correction value and the first air-fuel ratio feedback correction value is obtained, and the deviation is stored according to the operating state. Then, before performing lean control after engine restart, performing air-fuel ratio feedback control based on the detection result of the first oxygen sensor to set a third air-fuel ratio feedback correction value, and then performing lean control,
Based on the third air-fuel ratio feedback correction value, high-precision lean control that is independent of the deterioration of other cylinders over time, component variation, etc. is performed for a specific one cylinder, while the storage is performed for the remaining cylinders. And the third air-fuel ratio feedback correction value (a value that greatly correlates with the deterioration of the remaining cylinders over time, component variations, etc.),
By performing lean control based on the total value, the influence of deterioration over time of the first cylinder and variations in parts, etc. is reduced, and the deterioration over time and variations in parts of the remaining cylinders are corrected with high accuracy while leaning. Control. In addition, specific 1
While the cylinders are performing the air-fuel ratio feedback control by the third air-fuel ratio feedback control means in order to grasp the current air-fuel ratio state, the lean control is started at an early stage for the remaining cylinders (for example, , Based on the second air-fuel ratio feedback correction value), and thereafter, it is possible to switch to highly accurate lean control based on the total value. Therefore, it is possible to promote the early activation of the catalyst at the time of restart and the reduction of the emission of unburned fuel.

【0012】つまり、2つの酸素センサを備えるという
比較的簡単な構成により、製品コストを大幅に増大させ
ることなく、経時劣化や部品バラツキ等を修正しつつ高
精度かつ早期から機関再始動後のリーン化制御を行なう
ことができるものである。請求項3に記載の発明(第2
発明)では、例えばストイキ運転時において、特定の1
気筒の第1空燃比フィードバック補正値と、全気筒の平
均的な第2空燃比フィードバック補正値と、を求め、尚
且つ、前記第2空燃比フィードバック補正値と、前記第
1空燃比フィードバック補正値と、の偏差を求め、運転
状態に応じて当該偏差を記憶するようにする。そして、
リーン化制御中において、特定の1気筒については、前
記第1酸素センサの検出結果に基づく空燃比フィードバ
ック制御を行い第4空燃比フィードバック補正値を設定
するようにする一方で、残りの気筒に対しては、前記記
憶した偏差と、前記第4空燃比フィードバック補正値
と、の合計値(残りの気筒の経時劣化や部品バラツキ等
に大きく相関する値)を求め、当該合計値に基づいてリ
ーン化制御を行なうようにする。
That is, with a relatively simple structure including two oxygen sensors, it is possible to correct deterioration over time and variations in parts, etc., without increasing the product cost significantly, and it is highly accurate and lean after restarting the engine from an early stage. It is possible to control the conversion. The invention according to claim 3 (second aspect)
Inventive), for example, at the time of stoichiometric operation,
A first air-fuel ratio feedback correction value for a cylinder and an average second air-fuel ratio feedback correction value for all cylinders are obtained, and the second air-fuel ratio feedback correction value and the first air-fuel ratio feedback correction value are obtained. And the deviation is obtained, and the deviation is stored according to the operating state. And
During lean control, for one specific cylinder, air-fuel ratio feedback control based on the detection result of the first oxygen sensor is performed to set a fourth air-fuel ratio feedback correction value, while for the remaining cylinders. The sum of the stored deviation and the fourth air-fuel ratio feedback correction value (a value that greatly correlates with the deterioration of the remaining cylinders over time, component variations, etc.), and leans based on the sum. Get control.

【0013】これにより、リーン化制御中に、例えば運
転状態(例えば、水温等)が徐々に変化して所謂壁流燃
料量が徐々に変化し排気空燃比が変化するような場合で
あっても、前記特定の1気筒での空燃比フィードバック
制御から求まる前記第4空燃比フィードバック補正値に
より、この変化特性を把握することができるので、この
変化に追従して、残りの気筒におけるリーン化制御の制
御目標値を修正することが可能となるので、経時劣化や
部品バラツキ等を修正しつつ排気空燃比が目標リーン空
燃比からズレることも抑制でき、以って十分に触媒の活
性化或いは排気特性を改善することもできるようにな
る。つまり、2つの酸素センサを備えるという比較的簡
単な構成により、製品コストを大幅に増大させることな
く、経時劣化や部品バラツキ等を修正し、尚且つ、運転
状態の変化に追従して空燃比を修正することができ、以
ってより高精度なリーン化制御を達成することができ
る。
As a result, during lean control, for example, even when the operating state (for example, the water temperature) gradually changes, the so-called wall flow fuel amount gradually changes, and the exhaust air-fuel ratio also changes. Since the change characteristic can be grasped by the fourth air-fuel ratio feedback correction value obtained from the air-fuel ratio feedback control in the specific one cylinder, the change characteristic can be grasped and the leaning control of the remaining cylinders can be performed. Since it is possible to correct the control target value, it is possible to correct the deterioration over time and the variation of parts while suppressing the deviation of the exhaust air-fuel ratio from the target lean air-fuel ratio, thereby sufficiently activating the catalyst or exhaust characteristics. Will also be able to improve. In other words, with a relatively simple configuration including two oxygen sensors, deterioration over time, component variations, etc. can be corrected without significantly increasing the product cost, and the air-fuel ratio can be adjusted by following changes in operating conditions. It can be corrected, and thus more accurate lean control can be achieved.

【0014】[0014]

【実施例】以下に、本発明の一実施例を図面に基づいて
説明する。図4において、機関1の吸気通路2にはエア
クリーナを介して吸入される吸気の吸入空気流量Qを検
出するエアフローメータ3及びアクセルペダルと連動し
て吸入空気流量Qを制御する絞り弁4が設けられてい
る。前記絞り弁4下流のマニホールドのブランチ部5に
は気筒毎に燃料を噴射供給する電磁式の燃料噴射弁6が
設けられる。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 4, an intake passage 2 of an engine 1 is provided with an air flow meter 3 for detecting an intake air flow rate Q of intake air sucked through an air cleaner and a throttle valve 4 for controlling the intake air flow rate Q in conjunction with an accelerator pedal. Has been. An electromagnetic fuel injection valve 6 for injecting and supplying fuel to each cylinder is provided in a branch portion 5 of the manifold downstream of the throttle valve 4.

【0015】この燃料噴射弁6は、後述するコントロー
ルユニット50からの噴射パルス信号によって開弁駆動さ
れ、図示しない燃料ポンプから圧送されてプレッシャレ
ギュレータにより所定圧力に制御された燃料を所定量噴
射供給する。また、機関1の排気マニホールドのブラン
チ部7には、特定気筒からの排気中の酸素(他の成分で
もよい)濃度を検出して空燃比を検出する第1酸素セン
サ9が配設され(本実施例では、第1気筒の排気中の酸
素濃度を検出するようになっている)、その下流側の排
気通路8には第2酸素センサ10が設けられている。な
お、更に下流側には、理論空燃比近傍で最大に排気中の
CO,HCの酸化作用、NOX の還元作用を発揮して、
排気を浄化する排気浄化触媒としての三元触媒11が設け
られている。
The fuel injection valve 6 is opened and driven by an injection pulse signal from a control unit 50, which will be described later. The fuel injection valve 6 is pressure-fed from a fuel pump (not shown) and a predetermined amount of fuel controlled by a pressure regulator is injected and supplied. . In addition, a first oxygen sensor 9 that detects the air-fuel ratio by detecting the concentration of oxygen (other components may be included) in the exhaust gas from a specific cylinder is provided in the branch portion 7 of the exhaust manifold of the engine 1 (main In the embodiment, the oxygen concentration in the exhaust gas of the first cylinder is detected), and a second oxygen sensor 10 is provided in the exhaust passage 8 on the downstream side thereof. Incidentally, further downstream, CO in the exhaust gas up to near the stoichiometric air-fuel ratio, oxidation of HC, and exhibit the reducing action of NO X,
A three-way catalyst 11 is provided as an exhaust purification catalyst that purifies exhaust gas.

【0016】前記第1,第2酸素センサ9,10は、排気
中の酸素濃度に応じた電圧を出力し、この電圧と予め定
めたスライスレベルSL(例えば、理論空燃比相当)と
を比較することで、空燃比のリッチ・リーン判定を行う
ことができるものである。コントロールユニット50は、
CPU,ROM,RAM,A/D変換器及び入出力イン
タフェイス等を含んで構成されるマイクロコンピュータ
を備え、各種センサからの入力信号を受け、以下のよう
にして、燃料噴射弁6の噴射量(即ち、空燃比制御量)
を制御する。
The first and second oxygen sensors 9 and 10 output a voltage according to the oxygen concentration in the exhaust gas and compare this voltage with a predetermined slice level SL (for example, equivalent to the theoretical air-fuel ratio). Therefore, rich / lean determination of the air-fuel ratio can be performed. The control unit 50
A microcomputer including a CPU, a ROM, a RAM, an A / D converter, an input / output interface, and the like is provided, receives input signals from various sensors, and injects the injection amount of the fuel injection valve 6 as follows. (That is, the air-fuel ratio control amount)
Control.

【0017】前記各種のセンサとしては、前述の第1,
第2酸素センサ9,10、エアフローメータ3があり、他
に、機関1のクランク軸或いはカム軸には、クランク角
センサ12が設けられており、該クランク角センサ12から
機関回転と同期して出力されるクランク単位角信号を一
定時間カウントして、または、クランク基準角信号の周
期を計測して機関回転速度Neを検出するようになって
いる。なお、機関1の冷却ジャケットに臨んで機関温度
検出手段としての水温センサ13が設けられ、機関水温T
wを検出するようになっている。
As the various sensors, there are the above-mentioned first and first sensors.
The second oxygen sensors 9 and 10 and the air flow meter 3 are provided. In addition, a crank angle sensor 12 is provided on the crankshaft or camshaft of the engine 1, and the crank angle sensor 12 synchronizes with the engine rotation. The engine rotation speed Ne is detected by counting the output crank unit angle signal for a certain period of time or measuring the cycle of the crank reference angle signal. A water temperature sensor 13 as an engine temperature detecting means is provided facing the cooling jacket of the engine 1, and the engine water temperature T
It is designed to detect w.

【0018】コントロールユニット50では、エアフロー
メータ3からの電圧信号から求められる吸入空気流量Q
と、クランク角センサ12からの信号から求められる機関
回転速度Neとから基本燃料噴射パルス幅(燃料噴射量
に相当)Tp=c×Q/Ne(cは定数)を演算すると
共に、低水温時に強制的にリッチ側に補正する水温補正
係数Kwや、始動及び始動後増量補正係数Kasや、空燃
比フィードバック補正係数α等により、最終的な有効燃
料噴射パルス幅Te=Tp×(1+Kw+Kas+・・
・)×α+Tsを演算する。Tsは、電圧補正分であ
る。
In the control unit 50, the intake air flow rate Q obtained from the voltage signal from the air flow meter 3
And the engine rotation speed Ne obtained from the signal from the crank angle sensor 12, a basic fuel injection pulse width (corresponding to the fuel injection amount) Tp = c × Q / Ne (c is a constant) is calculated, and at the time of low water temperature. The final effective fuel injection pulse width Te = Tp × (1 + Kw + Kas + ...) By the water temperature correction coefficient Kw forcibly correcting to the rich side, the start and post-start increase amount correction coefficient Kas, the air-fuel ratio feedback correction coefficient α, etc.
・) × α + Ts is calculated. Ts is a voltage correction amount.

【0019】そして、この有効燃料噴射パルス幅Teが
駆動パルス信号として燃料噴射弁6に送られて、所定量
に調量された燃料が噴射供給されることになる。上記空
燃比フィードバック補正係数αは、酸素センサのリッチ
・リーン反転出力に基づいて比例積分(PI)制御によ
り増減されるもので、これに基づきコントロールユニッ
ト50では基本燃料パルス幅Tpを補正し、燃焼用混合気
の空燃比を目標空燃比(理論空燃比)近傍にフィードバ
ック制御するものである。なお、本実施例では、2つの
酸素センサを用いており、以下に説明するように、第1
気筒と、第2気筒〜第n気筒(本実施例では、第4気
筒)と、で夫々別個に空燃比フィードバック補正係数を
設定できるようになっている。
Then, this effective fuel injection pulse width Te is sent to the fuel injection valve 6 as a drive pulse signal, and the fuel adjusted to a predetermined amount is injected and supplied. The air-fuel ratio feedback correction coefficient α is increased / decreased by proportional-plus-integral (PI) control based on the rich / lean inversion output of the oxygen sensor. Based on this, the control unit 50 corrects the basic fuel pulse width Tp to perform combustion. The air-fuel ratio of the air-fuel mixture is feedback-controlled near the target air-fuel ratio (theoretical air-fuel ratio). In this example, two oxygen sensors are used, and as described below, the first oxygen sensor is used.
The air-fuel ratio feedback correction coefficient can be set separately for each of the cylinders and the second to nth cylinders (the fourth cylinder in this embodiment).

【0020】ここで、本発明の各手段の機能をソフトウ
ェア的に備えるコントロールユニット50が行う機関1の
空燃比制御について、図5のフローチャートに従って説
明するこことにする。ステップ(図では、Sと記してあ
る。以下、同様。)1では、現在の目標空燃比がストイ
キ(理論空燃比、A/F=14.7近傍)に設定されて
いるか、リーン(例えば、A/F=18)に設定されて
いるかを判断する。ストイキに設定されていればステッ
プ2へ進み、リーンに設定されていればステップ8へ進
む。
Here, the air-fuel ratio control of the engine 1 performed by the control unit 50 having the functions of the respective means of the present invention as software will be described with reference to the flowchart of FIG. In step (indicated as S in the figure. The same applies hereinafter) 1, the current target air-fuel ratio is set to stoichiometric (theoretical air-fuel ratio, near A / F = 14.7) or lean (for example, It is determined whether A / F = 18) is set. If it is set to stoichiki, proceed to step 2, and if it is set to lean, proceed to step 8.

【0021】ステップ2では、第1気筒については、第
1酸素センサ9のリッチ・リーン判定出力結果に基づい
て、フィードバック制御を行なう(本発明の第1空燃比
フィードバック制御手段に相当する)。即ち、第1気筒
の燃料噴射パルス幅Teは、以下のようにして設定され
る。 Te=Tp×(1+Kw+Kas+・・・)×α1+Ts ステップ3では、第2気筒〜第n気筒(本実施例では、
n=4)については、第2酸素センサ10のリッチ・リー
ン反転出力結果に基づいてフィードバック制御を行なう
(本発明の第2空燃比フィードバック制御手段に相当す
る)。即ち、第2気筒〜第n気筒の燃料噴射パルス幅T
eは、以下のようにして設定される。
In step 2, feedback control is performed for the first cylinder based on the rich / lean determination output result of the first oxygen sensor 9 (corresponding to the first air-fuel ratio feedback control means of the present invention). That is, the fuel injection pulse width Te of the first cylinder is set as follows. Te = Tp × (1 + Kw + Kas + ...) × α1 + Ts In step 3, the second cylinder to the n-th cylinder (in the present embodiment,
For n = 4), feedback control is performed based on the rich / lean inversion output result of the second oxygen sensor 10 (corresponding to the second air-fuel ratio feedback control means of the present invention). That is, the fuel injection pulse width T of the second cylinder to the nth cylinder
e is set as follows.

【0022】 Te=Tp×(1+Kw+Kas+・・・)×α2+Ts ステップ4では、第1気筒のフィードバック制御におけ
る空燃比フィードバック補正係数α1の平均値Aα1
(本発明の第1空燃比フィードバック補正値に相当す
る)を求める。ステップ5では、第2気筒〜第n気筒の
フィードバック制御における空燃比フィードバック補正
係数α2の平均値Aα2(本発明の第2空燃比フィード
バック補正値に相当する)を求める。
Te = Tp × (1 + Kw + Kas + ...) × α2 + Ts In step 4, the average value Aα1 of the air-fuel ratio feedback correction coefficient α1 in the feedback control of the first cylinder.
(Corresponding to the first air-fuel ratio feedback correction value of the present invention) is determined. In step 5, the average value Aα2 (corresponding to the second air-fuel ratio feedback correction value of the present invention) of the air-fuel ratio feedback correction coefficient α2 in the feedback control of the second cylinder to the n-th cylinder is obtained.

【0023】ステップ6では、2つの空燃比フィードバ
ック補正係数の平均値α1,α2の差A=(Aα2−A
α1)を求める。当該ステップ6が、本発明の偏差算出
手段に相当する。ステップ7では、運転状態(Ne、T
p、Tw等)に対応させて、Aの値を記憶(バックアッ
プ)して、ステップ1へ戻る。
In step 6, the difference A = (Aα2-A) between the average values α1 and α2 of the two air-fuel ratio feedback correction coefficients.
Find α1). The step 6 corresponds to the deviation calculating means of the present invention. In step 7, the operating state (Ne, T
The value of A is stored (backed up) corresponding to (p, Tw, etc.), and the process returns to step 1.

【0024】当該ステップ7が、本発明の偏差記憶手段
に相当する。一方、ステップ1でリーンに設定されてい
ると判断されると、ステップ8へ進むが、当該ステップ
8では、第1気筒について、第1酸素センサ9のリッチ
・リーン判定出力結果に基づいて、空燃比のフィードバ
ック制御を行なう。残りの気筒については、直ちにある
程度リーン化しておくのが、早期に機関全体として空燃
比をリーン化でき、触媒活性化、排気性能改善、燃費改
善等できる点で有利である。
The step 7 corresponds to the deviation storage means of the present invention. On the other hand, if it is determined in step 1 that lean is set, the process proceeds to step 8. In step 8, the first cylinder is emptied based on the rich / lean determination output result of the first oxygen sensor 9. Performs feedback control of the fuel ratio. Immediately leaning the remaining cylinders to some extent is advantageous in that the air-fuel ratio of the engine as a whole can be made lean early and catalyst activation, exhaust performance improvement, fuel efficiency improvement, etc. can be achieved.

【0025】当該ステップ8が、本発明のリーン化制御
前空燃比フィードバック制御手段に相当する。ステップ
9では、第1気筒のフィードバック制御における空燃比
フィードバック補正係数αL1の平均値AαL1(本発
明の第3空燃比フィードバック補正値に相当する)を求
め、このAαL1を用いてリーン化制御を行なう(本発
明の第3リーン化制御に相当する)。
The step 8 corresponds to the air-fuel ratio feedback control means before lean control of the present invention. In step 9, the average value AαL1 (corresponding to the third air-fuel ratio feedback correction value of the present invention) of the air-fuel ratio feedback correction coefficient αL1 in the feedback control of the first cylinder is obtained, and lean control is performed using this AαL1 ( This corresponds to the third lean control of the present invention).

【0026】即ち、 Te=〔Tp×(1+Kw+Kas+・・・)×AαL1
+Ts〕×Z Zは、リーン化目標値(=14.7/目標リーン空燃比)で
ある。ステップ10では、現在の運転状態に基づいて、A
の値を検索して求める。ステップ11では、合計値B=
(AαL1+A)を求め、第2気筒〜第n気筒をこのB
を用いてリーン化制御する(本発明の第4リーン化制御
に相当する)。
That is, Te = [Tp × (1 + Kw + Kas + ...) × AαL1
+ Ts] × Z Z is a lean target value (= 14.7 / target lean air-fuel ratio). In step 10, based on the current driving condition, A
Search for the value of. In step 11, the total value B =
(AαL1 + A) is calculated, and the second cylinder to the nth cylinder are
Is used for lean control (corresponding to the fourth lean control of the present invention).

【0027】即ち、 Te=〔Tp×(1+Kw+Kas+・・・)×B+T
s〕×Z その後、本フローを終了する。なお、ステップ6,7,
8は、始動後の触媒の早期活性化と未燃燃料(HC)分
の排出の低減を図るための始動後リーン化制御(即ち、
始動後一旦空燃比フィードバック制御を行い、このとき
の空燃比フィードバック補正係数を用いて、経時劣化や
運転条件の違いを修正して行なうリーン化制御)を行な
う場合に特に有効なステップで、従って暖機完了後に行
なわれるNOx・燃費改善のためのリーン化制御時には
省略しても構わない(即ち、既に始動後において空燃比
フィードバック制御が行なわれ、空燃比フィードバック
補正係数Aα1,Aα2が求められた後でリーン化制御
を行なうような場合)。このような場合には、ステップ
9で、AαL1を用いる代わりにステップ4で求めたA
α1を用い(本発明の第1リーン化制御に相当する)、
ステップ10ではBに代えて、ステップ5で求めたAα2
を用いる(本発明の第2リーン化制御に相当する)よう
にすればよい(請求項1に記載の発明に相当する)。
That is, Te = [Tp × (1 + Kw + Kas + ...) × B + T
s] × Z After that, this flow is ended. In addition, steps 6, 7,
Reference numeral 8 denotes a post-start lean control (that is, a post-start lean control for the purpose of early activation of the catalyst after start and reduction of emission of unburned fuel (HC)).
This is a particularly effective step when performing air-fuel ratio feedback control once after startup, and using the air-fuel ratio feedback correction coefficient at this time to correct deterioration over time and correcting differences in operating conditions). It may be omitted during lean control for NOx / fuel efficiency improvement after the completion of the engine (that is, after the air-fuel ratio feedback control has already been performed after the start and the air-fuel ratio feedback correction coefficients Aα1 and Aα2 have been obtained. If you want to lean control. In such a case, A obtained in step 4 instead of using AαL1 in step 9
using α1 (corresponding to the first lean control of the present invention),
In step 10, instead of B, Aα2 obtained in step 5
Should be used (corresponding to the second lean control of the present invention) (corresponding to the invention according to claim 1).

【0028】ところで、リーン化制御中であっても、第
1気筒については、リーン化せずに、空燃比フィードバ
ック制御をそのまま継続し(第2発明のリーン化制御中
空燃比フィードバック制御手段に相当する)、第2気筒
〜第n気筒のみをリーン化する構成(第2発明の第5リ
ーン化制御手段に相当する)としてもよい(即ち、ステ
ップ9での第1気筒のリーン化制御を省略してもよ
い)。
By the way, even during the lean control, the air-fuel ratio feedback control is continued as it is without leaning the first cylinder (corresponding to the lean control hollow fuel ratio feedback control means of the second invention. ), Only the second cylinder to the n-th cylinder may be made lean (corresponding to the fifth lean control means of the second invention) (that is, the lean control of the first cylinder in step 9 is omitted. May be).

【0029】これにより、水温等が変化して壁流燃料量
が変化しているような場合でも、これに対応した空燃比
フィードバック補正係数AαL1を逐次得ることができ
るので、このAαL1と前記偏差Aとにより、経時劣化
や部品バラツキ等を修正しつつ第2気筒〜第n気筒の空
燃比を水温変化等の運転状態の変化に対応させて修正す
ることが可能となるから、よりリーン化制御を高精度な
ものとすることができる。なお、この場合には、機関全
体として目標リーン空燃比が得られるように、第2気筒
〜第n気筒のリーン化傾向を多少強めるようにするのが
好ましい。
As a result, even when the water temperature or the like changes and the wall-flow fuel amount changes, the air-fuel ratio feedback correction coefficient AαL1 corresponding thereto can be successively obtained. Therefore, this AαL1 and the deviation A can be obtained. As a result, it becomes possible to correct the air-fuel ratios of the second cylinder to the n-th cylinder in response to changes in operating conditions such as changes in water temperature while correcting deterioration over time and variations in parts, etc. It can be highly accurate. In this case, it is preferable to slightly increase the lean tendency of the second cylinder to the n-th cylinder so that the target lean air-fuel ratio can be obtained for the entire engine.

【0030】以上説明したように、本実施例によれば、
ストイキ運転時において、第1気筒の空燃比フィードバ
ック補正係数Aα1と、全気筒の平均的な空燃比フィー
ドバック補正係数Aα2と、を求め、尚且つ、全気筒の
平均的な空燃比フィードバック補正係数Aα2と、第1
気筒の空燃比フィードバック補正係数Aα1と、の差A
(=Aα2−Aα1)を求めることで、第1気筒の経時
劣化や部品バラツキ等を把握できると共に、第1気筒以
外の気筒の経時劣化や部品バラツキ等を把握できるよう
にしたので、リーン化制御時において、第1気筒につい
ては、他の気筒の経時劣化や部品バラツキ等から独立し
た第1気筒の空燃比フィードバック補正係数ALα1
(或いは前述したようにAα1を用いるようにしてもよ
い)に基づいてリーン化制御を行なうことで、第1気筒
の経時劣化や部品バラツキ等を高精度に修正しつつリー
ン化制御が行なえる一方、残りの気筒については、前述
の差Aと、第1気筒の空燃比フィードバック補正係数A
Lα1(或いはAα1)と、の合計値B(=ALα1
〔或いはAα1〕+〔Aα2−Aα1〕、即ち、第1気
筒以外の気筒の経時劣化や部品バラツキ等に大きく相関
する値)に基づいてリーン化制御を行なうことで、第1
気筒の経時劣化や部品バラツキ等の影響を小さくして、
高精度に当該残りの気筒の経時劣化や部品バラツキ等を
修正しつつリーン化制御を行なうことができる。つま
り、2つの酸素センサ9,10を備えるという比較的簡単
な構成により、製品コストを大幅に増大させることな
く、経時劣化や部品バラツキ等を修正しつつ高精度にリ
ーン化制御を行なうことができる。
As described above, according to this embodiment,
During the stoichiometric operation, the air-fuel ratio feedback correction coefficient Aα1 of the first cylinder and the average air-fuel ratio feedback correction coefficient Aα2 of all cylinders are obtained, and the average air-fuel ratio feedback correction coefficient Aα2 of all cylinders is obtained. , First
Difference between the cylinder air-fuel ratio feedback correction coefficient Aα1 and A
By obtaining (= Aα2-Aα1), it is possible to ascertain the deterioration over time of the first cylinder, variations in parts, and the like, as well as the deterioration over time of the cylinders other than the first cylinder, variations in parts, and the like. At this time, for the first cylinder, the air-fuel ratio feedback correction coefficient ALα1 of the first cylinder, which is independent of the deterioration of other cylinders over time, component variations, etc.
By performing lean control based on (or Aα1 may be used as described above), lean control can be performed while highly accurately correcting deterioration of the first cylinder over time, component variations, and the like. For the remaining cylinders, the above difference A and the air-fuel ratio feedback correction coefficient A of the first cylinder are used.
The sum B of Lα1 (or Aα1) and B (= ALα1
[Or A [alpha] 1] + [A [alpha] 2-A [alpha] 1], that is, a value that greatly correlates with time-dependent deterioration of cylinders other than the first cylinder, component variations, etc.)
Minimize the effects of cylinder deterioration over time and component variations,
Leaning control can be performed with high accuracy while correcting the deterioration of the remaining cylinders over time, component variations, and the like. That is, with the relatively simple configuration including the two oxygen sensors 9 and 10, it is possible to perform lean control with high accuracy while correcting deterioration over time, component variation, and the like without significantly increasing the product cost. .

【0031】[0031]

【発明の効果】以上説明したように、請求項1に記載の
発明によれば、2つの酸素センサを備えるという比較的
簡単な構成により、製品コストを大幅に増大させること
なく、経時劣化や部品バラツキ等を修正しつつ高精度に
リーン化制御を行なうことができる。
As described above, according to the invention described in claim 1, due to the relatively simple structure including the two oxygen sensors, deterioration with time and parts can be achieved without significantly increasing the product cost. It is possible to perform lean control with high accuracy while correcting variations and the like.

【0032】請求項2に記載の発明によれば、2つの酸
素センサを備えるという比較的簡単な構成により、製品
コストを大幅に増大させることなく、経時劣化や部品バ
ラツキ等を修正しつつ高精度な機関再始動後のリーン化
制御を行なうことができるものである。請求項3に記載
の発明によれば、リーン化制御中において、特定の1気
筒については、前記第1酸素センサの検出結果に基づく
空燃比フィードバック制御を行い第4空燃比フィードバ
ック補正値を設定するようにする一方で、残りの気筒に
対しては、前記記憶した偏差と、前記第4空燃比フィー
ドバック補正値と、の合計値(残りの気筒の経時劣化や
部品バラツキ等に大きく相関する値)を求め、当該合計
値に基づいてリーン化制御を行なうようにしたので、リ
ーン化制御中であっても、運転状態の変化に追従可能
で、尚且つ、経時劣化や部品バラツキ等を修正しつつ高
精度なリーン化制御を行なうことができる。つまり、2
つの酸素センサを備えるという比較的簡単な構成によ
り、製品コストを大幅に増大させることなく、経時劣化
や部品バラツキ等を修正し、尚且つ、運転状態の変化に
追従して空燃比を修正することができ、以ってより高精
度なリーン化制御を達成することができる。
According to the second aspect of the present invention, with a relatively simple structure including two oxygen sensors, high accuracy can be achieved while correcting deterioration over time, component variations, etc. without significantly increasing the product cost. It is possible to perform lean control after restarting the engine. According to the third aspect of the present invention, during the lean control, the air-fuel ratio feedback control based on the detection result of the first oxygen sensor is performed for the specific one cylinder to set the fourth air-fuel ratio feedback correction value. On the other hand, for the remaining cylinders, the total value of the stored deviation and the fourth air-fuel ratio feedback correction value (a value that greatly correlates with the deterioration of the remaining cylinders over time, component variations, etc.) Since the lean control is performed based on the total value, it is possible to follow the change in the operating state even during the lean control, and at the same time correct the deterioration with time and the variation of parts. Highly accurate lean control can be performed. That is, 2
With a relatively simple configuration with two oxygen sensors, it is possible to correct deterioration over time and component variations, etc. without significantly increasing product cost, and to correct the air-fuel ratio by following changes in operating conditions. Therefore, more accurate lean control can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1に記載の発明にかかるブロック図FIG. 1 is a block diagram according to the invention described in claim 1.

【図2】請求項2に記載の発明にかかるブロック図FIG. 2 is a block diagram according to the invention described in claim 2.

【図3】請求項3に記載の発明にかかるブロック図FIG. 3 is a block diagram according to the invention of claim 3;

【図4】本発明にかかる一実施例の全体構成図FIG. 4 is an overall configuration diagram of an embodiment according to the present invention.

【図5】同上実施例における空燃比フィードバック制御
を説明するフローチャート
FIG. 5 is a flowchart illustrating air-fuel ratio feedback control according to the embodiment.

【符号の説明】[Explanation of symbols]

1 機関 3 エアフローメータ 6 燃料噴射弁 7 第1気筒の排気マニホールドのブランチ部 8 排気通路 9 第1酸素センサ 10 第2酸素センサ 11 三元触媒 12 クランク角センサ 13 水温センサ 50 コントロールユニット 1 Engine 3 Air Flow Meter 6 Fuel Injection Valve 7 Branch Portion of Exhaust Manifold of First Cylinder 8 Exhaust Passage 9 First Oxygen Sensor 10 Second Oxygen Sensor 11 Three-way Catalyst 12 Crank Angle Sensor 13 Water Temperature Sensor 50 Control Unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】特定の1気筒の排気中の酸素濃度を検出し
て機関吸入混合気の空燃比を検出する第1酸素センサ
と、 当該第1酸素センサの検出結果に基づいて、所定の目標
空燃比が得られるように前記特定の1気筒の空燃比制御
量を第1空燃比フィードバック補正値を介して増減補正
する第1空燃比フィードバック制御手段と、 全気筒合流後の排気中の酸素濃度を検出して機関吸入混
合気の空燃比を検出する第2酸素センサと、 当該第2酸素センサの検出結果に基づいて、所定の目標
空燃比が得られるように前記特定の1気筒以外の気筒の
空燃比制御量を第2空燃比フィードバック補正値を介し
て増減補正する第2空燃比フィードバック制御手段と、 リーン化制御中に、前記所定の目標空燃比よりリーンな
目標リーン空燃比が得られるように前記特定の1気筒の
空燃比制御量を、前記第1空燃比フィードバック補正値
に基づいて補正する第1リーン化制御手段と、 リーン化制御中に、前記目標リーン空燃比が得られるよ
うに前記特定の1気筒以外の気筒の空燃比制御量を、前
記第2空燃比フィードバック補正値に基づいて補正する
第2リーン化制御手段と、 を備えたことを特徴とする内燃機関の空燃比制御装置。
1. A first oxygen sensor for detecting an oxygen concentration in exhaust gas of a specific one cylinder to detect an air-fuel ratio of an engine intake air-fuel mixture, and a predetermined target based on a detection result of the first oxygen sensor. First air-fuel ratio feedback control means for increasing / decreasing the air-fuel ratio control amount of the specific one cylinder so as to obtain an air-fuel ratio through a first air-fuel ratio feedback correction value, and oxygen concentration in exhaust gas after all the cylinders join. And a second oxygen sensor for detecting the air-fuel ratio of the engine intake air-fuel mixture, and a cylinder other than the specific one cylinder so that a predetermined target air-fuel ratio can be obtained based on the detection result of the second oxygen sensor. Second air-fuel ratio feedback control means for increasing / decreasing the air-fuel ratio control amount of the second air-fuel ratio feedback correction value, and a target lean air-fuel ratio leaner than the predetermined target air-fuel ratio is obtained during lean control. like First lean control means for correcting the air-fuel ratio control amount of the specific one cylinder based on the first air-fuel ratio feedback correction value, and the target lean air-fuel ratio so as to obtain the target lean air-fuel ratio during lean control. An air-fuel ratio control device for an internal combustion engine, comprising: a second lean control unit that corrects an air-fuel ratio control amount of a cylinder other than a specific one cylinder based on the second air-fuel ratio feedback correction value. .
【請求項2】特定の1気筒の排気中の酸素濃度を検出し
て機関吸入混合気の空燃比を検出する第1酸素センサ
と、 当該第1酸素センサの検出結果に基づいて、所定の目標
空燃比が得られるように前記特定の1気筒の空燃比制御
量を第1空燃比フィードバック補正値を介して増減補正
する第1空燃比フィードバック制御手段と、 全気筒合流後の排気中の酸素濃度を検出して機関吸入混
合気の空燃比を検出する第2酸素センサと、 当該第2酸素センサの検出結果に基づいて、所定の目標
空燃比が得られるように前記特定の1気筒以外の気筒の
空燃比制御量を第2空燃比フィードバック補正値を介し
て増減補正する第2空燃比フィードバック制御手段と、 前記第1空燃比フィードバック補正値と、前記第2空燃
比フィードバック補正値と、の偏差を求める偏差算出手
段と、 前記偏差を運転状態毎に記憶する偏差記憶手段と、 機関再始動後前記特定の1気筒の空燃比のリーン化制御
を行なう前に、前記第1酸素センサの検出結果に基づい
て、前記所定の目標空燃比が得られるように前記特定の
1気筒の空燃比制御量を、第3空燃比フィードバック補
正値を介して増減補正するリーン化制御前空燃比フィー
ドバック制御手段と、 リーン化制御中に、前記所定の目標空燃比よりリーンな
目標リーン空燃比が得られるように前記特定の1気筒の
空燃比制御量を、前記第3空燃比フィードバック補正値
に基づいて補正する第3リーン化制御手段と、 リーン化制御中に、前記目標リーン空燃比が得られるよ
うに前記特定の1気筒以外の気筒の空燃比制御量を、前
記偏差記憶手段が記憶する偏差と、前記第3空燃比フィ
ードバック補正値と、を合計した値に基づいて補正する
第4リーン化制御手段と、 を備えたことを特徴とする内燃機関の空燃比制御装置。
2. A first oxygen sensor for detecting an oxygen concentration in exhaust gas of a specific one cylinder to detect an air-fuel ratio of an engine intake air-fuel mixture, and a predetermined target based on a detection result of the first oxygen sensor. First air-fuel ratio feedback control means for increasing / decreasing the air-fuel ratio control amount of the specific one cylinder so as to obtain an air-fuel ratio through a first air-fuel ratio feedback correction value, and oxygen concentration in exhaust gas after all the cylinders join. And a second oxygen sensor for detecting the air-fuel ratio of the engine intake air-fuel mixture, and a cylinder other than the specific one cylinder so that a predetermined target air-fuel ratio can be obtained based on the detection result of the second oxygen sensor. Between the second air-fuel ratio feedback control means for increasing / decreasing the air-fuel ratio control amount of the second air-fuel ratio feedback correction value, the first air-fuel ratio feedback correction value, and the second air-fuel ratio feedback correction value And a deviation storage means for storing the deviation for each operating state, and a detection result of the first oxygen sensor before performing lean control of the air-fuel ratio of the specific one cylinder after the engine is restarted. And a pre-lean control air-fuel ratio feedback control means for increasing / decreasing the air-fuel ratio control amount of the specific one cylinder through a third air-fuel ratio feedback correction value so as to obtain the predetermined target air-fuel ratio. During the lean control, the air-fuel ratio control amount of the specific one cylinder is corrected based on the third air-fuel ratio feedback correction value so that a target lean air-fuel ratio that is leaner than the predetermined target air-fuel ratio is obtained. A third lean control means, a deviation stored in the deviation storage means for an air-fuel ratio control amount of cylinders other than the specific one cylinder so that the target lean air-fuel ratio is obtained during lean control, An air-fuel ratio control device for an internal combustion engine, comprising: a fourth lean control unit that corrects the third air-fuel ratio feedback correction value based on the sum of the values.
【請求項3】特定の1気筒の排気中の酸素濃度を検出し
て機関吸入混合気の空燃比を検出する第1酸素センサ
と、 当該第1酸素センサの検出結果に基づいて、所定の目標
空燃比が得られるように前記特定の1気筒の空燃比制御
量を第1空燃比フィードバック補正値を介して増減補正
する第1空燃比フィードバック制御手段と、 全気筒合流後の排気中の酸素濃度を検出して機関吸入混
合気の空燃比を検出する第2酸素センサと、 当該第2酸素センサの検出結果に基づいて、所定の目標
空燃比が得られるように前記特定の1気筒以外の気筒の
空燃比制御量を第2空燃比フィードバック補正値を介し
て増減補正する第2空燃比フィードバック制御手段と、 前記第1空燃比フィードバック補正値と、前記第2空燃
比フィードバック補正値と、の偏差を求める偏差算出手
段と、 前記偏差を運転状態毎に記憶する偏差記憶手段と、 リーン化制御中に、前記第1酸素センサの検出結果に基
づいて、前記所定の目標空燃比が得られるように前記特
定の1気筒の空燃比制御量を、第4空燃比フィードバッ
ク補正値を介して増減補正するリーン化制御中空燃比フ
ィードバック制御手段と、 リーン化制御中に、前記所定の目標空燃比よりリーンな
目標リーン空燃比が得られるように前記特定の1気筒以
外の気筒の空燃比制御量を、前記偏差記憶手段が記憶す
る偏差と、前記第4空燃比フィードバック補正値と、を
合計した値に基づいて補正する第5リーン化制御手段
と、 を備えたことを特徴とする内燃機関の空燃比制御装置。
3. A first oxygen sensor for detecting an oxygen concentration in exhaust gas of a specific one cylinder to detect an air-fuel ratio of an engine intake air-fuel mixture, and a predetermined target based on a detection result of the first oxygen sensor. First air-fuel ratio feedback control means for increasing / decreasing the air-fuel ratio control amount of the specific one cylinder so as to obtain an air-fuel ratio through a first air-fuel ratio feedback correction value, and oxygen concentration in exhaust gas after all the cylinders join. And a second oxygen sensor for detecting the air-fuel ratio of the engine intake air-fuel mixture, and a cylinder other than the specific one cylinder so that a predetermined target air-fuel ratio can be obtained based on the detection result of the second oxygen sensor. Between the second air-fuel ratio feedback control means for increasing / decreasing the air-fuel ratio control amount of the second air-fuel ratio feedback correction value, the first air-fuel ratio feedback correction value, and the second air-fuel ratio feedback correction value A deviation calculation means for calculating the deviation for each operating state; and a predetermined target air-fuel ratio based on the detection result of the first oxygen sensor during lean control. Leaning control hollow fuel ratio feedback control means for increasing / decreasing the air-fuel ratio control amount of the specific one cylinder through a fourth air-fuel ratio feedback correction value, and leaner than the predetermined target air-fuel ratio during leaning control. Based on the sum of the deviation stored in the deviation storage means and the fourth air-fuel ratio feedback correction value, the air-fuel ratio control amount of the cylinders other than the specific one cylinder so as to obtain the target lean air-fuel ratio. An air-fuel ratio control system for an internal combustion engine, comprising:
JP24385594A 1994-10-07 1994-10-07 Air-fuel ratio control device of internal combustion engine Pending JPH08105342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24385594A JPH08105342A (en) 1994-10-07 1994-10-07 Air-fuel ratio control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24385594A JPH08105342A (en) 1994-10-07 1994-10-07 Air-fuel ratio control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH08105342A true JPH08105342A (en) 1996-04-23

Family

ID=17109968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24385594A Pending JPH08105342A (en) 1994-10-07 1994-10-07 Air-fuel ratio control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH08105342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2657495A1 (en) * 2010-12-24 2013-10-30 Toyota Jidosha Kabushiki Kaisha Device and method for detecting inter-cylinder air-fuel ratio variation error
KR20140027988A (en) * 2011-04-11 2014-03-07 노스트럼 에너지 피티이. 리미티드 Internally cooled high compression lean-burning internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2657495A1 (en) * 2010-12-24 2013-10-30 Toyota Jidosha Kabushiki Kaisha Device and method for detecting inter-cylinder air-fuel ratio variation error
EP2657495A4 (en) * 2010-12-24 2014-07-30 Toyota Motor Co Ltd Device and method for detecting inter-cylinder air-fuel ratio variation error
KR20140027988A (en) * 2011-04-11 2014-03-07 노스트럼 에너지 피티이. 리미티드 Internally cooled high compression lean-burning internal combustion engine
USRE47540E1 (en) 2011-04-11 2019-07-30 Nostrum Energy Pte, Ltd. Internally cooled high compression lean-burning internal combustion engine
US10378436B2 (en) 2011-04-11 2019-08-13 Nostrum Energy Pte, Ltd. Internally cooled high compression lean-burning internal combustion engine

Similar Documents

Publication Publication Date Title
JP2884472B2 (en) Fuel property detection device for internal combustion engine
JP3444675B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP3397604B2 (en) Air-fuel ratio control device for internal combustion engine
JP3203440B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH07301140A (en) Air-fuel ratio control device for internal combustion engine
JPH08105342A (en) Air-fuel ratio control device of internal combustion engine
JP3892071B2 (en) Fuel supply control device for internal combustion engine
JPH10169500A (en) Output correcting device for air-fuel ratio sensor
JP2001342885A (en) Fuel injection control device for internal combustion engine
JPH07151000A (en) Control device for air-fuel ratio of internal combustion engine
JP3123357B2 (en) Air-fuel ratio control device for internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JPH01305142A (en) Fuel injection controller of internal combustion engine
JP2592349B2 (en) Air-fuel ratio control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP3489204B2 (en) Control device for internal combustion engine
JP3561142B2 (en) Control device for internal combustion engine
JP3023614B2 (en) Air-fuel ratio control device for internal combustion engine
JP2548612B2 (en) Fuel supply control device for internal combustion engine
JP2757064B2 (en) Air-fuel ratio control device for internal combustion engine
JP2958595B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH077562Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH08121212A (en) Air-fuel ratio control device for internal combustion engine
JPH08261037A (en) Air-fuel control device for engine
JPH0656112B2 (en) Fuel injection control device for internal combustion engine