JPH081009A - Catalyst for hydrogenation of hydrocarbon oil and its production - Google Patents

Catalyst for hydrogenation of hydrocarbon oil and its production

Info

Publication number
JPH081009A
JPH081009A JP6162916A JP16291694A JPH081009A JP H081009 A JPH081009 A JP H081009A JP 6162916 A JP6162916 A JP 6162916A JP 16291694 A JP16291694 A JP 16291694A JP H081009 A JPH081009 A JP H081009A
Authority
JP
Japan
Prior art keywords
catalyst
metal
amount
group
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6162916A
Other languages
Japanese (ja)
Other versions
JP3303533B2 (en
Inventor
Toshio Yamaguchi
敏男 山口
Kisao Uekusa
吉幸男 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP16291694A priority Critical patent/JP3303533B2/en
Publication of JPH081009A publication Critical patent/JPH081009A/en
Application granted granted Critical
Publication of JP3303533B2 publication Critical patent/JP3303533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To simplify the activation process of the catalyst by adding a soln. of hydrogenation active metal belonging to VI group metals and VIII group metals, phosphoric acid, polyhydric alcohol and org. sulfur compd. to an alumina hydrate having a pseudo-boehmite structure, kneading, molding and drying at specified temp. CONSTITUTION:To alumina hydrate having pseudo-boehmite structure, VI group metal by 15-30wt.% oxide and VIII group metal by 3-8wt.% expressed in terms of oxide as hydrogenating active metal and phosphoric acid by 2-8wt.% expressed in terms of oxide are added to obtain the source material of the catalyst. Further, specified amts. of polyhydric alcohol and org. sulfur compd. soln. are added as additives. The mixture is kneaded, molded, and then dried at <=150 deg.C. Thereby, desulfurization and denitrification by hydrogenation can be extremely efficiently performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素油の脱硫や脱
窒素のために用いられる水素化処理用触媒とその製造方
法に関する。さらに詳しくは、硫黄化合物や窒素化合物
を多量に含有する炭化水素油を水素加圧下で処理して硫
化水素とアンモニアに転化させ、炭化水素油中の硫黄及
び窒素の含有量を同時に低減させるために使用される水
素化処理用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrotreating catalyst used for desulfurization and denitrification of hydrocarbon oil and a method for producing the same. More specifically, in order to reduce the content of sulfur and nitrogen in the hydrocarbon oil at the same time by converting the hydrocarbon oil containing a large amount of sulfur compounds and nitrogen compounds under hydrogen pressure to convert into hydrogen sulfide and ammonia. It relates to a hydrotreating catalyst used.

【0002】[0002]

【従来の技術】燃料等の排気ガスにより環境破壊が叫ば
れている昨今において、重油、軽油等に含まれている硫
黄分や窒素分の低減化がますます要求されている。
2. Description of the Related Art In recent years, when exhaust gas such as fuel has been called for environmental destruction, there is an increasing demand for reduction of sulfur and nitrogen contained in heavy oil, light oil and the like.

【0003】従来、原油や石炭から得られる炭化水素油
に対して水素の存在下で脱硫、脱窒素、分解等を行うい
わゆる水素化処理工程では、無機酸化物、例えばγ−ア
ルミナの担体に水素化活性金属として周期律表第6族の
モリブデン、タングステン及び第8族のコバルト、ニッ
ケルを担持した触媒が用いられる。また、水素化活性金
属としてコバルトとモリブデンを用いた触媒の水素化脱
硫活性が高く、ニッケルとモリブデンを用いた触媒の水
素化脱窒素活性が高いことは公知である。
Conventionally, in a so-called hydrotreating step in which hydrocarbon oil obtained from crude oil or coal is subjected to desulfurization, denitrification, decomposition and the like in the presence of hydrogen, hydrogen is applied to a carrier of an inorganic oxide such as γ-alumina. As the activating metal, a catalyst supporting molybdenum and tungsten of Group 6 of the periodic table and cobalt and nickel of Group 8 is used. It is also known that a catalyst using cobalt and molybdenum as hydrogenation-active metals has a high hydrodesulfurization activity, and a catalyst using nickel and molybdenum has a high hydrodenitrogenation activity.

【0004】これらの触媒は、例えば、擬ベーマイト構
造を有するアルミナ水和物を成型後、400℃以上の温
度で焼成し、γ−アルミナ担体を得、該担体にモリブデ
ン、タングステン、コバルト、ニッケル等の活性金属塩
水溶液を含浸し、100℃程度で乾燥を行い、さらに4
00〜600℃程度で焼成を行うことにより得られる。
[0004] For these catalysts, for example, alumina hydrate having a pseudo-boehmite structure is molded and then calcined at a temperature of 400 ° C or higher to obtain a γ-alumina carrier, on which molybdenum, tungsten, cobalt, nickel, etc. are formed. Impregnated with the active metal salt aqueous solution described above and dried at about 100 ° C.
It is obtained by firing at about 00 to 600 ° C.

【0005】このようにして得られる水素化処理用触媒
は、活性金属が酸化物形態で担持されているため、その
ままでは活性は無く、従って触媒として使用できない。
そのため、使用に際しては水素化活性を発現させるため
に、上記触媒を反応塔に充填し、その後軽油等に硫化剤
を添加した油と水素とを反応塔に送入し、触媒の各活性
金属を酸化物形態より硫化物形態に変えるいわゆる予備
硫化処理を施し、その後炭化水素油と水素を送入して操
業に入る。
The hydrotreating catalyst thus obtained has no active as it is because the active metal is supported in the form of an oxide, and therefore cannot be used as a catalyst.
Therefore, at the time of use, in order to develop hydrogenation activity, the above catalyst is charged into a reaction tower, and then oil and hydrogen in which a sulfidizing agent is added to light oil or the like is fed into the reaction tower to remove each active metal of the catalyst. A so-called pre-sulfurization treatment is carried out to change from an oxide form to a sulfide form, and then hydrocarbon oil and hydrogen are fed in to start the operation.

【0006】しかし、従来の触媒は、硫黄分や窒素分低
減化の厳しい要求に必ずしも十分答えることができず、
すでに種々の検討が試みられているものの、いまだ十分
満足した性能を有する触媒は提供されていない。
However, the conventional catalysts cannot always sufficiently meet the strict requirements for reducing the sulfur content and the nitrogen content,
Although various studies have already been attempted, a catalyst having a sufficiently satisfactory performance has not yet been provided.

【0007】水素化処理用触媒では、触媒の活性サイト
は活性金属硫化物の表面で形成されるもので、活性金属
硫化物の外表面積が大きくなるほど活性サイトの数は増
し、高活性な触媒が得られることが知られている。
In the hydrotreating catalyst, the active sites of the catalyst are formed on the surface of the active metal sulfide, and the larger the external surface area of the active metal sulfide, the greater the number of active sites and the more highly active the catalyst is. It is known to be obtained.

【0008】本出願人は、さきに、特開平4−2435
47号公報で無機酸化物とその水和物の一方又は両方を
主成分とする担体物質にモリブデン又はタングステンと
コバルト又はニッケルの活性金属と、リンと、活性金属
総モル数の0.3〜3.5倍量となる量のグリコール
酸、酒石酸等のカルボン酸の一種と、活性金属を硫化物
形態にするのに必要な量の0.1倍以上となる量のメル
カプト酢酸、チオジグリコール酸、β−チオジグリコー
ル等の有機硫黄化合物の一種とを添加し、混練し、成型
し、次いで200℃以下の温度で乾燥する水素化処理用
触媒の製造方法を開示している。この触媒製造方法は、
焼成が施されていないこと、活性金属が硫化物状態で担
持されているため予備硫化処理を施さずにそのまま使用
できることが特徴であり、活性金属硫化物の高分散化を
達成するものであった。しかしながら、触媒の細孔構造
などの物理性状についてはなんら言及していない。その
ため触媒の重量当たりでは高い活性が得られていても、
触媒の容積当たりでの活性は高くならないという問題が
あった。なお、特開平4−243547中には水素化脱
硫性能についてのみ言及しており、脱窒素性能に関する
具体的な記載はない。
The applicant of the present invention has previously filed Japanese Patent Application Laid-Open No. 4-243535.
No. 47, the active material of molybdenum or tungsten, cobalt or nickel, phosphorus, and 0.3 to 3 of the total number of active metal moles are contained in a carrier material containing one or both of an inorganic oxide and a hydrate thereof as main components. .5 times the amount of one kind of carboxylic acid such as glycolic acid or tartaric acid, and 0.1 times or more the amount of mercaptoacetic acid or thiodiglycolic acid necessary for converting the active metal into the sulfide form. , A kind of organic sulfur compound such as β-thiodiglycol, kneading, molding, and then drying at a temperature of 200 ° C. or lower are disclosed. This catalyst manufacturing method is
It was characterized by the fact that it was not calcined and that the active metal was supported in the sulfide state, so that it could be used as it was without pre-sulfurization treatment, achieving high dispersion of the active metal sulfide. . However, no mention is made of physical properties such as the pore structure of the catalyst. Therefore, even if high activity per weight of catalyst is obtained,
There is a problem that the activity per volume of the catalyst does not increase. It should be noted that JP-A-4-243547 only mentions hydrodesulfurization performance, and does not specifically describe denitrification performance.

【0009】[0009]

【発明が解決しようとする課題】本発明は前記したよう
な従来の触媒の持つ問題点を解消し、炭化水素油の水素
化脱硫並びに脱窒素の両活性を十分に具備し、且つ、触
媒の活性化工程を簡略化させた触媒を提供しようとする
ものである。
DISCLOSURE OF THE INVENTION The present invention solves the problems of the conventional catalysts as described above, is sufficiently equipped with both hydrodesulfurization and denitrification activities of hydrocarbon oil, and It is intended to provide a catalyst in which the activation process is simplified.

【0010】[0010]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく種々検討を行った結果、擬ベーマイト構造を
有するアルミナ水和物の酸化物換算量に対し、周期律表
第6族金属のモリブデンの酸化物換算量が15〜30重
量%であり、周期律表第8族金属のニッケル及び/又は
コバルトの酸化物換算量が3〜8重量%である水素化活
性金属水溶液と、リン酸の酸化物換算量が2〜8重量%
とを有する水素化脱硫・脱窒素触媒原料において、ジエ
チレングリコール及び/又はトリエチレングリコールの
多価アルコールの添加量が、周期律表第6族金属と第8
族金属の合計モル量に対し0.1〜1倍量で、有機硫黄
化合物のβ−チオジグリコールの添加量が、周期律表第
6族金属と第8族金属を硫化物形態にするために必要な
量の0.1倍量以上として、これらを加えた後、混練
し、成型し、次いで150℃以下の温度で乾燥して乾燥
触媒を得て、該乾燥触媒を500℃で焼成した。その結
果、窒素吸着法で測定した全細孔容積が0.6ml/g
以下であり、平均細孔直径が80〜100オングストロ
ームであり、且つ平均細孔直径±10オングストローム
の範囲の細孔容積が全細孔容積の60%以上である水素
化処理用触媒が得られ、この触媒が炭化水素油に対し
て、従来より高活性な水素化脱硫・脱窒素触媒が得られ
ることを見出だし本発明に至った。
As a result of various studies to solve the above problems, the present inventors have found that the oxide conversion amount of alumina hydrate having a pseudo-boehmite structure is compared with that of Group 6 of the periodic table. An aqueous hydrogenation-active metal solution having an oxide equivalent of molybdenum of 15 to 30% by weight and an oxide equivalent of nickel and / or cobalt of Group 8 metal of the periodic table of 3 to 8% by weight, 2-8% by weight of phosphoric acid converted to oxide
In the hydrodesulfurization / denitrification catalyst raw material having and, the addition amount of the polyhydric alcohol of diethylene glycol and / or triethylene glycol is determined by the Group 6 metal and the 8th group of the periodic table.
The amount of β-thiodiglycol, which is an organic sulfur compound, is 0.1 to 1 times the total molar amount of the group metals so that the Group 6 metal and the Group 8 metal of the Periodic Table are in the sulfide form. In an amount of 0.1 times or more the amount necessary for the above, kneading, molding, and then drying at a temperature of 150 ° C. or lower to obtain a dried catalyst, and the dried catalyst was calcined at 500 ° C. . As a result, the total pore volume measured by the nitrogen adsorption method was 0.6 ml / g.
A hydrotreating catalyst having an average pore diameter of 80 to 100 Å and a pore volume in the range of average pore diameter ± 10 Å of 60% or more of the total pore volume, The inventors have found that this catalyst can provide a hydrodesulfurization / denitrogenation catalyst having higher activity than conventional hydrocarbon oils, and have completed the present invention.

【0011】[0011]

【作用】本発明に係る触媒の構成において、水素化活性
金属としてアルミナ水和物に対し周期律表第6族金属の
モリブデンが酸化物換算量で15〜30重量%であり、
周期律表第8族金属のニッケル及び/又はコバルトが酸
化物換算量で3〜8重量%であり、リン酸が酸化物換算
量で2〜8重量%を添加することにより活性の高い触媒
を得ることは公知の技術に従う。
In the structure of the catalyst according to the present invention, molybdenum, which is a metal of Group 6 of the periodic table, is 15 to 30% by weight in terms of oxide with respect to hydrated alumina as a hydrogenation active metal,
Nickel and / or cobalt of Group 8 metal of the Periodic Table is 3 to 8% by weight in terms of oxide, and phosphoric acid is added in an amount of 2 to 8% in terms of oxide to obtain a highly active catalyst. Obtaining follows known techniques.

【0012】本発明の方法では、擬ベーマイト構造を有
するアルミナ水和物に所定量の水素化活性金属とリンを
前述のように含む溶液に、さらに添加剤として所定量の
多価アルコール及び所定量の有機硫黄化合物溶液を加え
た後、混練し、成型し、次いで150℃以下の温度で乾
燥させた。この乾燥触媒を500℃で焼成し、この焼成
体の細孔構造を窒素吸着法で測定したところ、全細孔容
積が0.6ml/g以下であり、平均細孔直径が80〜
100オングストロームであり、且つ平均細孔直径±1
0オングストロームの範囲の細孔容積が全細孔容積の6
0%以上であるときに、乾燥触媒の水素化脱硫・脱窒素
の効果が触媒として最もすぐれていることがわかった。
In the method of the present invention, a solution of a hydrated alumina hydrate having a pseudo-boehmite structure containing a predetermined amount of a hydrogenation-active metal and phosphorus as described above is further added with a predetermined amount of a polyhydric alcohol and a predetermined amount as additives. After adding the organic sulfur compound solution in (1), the mixture was kneaded, molded, and then dried at a temperature of 150 ° C. or lower. The dried catalyst was calcined at 500 ° C., and the pore structure of the calcined product was measured by a nitrogen adsorption method. As a result, the total pore volume was 0.6 ml / g or less, and the average pore diameter was 80 to
100 angstrom and average pore diameter ± 1
The pore volume in the range of 0 Å is 6 of the total pore volume.
It was found that the effect of hydrodesulfurization / denitrification of the dry catalyst was the best as a catalyst when it was 0% or more.

【0013】当該乾燥触媒を500℃で焼成した後の平
均細孔直径が80オングストロームより小さいときは、
炭化水素油中の窒素化合物は硫黄化合物より分子サイズ
が大きく、触媒粒子内での拡散抵抗が大きいため、脱窒
素活性が低下し、他方平均細孔直径100オングストロ
ームより大きいときは、反応物質が一度に多量に細孔内
に侵入し反応するため、炭素質の折出が起こり水素化脱
硫・脱窒素の両活性を低下させることになる。また、平
均細孔直径±10オングストロームの範囲の細孔容量が
全細孔容積の60%以下のとき、即ち細孔分布が特定の
範囲に集中していないときには、たとえ平均細孔直径が
80〜100オングストロームの範囲に入っていたとし
ても、炭化水素油の水素化脱硫、脱窒素反応に有効な細
孔が減少するので両活性が低下する。さらに窒素吸着法
によって求められた全細孔容積が0.6ml/g以下と
するのは触媒の容積当りでの活性を高めるためである。
When the average pore diameter after calcination of the dry catalyst at 500 ° C. is less than 80 Å,
Nitrogen compounds in hydrocarbon oils have a larger molecular size than sulfur compounds and have higher diffusion resistance in the catalyst particles, so the denitrification activity decreases, while when the average pore diameter is greater than 100 angstroms, the reactants Since a large amount of these enter into the pores and react with each other, carbonaceous matter is ejected to reduce both hydrodesulfurization and denitrification activities. Further, when the pore volume in the range of average pore diameter ± 10 angstrom is 60% or less of the total pore volume, that is, when the pore distribution is not concentrated in a specific range, even if the average pore diameter is 80 to Even if it is in the range of 100 angstroms, both activities are reduced because the number of pores effective for hydrodesulfurization and denitrification of hydrocarbon oil is reduced. Further, the reason why the total pore volume determined by the nitrogen adsorption method is 0.6 ml / g or less is to enhance the activity per volume of the catalyst.

【0014】本発明に用いる擬ベーマイト構造を有する
アルミナ水和物を製造する方法としては、特開昭55−
27830号、特開昭62−226811号の明細書記
載の製造方法で得ることができるが、例えば硫酸アルミ
ニウム水溶液とアルミン酸ナトリウム水溶液とを同時滴
下し、加水分解により生成するアルミナ水和物スラリー
を濾過・洗浄することで得ることもできる。
A method for producing an alumina hydrate having a pseudo-boehmite structure used in the present invention is described in JP-A-55-
It can be obtained by the production method described in Japanese Patent No. 27830 and JP-A No. 62-226811. For example, an alumina hydrate slurry produced by hydrolysis by simultaneously dropping an aqueous solution of aluminum sulfate and an aqueous solution of sodium aluminate is used. It can also be obtained by filtration and washing.

【0015】次に、前記アルミナ水和物に三酸化モリブ
デンと炭酸ニッケル及び/又は炭酸コバルトを水に懸濁
させたスラリーにリン酸を添加し、加熱溶解させた後、
多価アルコールを添加した溶液と有機硫黄化合物溶液と
を加え、成型可能な水分まで混練し、十分可塑化した
後、円筒型、三つ葉型、四つ葉型、球状などの一般的な
所望の触媒形状に成型した後乾燥する。これにより本発
明の水素化処理用触媒を製造することができる。
Next, phosphoric acid was added to a slurry prepared by suspending molybdenum trioxide and nickel carbonate and / or cobalt carbonate in the above-mentioned alumina hydrate, and the mixture was heated and dissolved.
After adding a solution containing polyhydric alcohol and an organic sulfur compound solution, kneading to a moldable water content, and sufficiently plasticizing, a general desired catalyst such as a cylindrical type, a three-leaf type, a four-leaf type, or a spherical type. After forming into a shape, it is dried. Thereby, the hydrotreating catalyst of the present invention can be manufactured.

【0016】本発明に用いる多価アルコールとしては、
脂肪族系アルコールで、好ましくはジエチレングリコー
ル、トリエチレングリコールであり、添加量をモリブデ
ンとニッケル及び/又はコバルトの金属合計モル量の
0.1〜1倍としたのは水素化脱硫、脱窒素活性に対し
効果が現れる必要量から求めたものであり、0.1倍未
満であると十分な効果が得られず、1倍以上添加しても
添加量の増大に対し活性向上に大なる効果が得られない
からである。
The polyhydric alcohol used in the present invention includes
Aliphatic alcohols, preferably diethylene glycol and triethylene glycol, are added in an amount of 0.1 to 1 times the total molar amount of metals of molybdenum, nickel and / or cobalt for hydrodesulfurization and denitrification activity. It was obtained from the necessary amount for the effect to appear. If it is less than 0.1 times, a sufficient effect cannot be obtained, and even if it is added 1 time or more, a large effect for improving the activity can be obtained even if the addition amount is increased. Because I can't.

【0017】本発明に用いる有機硫黄化合物はβ−チオ
ジグリコールで、その添加量は、周期律表第6族金属と
第8族金属を硫化物形態にするために必要な量の0.1
倍量以上であり、0.1〜0.5倍量で十分である。こ
れ以上添加してもさらに触媒活性が大幅に向上すること
がなく、製造価格を考慮すると、有機硫黄化合物の添加
量は少ない方が良い。また、有機硫黄化合物としてはメ
ルカプト酢酸、チオ酢酸等もあるが、酢酸が含まれてお
り反応塔を腐食する可能性が強いので適用は避けた方が
良い。
The organic sulfur compound used in the present invention is β-thiodiglycol, and its addition amount is 0.1, which is an amount necessary for converting the Group 6 metal and the Group 8 metal of the periodic table into the sulfide form.
The amount is double or more, and the amount of 0.1 to 0.5 is sufficient. Even if added more than this, the catalytic activity will not be significantly improved, and considering the manufacturing cost, the addition amount of the organic sulfur compound should be small. Further, as the organic sulfur compound, there are mercaptoacetic acid, thioacetic acid and the like, but it is better to avoid applying them because they contain acetic acid and there is a strong possibility of corroding the reaction tower.

【0018】本発明の触媒の乾燥温度は添加した多価ア
ルコールと有機硫黄化合物が発揮したり、分解したりす
ることのない温度を選定すれば良いが、150℃以下の
温度で乾燥することが望ましい。このようにして得た乾
燥触媒はそのまま反応塔に充填し、軽油と水素ガスを送
入しつつ、昇温昇圧した後、実操業に供する。
As the drying temperature of the catalyst of the present invention, a temperature at which the added polyhydric alcohol and the organic sulfur compound are not exerted or decomposed may be selected, but the catalyst may be dried at a temperature of 150 ° C. or lower. desirable. The dried catalyst thus obtained is directly charged into a reaction tower, and while being heated and pressurized while feeding light oil and hydrogen gas, it is put into practical use.

【0019】本発明の触媒の活性がなぜ大幅に向上する
のかについては明らかではない。前述のヒドロキシカル
ボン酸であれば活性金属の錯イオンの形成が考えられる
が、本発明で用いる多価アルコールの配位能力は弱く、
それが主因とは考えられない。むしろ、活性金属とリン
と多価アルコールを含む溶液では多価アルコールがアル
ミナと吸着力の強いリンの吸着速度を弱め、アルミナ粒
子に活性金属とリンが均一に分散し吸着され、それぞれ
の位置で固定化されて活性金属の擬集が押さえられ、さ
らに、有機硫黄化合物を添加することによって、活性金
属の硫化が促進且つ均一になり活性金属硫化物の表面積
が大となり、高活性が発現されたものと考えられる。さ
らに、触媒の物理性状すなわち細孔構造を限定するころ
によって触媒の容積当たりでの活性が高くなったものと
思われる。
It is not clear why the activity of the catalyst of the present invention is significantly improved. With the above-mentioned hydroxycarboxylic acid, formation of an active metal complex ion is considered, but the coordination ability of the polyhydric alcohol used in the present invention is weak,
It cannot be considered the main cause. Rather, in a solution containing active metal, phosphorus, and polyhydric alcohol, the polyhydric alcohol weakens the adsorption rate of alumina and phosphorus, which has a strong adsorptive power, and the active metal and phosphorus are uniformly dispersed and adsorbed on the alumina particles. By immobilizing and suppressing active metal quasi-assembly, and by adding an organic sulfur compound, sulfurization of the active metal was promoted and became uniform, the surface area of the active metal sulfide was increased, and high activity was exhibited. It is considered to be something. Furthermore, it is considered that the activity per volume of the catalyst was increased by limiting the physical properties of the catalyst, that is, the pore structure.

【0020】[0020]

【実施例】以下、本発明の具体的な実施例及び比較例を
示す。
EXAMPLES Specific examples and comparative examples of the present invention will be shown below.

【0021】(実施例1)内容積100リットルの攪拌
機付きステンレス反応槽に、水49.5リットルと、濃
度50%のグルコン酸液(和光純薬工業(株)製試薬)2
08g(加水分解で生成するAl23に対して0.05
重量%)とを入れ、70℃まで加温保持し、攪拌しつ
つ、Al23として8.1重量%含む硫酸アルミニウム
水溶液((株)島田商店販売、硫酸バンド)9540gと
Al23として18.4重量%含むアルミン酸ナトリウ
ム水溶液(住友化学工業(株)製NA−170)6930
gとを全量混合して、pH8.8のアルミナ水和物のス
ラリーを得た。
(Example 1) 49.5 liters of water and a gluconic acid solution having a concentration of 50% (a reagent manufactured by Wako Pure Chemical Industries, Ltd.) were placed in a stainless steel reactor equipped with a stirrer and having an internal volume of 100 liters.
08g (0.05 against Al 2 O 3 produced by hydrolysis)
Put wt%) and was kept warm to 70 ° C., stirring, Al 2 O 3 as a 8.1 wt% containing aqueous aluminum sulfate solution (Co. Shimada Shoten sale, aluminum sulfate) 9540G and Al 2 O 3 Aqueous solution of sodium aluminate containing 18.4% by weight (NA-170 manufactured by Sumitomo Chemical Co., Ltd.) 6930
The whole amount was mixed with g to obtain a slurry of alumina hydrate having a pH of 8.8.

【0022】次いで、該スラリーを30分間攪拌しなが
ら熟成した後、濾過・洗浄してアルミナ水和物ケーキを
得た。
Next, the slurry was aged while stirring for 30 minutes, filtered and washed to obtain an alumina hydrate cake.

【0023】次に、加温ジャケット付きニーダーに、前
記アルミナ水和物ケーキ2000g(Al23として5
00g)と、三酸化モリブデン122gと、炭酸ニッケ
ル49gと、85%リン酸44gと、水とを加熱溶解
し、これにジエチレングリコールを54gとβ−チオジ
グリコール86gとを加え70℃で加熱しながら混練
し、十分可塑化した後、直径1.7mmのダイスを取り
付けた押出し成型機にて成型し、100℃で15時間乾
燥して触媒Aを得た。
Next, in a kneader with a heating jacket, 2000 g of the alumina hydrate cake (5% as Al 2 O 3) was added.
00g), 122 g of molybdenum trioxide, 49 g of nickel carbonate, 44 g of 85% phosphoric acid, and water are dissolved by heating, 54 g of diethylene glycol and 86 g of β-thiodiglycol are added to this, and the mixture is heated at 70 ° C. After kneading and sufficiently plasticizing, the mixture was molded by an extrusion molding machine equipped with a die having a diameter of 1.7 mm and dried at 100 ° C. for 15 hours to obtain a catalyst A.

【0024】触媒Aの金属含有量は、MoO3 として1
8重量%、NiOとして4重量%、P25として4重量
%であり、ジエチレングリコールの添加量はモリブデン
とニッケルの金属モル数の0.25倍であり、β−チオ
ジグリコールの添加量はモリブデンとニッケルがそれぞ
れMoS2 、NiSを形成するのに必要な量の0.3倍
であった。
The metal content of catalyst A is 1 as MoO 3.
8% by weight, 4% by weight as NiO and 4% by weight as P 2 O 5 , the addition amount of diethylene glycol was 0.25 times the metal mole number of molybdenum and nickel, and the addition amount of β-thiodiglycol was Molybdenum and nickel were 0.3 times the amounts required to form MoS 2 and NiS, respectively.

【0025】また、触媒Aの一部を500℃で2時間焼
成した後に窒素吸着法で測定した全細孔容積が0.49
ml/gであり、平均細孔直径が82オングストローム
であり、且つ平均細孔直径±10オングストロームの範
囲の細孔容積が全細孔容積の61%であった。
The total pore volume measured by the nitrogen adsorption method after part of the catalyst A was calcined at 500 ° C. for 2 hours was 0.49.
ml / g, the average pore diameter was 82 Å, and the pore volume in the range of the average pore diameter ± 10 Å was 61% of the total pore volume.

【0026】活性評価は、触媒充填量15mlの固定床
流通反応装置において、水素と軽油を水素/油供給比2
00Nl/l、液空間速度2.0hr-1、圧力30kg
/cm2 Gの条件下で100℃から315℃まで7時間
かけて昇温した後、硫黄分1.15重量%、窒素分68
重量ppm含むクエート常圧軽油を用いて、圧力30k
g/cm2 G、液空間速度2.0hr-1、水素/油供給
比200Nl/l、温度350℃の反応条件で行った。
The activity was evaluated by using a fixed bed flow reactor with a catalyst loading of 15 ml, and adding hydrogen and light oil to a hydrogen / oil supply ratio of 2
00 Nl / l, liquid hourly space velocity 2.0 hr -1 , pressure 30 kg
The temperature was raised from 100 ° C to 315 ° C over 7 hours under the condition of 1 / cm 2 G, and then the sulfur content was 1.15% by weight and the nitrogen content was 68.
Using quat atmospheric gas oil containing ppm by weight, pressure 30k
The reaction was carried out under the reaction conditions of g / cm 2 G, liquid hourly space velocity of 2.0 hr −1 , hydrogen / oil supply ratio of 200 Nl / l, and temperature of 350 ° C.

【0027】脱硫・脱窒素活性は、後述する比較例1の
触媒Fの速度定数を100として求めた相対活性値であ
る。
The desulfurization / denitrification activity is a relative activity value obtained by setting the rate constant of the catalyst F of Comparative Example 1 described later as 100.

【0028】脱硫活性の速度次数は、脱硫反応速度が原
料油の硫黄濃度の1.75乗に比例するものとしてKm
=LHSV・(1/n−1)・{(1/Sn-1 )−(1
/Son-1 )}の式を用いて求めた。
The rate order of the desulfurization activity is Km when the desulfurization reaction rate is proportional to the 1.75th power of the sulfur concentration of the feedstock.
= LHSV · (1 / n−1) · {(1 / S n−1 ) − (1
/ So n-1 )}.

【0029】脱窒素活性の速度次数は、脱窒素反応速度
が原料油の窒素濃度の1.0乗に比例するものとしてK
m=LHSV・1n(No/N)の式を用いて求めた。
The rate order of the denitrification activity is defined as K in which the denitrification reaction rate is proportional to the 1.0th power of the nitrogen concentration in the feed
It was determined using the formula of m = LHSV · 1n (No / N).

【0030】式中のnは速度次数、LHSVは液空間速
度、Sは処理油中の硫黄濃度(%)、Soは原料油中の
硫黄濃度(%)、Nは処理油中の窒素濃度(%)、No
は原料油中の窒素濃度(%)である。
In the equation, n is the velocity order, LHSV is the liquid hourly space velocity, S is the sulfur concentration in the treated oil (%), So is the sulfur concentration in the feed oil (%), and N is the nitrogen concentration in the treated oil ( %), No
Is the nitrogen concentration (%) in the feed oil.

【0031】なお、処理油の硫黄分の分析は(株)堀場製
作所製SLFA−920型を用い、窒素分の分析は三菱
化成(株)製TN−05型を用いて行った。
The sulfur content of the treated oil was analyzed by SLFA-920 model manufactured by Horiba Ltd., and the nitrogen content was analyzed by TN-05 model manufactured by Mitsubishi Kasei.

【0032】触媒Aの脱硫活性は121%、脱窒素活性
は122%であった。触媒Aは、後述する従来の水素化
処理溶触媒の製法に従って調整した比較例1の触媒Fと
比べ、優れた脱硫・脱窒素活性を有していることが明ら
かである。
Catalyst A had a desulfurization activity of 121% and a denitrification activity of 122%. It is clear that the catalyst A has excellent desulfurization / denitrification activity as compared with the catalyst F of Comparative Example 1 prepared according to the conventional method for producing a hydrotreated molten catalyst described below.

【0033】(実施例2〜4)三酸化モリブデン122
g、炭酸ニッケル49g、85%リン酸44gと水とを
加熱溶解し、これに添加するジエチレングリコールの量
をそれぞれ27g、113g、226gと変化させた溶
液とβ−チオジグリコールをそれぞれ86gとを加え混
練したこと以外は実施例1に示す触媒Aとほぼ同様の方
法で触媒B、C、Dを得た。触媒B、C、Dの金属含有
量はいずれも、MoO3 として18重量%、NiOとし
て4重量%、P25として4重量%であり、ジエチレン
グリコールの添加量はモリブデンとニッケルの金属モル
数の0.125倍、0.50倍、1.0倍であり、β−
チオジグリコールの添加量はモリブデンとニッケルがそ
れぞれMoS2 、NiSを形成するのに必要な量の0.
3倍であった。
(Examples 2 to 4) Molybdenum trioxide 122
g, nickel carbonate 49 g, 85% phosphoric acid 44 g and water were heated and dissolved, and a solution in which the amounts of diethylene glycol added were changed to 27 g, 113 g and 226 g, respectively, and β-thiodiglycol 86 g were added respectively. Catalysts B, C and D were obtained in substantially the same manner as the catalyst A shown in Example 1 except that kneading was performed. The metal content of each of the catalysts B, C, and D was 18% by weight as MoO 3 , 4% by weight as NiO, and 4% by weight as P 2 O 5 , and the addition amount of diethylene glycol was the number of metal moles of molybdenum and nickel. 0.125 times, 0.50 times, 1.0 times, and β-
The amount of thiodiglycol added is 0. 1 which is the amount necessary for molybdenum and nickel to form MoS 2 and NiS, respectively.
It was three times.

【0034】また、触媒B、C、Dの一部をそれぞれ5
00℃で2時間焼成した後に窒素吸着法で測定した全細
孔容積がそれぞれ0.45ml/g、0.49ml/
g、0.52ml/gであり、平均細孔直径がそれぞれ
78オングストローム、85オングストローム、93オ
ングストロームであり、且つ、平均細孔直径±10オン
グストロームの範囲の細孔容積が全細孔容積の63%、
60%、60%であった。また、活性評価は実施例1に
示す方法と同様にして実施した。触媒B、C、Dの触媒
の脱硫活性はそれぞれ121%、119%、120%
で、脱窒素活性はそれぞれ120%、121%、118
%であった。
Further, a part of each of the catalysts B, C and D is added to 5
The total pore volumes measured by nitrogen adsorption method after firing at 00 ° C. for 2 hours were 0.45 ml / g and 0.49 ml / g, respectively.
g, 0.52 ml / g, the average pore diameters are 78 Å, 85 Å, 93 Å, and the pore volume in the range of the average pore diameter ± 10 Å is 63% of the total pore volume. ,
It was 60% and 60%. The activity evaluation was performed in the same manner as in the method described in Example 1. The desulfurization activities of catalysts B, C and D are 121%, 119% and 120%, respectively.
The denitrification activities are 120%, 121%, and 118, respectively.
%Met.

【0035】(実施例5)三酸化モリブデン122g、
炭酸ニッケル49g、85%リン酸44gと水とを加熱
溶解し、これにトリエチレングリコールを80g添加し
た溶液とβ−チオジグリコールを86gとを加えて混練
したこと以外は実施例1に示す触媒Aとほぼ同様の方法
で触媒Eを得た。
(Example 5) 122 g of molybdenum trioxide,
Catalyst shown in Example 1 except that 49 g of nickel carbonate, 44 g of 85% phosphoric acid and water were dissolved by heating, and a solution of 80 g of triethylene glycol and 86 g of β-thiodiglycol were added and kneaded. A catalyst E was obtained in the same manner as in A.

【0036】触媒Eの金属含有量は、MoO3 として1
8重量%、NiOとして4重量%、P25として4重量
%であり、トリエチレングリコールの添加量はモリブデ
ンとニッケルの金属モル数の0.25倍であり、β−チ
オジグリコールの添加量はモリブデンとニッケルがそれ
ぞれMoS2 、NiSを形成するのに必要な量の0.3
倍であった。また、触媒Eの一部を500℃で2時間焼
成した後に窒素吸着法で測定した全細孔容積が0.48
ml/gであり、平均細孔直径が82オングストローム
であり、且つ、平均細孔直径±10オングストロームの
範囲の細孔容積が全細孔容積の62%であった。また、
活性評価は実施例1に示す方法と同様にして実施した。
触媒Eは、ジエチレングリコールの代わりにトリエチレ
ングリコールを添加した触媒であるが、脱硫活性は12
1%で脱窒素活性は120%と触媒Aと同等の性能を有
していることが明かである。
The metal content of catalyst E is 1 as MoO 3.
8% by weight, 4% by weight as NiO and 4% by weight as P 2 O 5 , the amount of triethylene glycol added was 0.25 times the number of moles of metal molybdenum and nickel, and β-thiodiglycol was added. The amount is 0.3, which is the amount required for molybdenum and nickel to form MoS 2 and NiS, respectively.
It was double. Further, the total pore volume measured by the nitrogen adsorption method after part of the catalyst E was calcined at 500 ° C. for 2 hours was 0.48.
ml / g, the average pore diameter was 82 Å, and the pore volume in the range of the average pore diameter ± 10 Å was 62% of the total pore volume. Also,
The activity evaluation was carried out in the same manner as in the method described in Example 1.
Catalyst E is a catalyst in which triethylene glycol is added instead of diethylene glycol, but the desulfurization activity is 12
It is clear that at 1%, the denitrification activity is 120%, which is equivalent to that of catalyst A.

【0037】(比較例1)実施例1に示すアルミナ水和
物ケーキの製造方法とほぼ同様の方法で得たアルミナ水
和物ケーキ3000g(Al23として750g)を加
温ジャケット付きニーダーに入れ70℃で加熱しながら
練り込み、十分可塑化した後、直径1.7mmのダイス
を取り付けた押出し成型機にて成型し、100℃で15
時間乾燥し、600℃で2時間焼成してγ−アルミナ担
体を得た。
Comparative Example 1 3000 g of an alumina hydrate cake (750 g as Al 2 O 3 ) obtained by a method similar to the method for producing an alumina hydrate cake shown in Example 1 was placed in a kneader with a heating jacket. After kneading while heating at 70 ° C and sufficiently plasticizing, it is molded with an extrusion molding machine equipped with a die having a diameter of 1.7 mm, and it is molded at 100 ° C for 15 minutes.
It was dried for an hour and calcined at 600 ° C. for 2 hours to obtain a γ-alumina carrier.

【0038】次に、該担体500gに三酸化モリブデン
122g、炭酸ニッケル49g、85%リン酸44gと
水とを加熱溶解して得た390mlの溶液を含浸し、次
いで100℃で15時間乾燥し、500℃で2時間焼成
して触媒Fを得た。
Next, 500 g of the carrier was impregnated with a solution of 390 ml obtained by heating and dissolving 122 g of molybdenum trioxide, 49 g of nickel carbonate, 44 g of 85% phosphoric acid and water, and then drying at 100 ° C. for 15 hours, A catalyst F was obtained by calcining at 500 ° C. for 2 hours.

【0039】触媒Fの金属含有量は、MoO3 として1
8重量%、NiOとして4重量%、P25として4重量
%であり、窒素吸着法で測定した全細孔容積が0.51
ml/gであり、平均細孔直径が84オングストローム
であり、且つ平均細孔直径±10オングストロームの範
囲の細孔容積が全細孔容積の65%であった。また、活
性評価は、触媒充填量15mlの固定床流通反応装置に
おいて、水素とジメチルジサルファイドを2.5重量%
添加した軽油を水素/油供給比200Nl/l、液空間
速度2.0hr-1、圧力30kg/cm2 Gの条件下1
00℃から315℃まで7時間かけて昇温し、16時間
予備硫化した後、硫黄分1.15重量%、窒素分68重
量ppm含むクエート常圧軽油を用い、圧力30kg/
cm2 G、液空間速度2.0hr-1、水素/油供給比2
00Nl/l、温度350℃の反応条件で実施した。触
媒Fは従来の触媒の製造方法に従い得られたもので、こ
の触媒の脱硫活性、脱窒素活性を100とした。
The metal content of the catalyst F is 1 as MoO 3.
8% by weight, 4% by weight as NiO and 4% by weight as P 2 O 5 , and the total pore volume measured by the nitrogen adsorption method was 0.51.
ml / g, the average pore diameter was 84 Å, and the pore volume in the range of the average pore diameter ± 10 Å was 65% of the total pore volume. Further, the activity evaluation was carried out in a fixed bed flow reactor with a catalyst loading of 15 ml, containing 2.5% by weight of hydrogen and dimethyldisulfide.
The added light oil was supplied under the conditions of hydrogen / oil supply ratio of 200 Nl / l, liquid space velocity of 2.0 hr -1 , pressure of 30 kg / cm 2 G 1
The temperature was raised from 00 ° C to 315 ° C over 7 hours, and after presulfiding for 16 hours, a quat atmospheric gas oil containing 1.15 wt% of sulfur and 68 wtppm of nitrogen was used and the pressure was 30 kg /
cm 2 G, liquid hourly space velocity 2.0 hr -1 , hydrogen / oil supply ratio 2
The reaction was carried out under the reaction conditions of 00 Nl / l and a temperature of 350 ° C. Catalyst F was obtained according to a conventional method for producing a catalyst, and the desulfurization activity and denitrification activity of this catalyst were set to 100.

【0040】(比較例2)アルミナの加水分解条件で濃
度50%グルコン酸を添加せずに、Al23として8.
1重量%含む硫酸アルミニウム水溶液及びAl23とし
て18.4重量%含むアルミン酸ナトリウム水溶液を全
量混合したこと以外は実施例1に示す方法とほぼ同様の
方法で触媒Gを得た。
(Comparative Example 2) Al 2 O 3 was obtained without adding gluconic acid at a concentration of 50% under the hydrolysis condition of alumina.
A catalyst G was obtained in substantially the same manner as in Example 1 except that the aluminum sulfate aqueous solution containing 1 wt% and the sodium aluminate aqueous solution containing 18.4 wt% as Al 2 O 3 were all mixed.

【0041】触媒Gの金属含有量は、MoO3 として1
8重量%、NiOとして4重量%、P25として4重量
%であり、ジエチレングリコールの添加量はモリブデン
とニッケルの金属モル数の0.25倍であり、β−チオ
ジグリコールの添加量はモリブデンとニッケルがそれぞ
れMoS2 、NiSを形成するのに必要な量の0.3倍
であった。また、触媒Gの一部を500℃で2時間焼成
した後に、窒素吸着法で測定した全細孔容積が0.64
ml/gであり、平均細孔直径が90オングストローム
であり、且つ平均細孔直径±10オングストロームの範
囲の細孔容積が全細孔容積の40%であった。さらに、
活性評価は実施例1に示す方法と同様にして実施した。
触媒Gは、500℃で2時間焼成した後の細孔容積が大
きく且つ、細孔分布が広いため、この触媒の脱硫活性は
109%で脱窒素活性は107%と、触媒Aより低い活
性を示した。
The metal content of the catalyst G is 1 as MoO 3.
8% by weight, 4% by weight as NiO and 4% by weight as P 2 O 5 , the addition amount of diethylene glycol was 0.25 times the metal mole number of molybdenum and nickel, and the addition amount of β-thiodiglycol was Molybdenum and nickel were 0.3 times the amounts required to form MoS 2 and NiS, respectively. Moreover, after part of the catalyst G was calcined at 500 ° C. for 2 hours, the total pore volume measured by the nitrogen adsorption method was 0.64.
ml / g, the average pore diameter was 90 Å, and the pore volume in the range of the average pore diameter ± 10 Å was 40% of the total pore volume. further,
The activity evaluation was carried out in the same manner as in the method described in Example 1.
Catalyst G has a large pore volume after calcination at 500 ° C. for 2 hours and a wide pore distribution, so that the desulfurization activity of this catalyst is 109% and the denitrification activity is 107%, which is lower than that of catalyst A. Indicated.

【0042】(実施例6〜8)三酸化モリブデン122
g、炭酸コバルト45g、85%リン酸44gと水、及
び三酸化モリブデン127g、炭酸コバルト82g、8
5%リン酸46gと水、及び三酸化モリブデン208
g、炭酸コバルト51g、85%リン酸50gと水とを
それぞれ加熱溶解し、これにジエチレングリコールをそ
れぞれ54g、61g、71gを添加した各溶液にそれ
ぞれβ−チオジグリコールを86gとを加えて混練した
こと以外は、実施例1に示す触媒Aとほぼ同様の方法で
触媒I、J、Kを得た。
(Examples 6 to 8) Molybdenum trioxide 122
g, cobalt carbonate 45 g, 85% phosphoric acid 44 g and water, and molybdenum trioxide 127 g, cobalt carbonate 82 g, 8
5% phosphoric acid 46g, water, and molybdenum trioxide 208
g, 51 g of cobalt carbonate, 50 g of 85% phosphoric acid, and water were dissolved by heating, and 54 g, 61 g, and 71 g of diethylene glycol were added to each solution, and β-thiodiglycol was added to 86 g, and kneaded. Except for the above, Catalysts I, J, and K were obtained by a method similar to that of Catalyst A shown in Example 1.

【0043】触媒Iの金属含有量は、MoO3 として1
8重量%、CoOとして4重量%、P25として4重量
%であり、触媒Jの金属含有量は、MoO3 として18
重量%、CoOとして7重量%、P25として4重量%
であり、触媒Kの金属含有量は、MoO3 として27重
量%、CoOとして4重量%、P25として4重量%で
あった。また、ジエチレングリコールの添加量はモリブ
デンとコバルトの金属モル数0.25倍であり、β−チ
オジグリコールの添加量はモリブデンとコバルトがそれ
ぞれMoS2 、CoSを形成するのに必要な量の0.3
倍であった。また、触媒I、J、Kの一部をそれぞれ5
00℃で2時間焼成した後に窒素吸着法で測定した全細
孔容積がそれぞれ0.50ml/g、0.49ml/
g、0.46ml/gであり、平均細孔直径はそれぞれ
80オングストローム、81オングストローム、84オ
ングストローム、であり、且つ平均細孔直径±10オン
グストロームの範囲の細孔容積が全細孔容積の62%、
62%、62%であった。また、活性評価は実施例1に
示す方法と同様にして実施した。
The metal content of catalyst I is 1 as MoO 3.
8% by weight, CoO 4% by weight, P 2 O 5 4% by weight, and the metal content of the catalyst J is 18 as MoO 3.
% By weight, 7% by weight as CoO, 4% by weight as P 2 O 5
The metal content of the catalyst K was 27% by weight as MoO 3 , 4% by weight as CoO and 4% by weight as P 2 O 5 . The amount of diethylene glycol added was 0.25 times the number of moles of metal of molybdenum and cobalt, and the amount of β-thiodiglycol added was 0.5 times the amounts required for molybdenum and cobalt to form MoS 2 and CoS, respectively. Three
It was double. In addition, a part of each of the catalysts I, J and K is added to
The total pore volumes measured by the nitrogen adsorption method after firing at 00 ° C. for 2 hours were 0.50 ml / g and 0.49 ml / g, respectively.
g, 0.46 ml / g, the average pore diameters are 80 Å, 81 Å, and 84 Å, respectively, and the pore volume in the range of the average pore diameter ± 10 Å is 62% of the total pore volume. ,
It was 62% and 62%. The activity evaluation was performed in the same manner as in the method described in Example 1.

【0044】触媒I、J、Kはモリブデン含有量変化及
びニッケルの代わりにコバルトを活性金属として添加し
た触媒であるが脱硫活性はそれぞれ128%、126
%、132%で、脱窒素活性はそれぞれ116%、11
9%、117%と触媒Aより多少脱窒素活性は劣るもの
のニッケルの代わりにコバルトを活性金属として用いて
も良いことが明きらかである。
Catalysts I, J, and K are catalysts in which cobalt is added as an active metal in place of change in molybdenum content and nickel, but desulfurization activities are 128% and 126, respectively.
%, 132%, denitrification activity is 116%, 11
Although 9% and 117%, which are somewhat inferior to the catalyst A in denitrification activity, it is clear that cobalt may be used as the active metal instead of nickel.

【0045】(実施例9〜10)β−チオジグリコール
の添加量を43g、143gと変えたこと以外は、実施
例1に示す触媒Aとほぼ同様の方法で触媒L、Mを得
た。
(Examples 9 to 10) Catalysts L and M were obtained in substantially the same manner as the catalyst A shown in Example 1 except that the amount of β-thiodiglycol added was changed to 43 g and 143 g.

【0046】触媒L、Mの金属含有量は、MoO3 とし
て18重量%、NiOとして4重量%、P25として4
重量%であり、ジエチレングリコールの添加量はモリブ
デンとニッケルの金属モル数の0.25倍であり、β−
チオジグリコールの添加量はモリブデとニッケルがそれ
ぞれMoS2 、NiSを形成するのに必要な量の触媒L
は0.15倍で、触媒Mは0.5倍であった。
The metal content of the catalysts L and M was 18% by weight as MoO 3 , 4% by weight as NiO and 4% as P 2 O 5.
% By weight, the amount of diethylene glycol added is 0.25 times the number of moles of molybdenum and nickel, and β-
The amount of thiodiglycol added is the amount of catalyst L required for molybde and nickel to form MoS 2 and NiS, respectively.
Was 0.15 times and catalyst M was 0.5 times.

【0047】また、触媒L、Mの一部をそれぞれ500
℃で2時間焼成した後において窒素吸着法で測定した全
細孔容積が0.47ml/g、0.53ml/gであ
り、平均細孔直径は79オングストローム、83オング
ストロームであり、且つ平均細孔直径±10オングスト
ロームの範囲の細孔容積が全細孔容積の62%、60%
であった。また、活性評価は実施例1に示す方法と同様
にして実施した。
Further, a part of each of the catalysts L and M is 500
The total pore volume measured by the nitrogen adsorption method after calcination at 2 ° C. for 2 hours is 0.47 ml / g and 0.53 ml / g, the average pore diameter is 79 angstroms and 83 angstroms, and the average pores are Pore volume within diameter ± 10 Å is 62%, 60% of total pore volume
Met. The activity evaluation was performed in the same manner as in the method described in Example 1.

【0048】触媒Lはβ−チオジグリコールの添加量を
触媒Aより減らした触媒であるが、脱硫活性は120
%、脱窒素活性は119%と、触媒Aより多少脱硫・脱
窒素活性は劣るものの、β−チオジグリコールの添加量
をモリブデンとニッケルがそれぞれMoS2 、NiSを
形成するのに必要な量の0.15倍にしても十分な性能
を有していることが明かである。
Catalyst L is a catalyst in which the amount of β-thiodiglycol added is smaller than that of catalyst A, but the desulfurization activity is 120.
%, The denitrification activity is 119%, which is somewhat inferior to the catalyst A in desulfurization and denitrification activity, but the addition amount of β-thiodiglycol is the amount necessary for molybdenum and nickel to form MoS 2 and NiS, respectively. It is clear that even with 0.15 times, it has sufficient performance.

【0049】また、触媒Mはβ−チオジグリコールの添
加量を触媒Aより増やした触媒であるが、脱硫活性は1
22%、脱窒素活性は120%と触媒Aとほぼ同等の脱
硫・脱窒素活性を有しており、β−チオジグリコールの
添加量をモリブデンとニッケルがそれぞれMoS2 、N
iSを形成するのに必要な量の0.5倍にしても飛躍的
に活性が向上しないことも明かである。
Further, the catalyst M is a catalyst in which the amount of β-thiodiglycol added is larger than that of the catalyst A, but the desulfurization activity is 1
It has 22% and a denitrification activity of 120%, which is almost the same as desulfurization / denitrification activity of catalyst A. The addition amounts of β-thiodiglycol are MoS 2 and N respectively.
It is also clear that even 0.5 times the amount required to form iS does not dramatically improve the activity.

【0050】[0050]

【発明の効果】本発明の水素化脱硫・脱窒素触媒は従来
提案されている水素化脱硫・脱窒素触媒に比べて、極め
て効率良く、炭化水素油の水素化脱硫・脱窒素を行うこ
とができる。従って、本発明の触媒を従来の触媒に変え
て使用すれ繁雑な予備硫化処理を施さずに用いることが
でき、且つ、硫黄含有量、窒素含有量の低い燃料油を製
造することができる。
EFFECTS OF THE INVENTION The hydrodesulfurization / denitrification catalyst of the present invention can perform hydrodesulfurization / denitrification of hydrocarbon oil extremely efficiently as compared with conventionally proposed hydrodesulfurization / denitrification catalysts. it can. Therefore, the catalyst of the present invention can be used as a conventional catalyst without being subjected to a complicated pre-sulfurization treatment, and a fuel oil having a low sulfur content and a low nitrogen content can be produced.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年1月26日[Submission date] January 26, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Name of item to be corrected] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // C07B 61/00 300

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 擬ベーマイト構造を有するアルミナ水和
物に周期律表第6族金属と周期律表第8族金属に属する
水素化活性金属水溶液と、リン酸と、多価アルコール
と、有機硫黄化合物とを加えた後、混練し、成型し、つ
いで150℃以下の温度で乾燥することを特徴とする炭
化水素油の水素化処理用触媒の製造方法。
1. An alumina hydrate having a pseudo-boehmite structure, an aqueous hydrogenation active metal solution belonging to a metal of Group 6 and a metal of Group 8 of the periodic table, phosphoric acid, a polyhydric alcohol, and an organic sulfur. A method for producing a catalyst for hydrotreating a hydrocarbon oil, comprising adding a compound, kneading, molding, and then drying at a temperature of 150 ° C. or lower.
【請求項2】 請求項1項記載の炭化水素油の水素化処
理用触媒の製造方法において、アルミナ水和物の酸化物
換算量に対し周期律表第6金属のモリブデンの酸化物換
算量が15〜30重量%であり、第8族金属のニッケル
及び/又はコバルトの酸化物換算量が3〜8重量%であ
り、リン酸の酸化物換算量が2〜8重量%であり、多価
アルコールのジエチレングリコール及び/又はトリエチ
レングリコールが周期律表第6族金属と第8族金属の合
計モル量に対し0.1〜1倍量の添加量で、有機硫黄化
合物のβ−チオジグリコールが周期律表第6族金属と第
8族金属を硫化物形態にするために必要な量の0.1倍
量以上の添加量であることを特徴とする請求項1に記載
の製造方法。
2. The method for producing a catalyst for hydrotreating hydrocarbon oil according to claim 1, wherein the oxide conversion amount of molybdenum of the 6th metal of the periodic table is equivalent to the oxide conversion amount of alumina hydrate. 15 to 30% by weight, the equivalent oxide of nickel and / or cobalt of Group 8 metal is 3 to 8% by weight, the equivalent oxide of phosphoric acid is 2 to 8% by weight, and polyvalent Diethylene glycol and / or triethylene glycol of alcohol are added in an amount of 0.1 to 1 times the total molar amount of Group 6 metal and Group 8 metal of the periodic table, and β-thiodiglycol of the organic sulfur compound is added. The method according to claim 1, wherein the amount of addition of the Group 6 metal and the Group 8 metal of the periodic table is 0.1 times or more the amount required for forming the sulfide form.
【請求項3】 請求項1又は2に記載の製造方法で作製
された炭化水素油の水素化処理用触媒において、150
0℃以下の温度で乾燥した触媒を500℃で焼成した
後、窒素吸着法で測定した全細孔容積が0.6ml/g
以下であり、平均細孔直径が80〜100オングストロ
ームであり、且つ平均細孔直径±10オングストローム
の範囲の細孔容積が全細孔容積の60%以上であること
を特徴とする炭化水素油の水素化処理用触媒。
3. A catalyst for hydrotreating a hydrocarbon oil produced by the production method according to claim 1 or 2, wherein:
After the catalyst dried at a temperature of 0 ° C or lower was calcined at 500 ° C, the total pore volume measured by the nitrogen adsorption method was 0.6 ml / g.
The average pore diameter is 80 to 100 angstroms, and the pore volume in the range of the average pore diameter ± 10 angstroms is 60% or more of the total pore volume. Hydrotreating catalyst.
JP16291694A 1994-06-22 1994-06-22 Catalyst for hydrotreating hydrocarbon oil and method for producing the same Expired - Fee Related JP3303533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16291694A JP3303533B2 (en) 1994-06-22 1994-06-22 Catalyst for hydrotreating hydrocarbon oil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16291694A JP3303533B2 (en) 1994-06-22 1994-06-22 Catalyst for hydrotreating hydrocarbon oil and method for producing the same

Publications (2)

Publication Number Publication Date
JPH081009A true JPH081009A (en) 1996-01-09
JP3303533B2 JP3303533B2 (en) 2002-07-22

Family

ID=15763671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16291694A Expired - Fee Related JP3303533B2 (en) 1994-06-22 1994-06-22 Catalyst for hydrotreating hydrocarbon oil and method for producing the same

Country Status (1)

Country Link
JP (1) JP3303533B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519193A (en) * 2012-04-26 2015-07-09 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Hydrotreating catalyst and method for treating heavy hydrocarbon feedstock
CN109158131A (en) * 2018-10-08 2019-01-08 中海油天津化工研究设计院有限公司 A kind of preparation method of carrier of hydrogenating catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519193A (en) * 2012-04-26 2015-07-09 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Hydrotreating catalyst and method for treating heavy hydrocarbon feedstock
CN109158131A (en) * 2018-10-08 2019-01-08 中海油天津化工研究设计院有限公司 A kind of preparation method of carrier of hydrogenating catalyst

Also Published As

Publication number Publication date
JP3303533B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
JPH04243547A (en) Manufacture of hydrogenation catalyst for hydrocarbon oil
EP1702682A1 (en) Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same
EP0543157B1 (en) Catalyst composition, method of preparing same and process for hydrodesulfurizing sulfur-containing hydrocarbons by using the catalyst composition
KR101067253B1 (en) Hydrodesulfurization catalyst and hydrodesulfurization process for gasoline fractions
JP2002028491A (en) Formed catalyst for hydrogenation treatment and producing method thereof
JP3692207B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
JP3106761B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same
JP3538887B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
JPH081009A (en) Catalyst for hydrogenation of hydrocarbon oil and its production
JP2817598B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JP2000135437A (en) Hydrogenation catalyst and its production
JP2817622B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JPH08224471A (en) Fire resisting inorganic oxide catalyst carrier and hydrogenation catalyst using the same
JP2817626B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JP2001300325A (en) Catalyst for hydrogenative desulfurization denitration of hydrocarbon oil and manufacturing method
JP2001232202A (en) Catalyst carrier, catalyst for hydrodesulfurization/ hydrodenitrification using the same and method of manufacturing them
JP2789489B2 (en) Hydrodesulfurization catalyst composition for hydrocarbon oil, method for producing the same, and hydrodesulfurization method using the same
JPH0427439A (en) Catalyst for hydrodesulfurization
JP2001310133A (en) Catalyst for hydrodesulfurizatin and denitrification of hydrocarbon oil and its production method
RU2773151C1 (en) Method for preparing a composition of a hydrotreating catalyst for the production of diesel fuel with an ultra-low sulfur content
JP2920186B2 (en) Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil
EP3967397A1 (en) Process for preparing a hydro-treating catalyst composition for producing ultra-low sulfur diesel
JPH0576758A (en) Catalyst for hydrogenation treatment
JPH06198193A (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and its production
JP3376067B2 (en) Method for producing hydrotreating catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees