JPH0799999A - Regeneration of mixed bed-type sucrose liquor purifier - Google Patents

Regeneration of mixed bed-type sucrose liquor purifier

Info

Publication number
JPH0799999A
JPH0799999A JP5272957A JP27295793A JPH0799999A JP H0799999 A JPH0799999 A JP H0799999A JP 5272957 A JP5272957 A JP 5272957A JP 27295793 A JP27295793 A JP 27295793A JP H0799999 A JPH0799999 A JP H0799999A
Authority
JP
Japan
Prior art keywords
exchange resin
anion exchange
basic anion
mixed bed
acidic cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5272957A
Other languages
Japanese (ja)
Other versions
JP3638624B2 (en
Inventor
Hitoshi Usami
仁 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Original Assignee
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co filed Critical Nippon Rensui Co
Priority to JP27295793A priority Critical patent/JP3638624B2/en
Publication of JPH0799999A publication Critical patent/JPH0799999A/en
Application granted granted Critical
Publication of JP3638624B2 publication Critical patent/JP3638624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To provide the subject regeneration method so designed that malregeneration due to incomplete separation can be obviated by added regeneration operation upon the strongly anion exchange resin, thereby preventing color component from its a accumulation and obtaining purified sucrose of stable purity for a long period of time. CONSTITUTION:In regenerating a mixed bed-type sucrose liquor purifier made up of a strongly basic anion exchange resin and a weakly acidic cation exchange resin, the latter resin is first regenerated and then both the resins are separated in layers using a saline solution followed by regenerating the former resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はショ糖液の脱塩、脱色精
製工程で採られている強塩基性陰イオン交換樹脂と弱酸
性陽イオン交換樹脂による混床式ショ糖液精製装置の再
生法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to the regeneration of a mixed bed type sucrose solution purifying apparatus using a strongly basic anion exchange resin and a weakly acidic cation exchange resin used in the desalting and decolorizing purification steps of sucrose solution. It is about law.

【0002】[0002]

【従来の技術】ショ糖液を精製するため、イオン交換樹
脂を使用し、脱色、脱塩を行なうことが知られており、
従来精製法としてショ糖液を強塩基性陰イオン交換樹脂
床、次いで弱酸性陽イオン交換樹脂床の二床に通液して
精製する二床式処理法、いわゆるリバ−ス法が採られて
いた。しかしながら、この処理法では、処理ショ糖液の
脱塩純度(電気伝導率)があまり向上しないという欠点が
あった。そこで近年は、脱塩純度の高い処理ショ糖液が
得られる強塩基性陰イオン交換樹脂と弱酸性陽イオン交
換樹脂による混床に通液して精製する混床式処理法が多
用されつつある。
2. Description of the Related Art In order to purify sucrose solution, it is known to use an ion exchange resin for decolorization and desalting.
As a conventional purification method, a so-called reverse method, which is a two-bed treatment method in which sucrose solution is passed through two beds of a strongly basic anion exchange resin bed and then a weakly acidic cation exchange resin bed for purification, has been adopted. It was However, this treatment method has a drawback that the desalination purity (electrical conductivity) of the treated sucrose solution is not improved so much. Therefore, in recent years, a mixed bed treatment method in which a purified sucrose solution having a high desalination purity is passed through a mixed bed of a strongly basic anion exchange resin and a weakly acidic cation exchange resin for purification is being widely used. .

【0003】しかし、混床式ではショ糖液通液前後にお
ける弱酸性陽イオン交換樹脂の体積変化が極めて大きい
こと並びに通液状態下にある強塩基性陰イオン交換樹脂
と、同じく通液状態下にある弱酸性陽イオン交換樹脂と
は比重が比較的近接しているため、混床の再生時に両イ
オン交換樹脂の分離再生が不完全で、再生不良を生じ易
いこと、更に強塩基性陰イオン交換樹脂には色素成分の
吸着蓄積を防止するために酸、酸化剤等による回生操作
が必須であるが、混床式ではこの回生操作に極めて煩雑
な手順を要するため、回生操作をできるだけ回避してお
り、色素成分の吸着能力が徐々に低下していくという問
題があった。
However, in the mixed bed type, the volume change of the weakly acidic cation exchange resin before and after the passage of the sucrose liquid is extremely large, and the strong basic anion exchange resin in the liquid passing state and the liquid passing state are the same. Since the specific gravity is relatively close to that of the weakly acidic cation exchange resin in Fig. 3, separation regeneration of both ion exchange resins is incomplete during regeneration of the mixed bed, and regeneration failure is likely to occur. In order to prevent the adsorption and accumulation of dye components in the exchange resin, regeneration operation with acid, oxidant, etc. is indispensable, but in the mixed bed type, this regeneration operation requires an extremely complicated procedure, so avoid regeneration operation as much as possible. Therefore, there is a problem that the adsorption ability of the dye component gradually decreases.

【0004】[0004]

【発明が解決しようとする課題】本発明は混床式ショ糖
液精製装置における強塩基性陰イオン交換樹脂と弱酸性
陽イオン交換樹脂との分離不完全による再生不良を解消
し、かつ強塩基性陰イオン交換樹脂への色素成分の蓄積
を防止し、常に液質の安定した処理ショ糖液が得られる
再生法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention eliminates a regeneration failure due to incomplete separation of a strongly basic anion exchange resin and a weakly acidic cation exchange resin in a mixed bed type sucrose liquid purifying apparatus, and a strong base. It is an object of the present invention to provide a regeneration method which prevents accumulation of a dye component in a cationic anion exchange resin and can always obtain a treated sucrose solution having a stable liquid quality.

【0005】本発明は上記目的を達成するものであっ
て、その発明の要旨とするところは、強塩基性陰イオン
交換樹脂と弱酸性陽イオン交換樹脂を充填してなる混床
式ショ糖液精製装置を再生するにあたり、強塩基性陰イ
オン交換樹脂と弱酸性陽イオン交換樹脂との混床に塩酸
溶液を接触させる第1工程、この混床の底部より食塩水
を注入して強塩基性陰イオン交換樹脂層と弱酸性陽イオ
ン交換樹脂層に成層分離する第2工程、上記強塩基性陰
イオン交換樹脂層に苛性ソ−ダ溶液を接触させる第3工
程、上記強塩基性陰イオン交換樹脂層と弱酸性陽イオン
交換樹脂層とを混床にする第4工程を順次行なうことを
特徴とする混床式ショ糖液精製装置の再生法に存する。
The present invention achieves the above object, and the gist of the invention is to provide a mixed-bed sucrose solution filled with a strongly basic anion exchange resin and a weakly acidic cation exchange resin. In regenerating the purification device, the first step of contacting the hydrochloric acid solution with the mixed bed of the strongly basic anion exchange resin and the weakly acidic cation exchange resin, injecting saline from the bottom of this mixed bed to make it strongly basic. The second step of stratifying and separating the anion exchange resin layer and the weakly acidic cation exchange resin layer, the third step of bringing the caustic soda solution into contact with the strong basic anion exchange resin layer, and the strong basic anion exchange The present invention resides in a method for regenerating a mixed-bed sucrose solution purifying apparatus, which comprises sequentially performing a fourth step of mixing a resin layer and a weakly acidic cation exchange resin layer.

【0006】本発明の方法を添付の図1によって説明す
る。図1は本発明を実施するに当って用いられる混床式
ショ糖液精製装置の一例の垂直断面略図であって、図
中、1は樹脂塔、2は強塩基性陰イオン交換樹脂と弱酸
性陽イオン交換樹脂とからなる混床、3は分散管、4は
下部集液管、5は中間コレクタ−、6、7、8及び9は
配管、10は混床が成層分離処理に付されたときの両樹
脂層の境界面に当る箇所を示す。
The method of the present invention will be described with reference to the attached FIG. FIG. 1 is a schematic vertical sectional view of an example of a mixed bed type sucrose solution purifying apparatus used for carrying out the present invention. In the figure, 1 is a resin tower, 2 is a strongly basic anion exchange resin and a weak one. Mixed bed composed of acidic cation exchange resin, 3 is a dispersion tube, 4 is a lower collecting tube, 5 is an intermediate collector, 6, 7, 8 and 9 are pipes, and 10 is a mixed bed subjected to stratification treatment. The location of the boundary surface between the two resin layers is shown.

【0007】まず、再生に先だつショ糖液の精製処理に
ついて説明すると、ショ糖液は配管6、次いで分散管3
を経て樹脂塔1内に導入され、混床2を下向流で流下
し、ここで不純物が除去された後、下部集液管4、配管
9を経て処理液として精製ショ糖液が得られる。ショ糖
液は処理ショ糖液の純度が悪くなる傾向を示すまで、又
は予め定められた量を処理するまで通液する。通液終了
後は、樹脂塔1内に残留するショ糖液を回収し、しかる
後、混床2の再生を行なう。
First, the purification process of the sucrose solution prior to the regeneration will be described.
After being introduced into the resin tower 1 through the mixed bed 2 in a downward flow and impurities are removed therein, a refined sucrose solution is obtained as a processing solution through the lower liquid collecting pipe 4 and the pipe 9. . The sucrose solution is allowed to flow until the purity of the treated sucrose solution tends to deteriorate, or until a predetermined amount is processed. After the passage of the liquid, the sucrose solution remaining in the resin tower 1 is recovered, and then the mixed bed 2 is regenerated.

【0008】この混床2の再生処理に本発明の特徴があ
るが、従来の再生法との差を明確にするため、まず従来
の再生法を説明する。従来法では、配管9、下部集液管
4より脱塩水等の逆洗水を導入し、上層を強塩基性陰イ
オン交換樹脂層、下層を弱酸性陽イオン交換樹脂層に成
層分離する。次いで塩酸等の再生剤液を配管6、分散管
3より通薬し、再生廃液を下部集液管4、配管9から排
出することによって下層の弱酸性陽イオン交換樹脂層を
再生する。
The regeneration treatment of this mixed bed 2 is characteristic of the present invention, but in order to clarify the difference from the conventional regeneration method, the conventional regeneration method will be described first. In the conventional method, backwash water such as demineralized water is introduced from the pipe 9 and the lower liquid collection pipe 4, and the upper layer is stratified and separated into the strongly basic anion exchange resin layer and the lower layer into the weakly acidic cation exchange resin layer. Next, a regenerant liquid such as hydrochloric acid is passed through the pipe 6 and the dispersion pipe 3, and the waste regenerated liquid is discharged from the lower liquid collection pipe 4 and the pipe 9 to regenerate the lower weakly acidic cation exchange resin layer.

【0009】次に苛性ソ−ダ等の再生剤を配管6、分散
管3より下向流で通薬して再生廃液は強塩基性陰イオン
交換樹脂層と弱酸性陽イオン交換樹脂層の境界面に当る
箇所10の付近に設置した中間コレクタ−5より排出す
ることにより、上層の強塩基性陰イオン交換樹脂層を再
生する。再生剤の通薬が終了すると、必要に応じて脱塩
水等の水洗水を分散管3及び下部集液管4より注入し、
中間コレクタ−5より排出することにより両樹脂を混合
状態にして混床を形成し、次のショ糖液の精製に供す
る。
Next, a regenerant such as caustic soda is passed through the pipe 6 and the dispersion pipe 3 in a downward flow, and the regenerated waste liquid is a boundary between the strongly basic anion exchange resin layer and the weakly acidic cation exchange resin layer. By discharging from the intermediate collector-5 installed in the vicinity of the surface contacting portion 10, the upper strong basic anion exchange resin layer is regenerated. When the passage of the regenerant is completed, washing water such as demineralized water is injected from the dispersion pipe 3 and the lower liquid collecting pipe 4 as necessary,
By discharging from the intermediate collector-5, both resins are mixed to form a mixed bed and used for the next purification of the sucrose solution.

【0010】このような従来法においては、強塩基性陰
イオン交換樹脂と弱酸性陽イオン交換樹脂の比重が近接
しているために良好な成層分離が行なわれ難く、そのた
め強塩基性陰イオン交換樹脂を再生する際に弱酸性陽イ
オン交換樹脂が苛性ソ−ダで汚染され、ショ糖液の脱塩
純度が向上しない。さらに、強塩基性陰イオン交換樹脂
に吸着した色素成分を脱離させる回生操作を付加させな
いと、色素成分の蓄積が進行し、色素成分の吸着能力が
徐々に低下していくおそれがある。
In such a conventional method, since the specific gravities of the strongly basic anion exchange resin and the weakly acidic cation exchange resin are close to each other, it is difficult to perform good stratification, and therefore, the strong basic anion exchange resin is difficult to separate. When the resin is regenerated, the weakly acidic cation exchange resin is contaminated with caustic soda, and the desalination purity of the sucrose solution is not improved. Furthermore, unless a regeneration operation for desorbing the dye component adsorbed on the strongly basic anion exchange resin is added, the dye component may be accumulated and the dye component adsorbing ability may be gradually reduced.

【0011】一方、本発明方法においては、まず配管
6、分散管3から塩酸溶液を通薬して混床2に塩酸溶液
を接触させ、再生廃液を下部集液管4、配管9より排出
して弱酸性陽イオン交換樹脂を再生する第1工程を行な
う。その際の塩酸溶液の通液条件は濃度3〜8重量%、空
間速度(SV)2〜5/時、再生レベル60〜100 g(HCl)/1000
ml(陽イオン交換樹脂)を目安とし、弱酸性陽イオン交換
樹脂の負荷状態に応じて調整変更する。次いで、配管
9、下部集液管4より食塩水を上向流で注入して廃液を
分散管3、配管7より排出することにより、混床2を強
塩基性陰イオン交換樹脂層及び弱酸性陽イオン交換樹脂
層に成層分離する第2工程を行なう。
On the other hand, in the method of the present invention, first, the hydrochloric acid solution is passed through the pipe 6 and the dispersion pipe 3 to bring the hydrochloric acid solution into contact with the mixed bed 2, and the waste waste liquid is discharged from the lower liquid collecting pipe 4 and the pipe 9. The first step of regenerating the weakly acidic cation exchange resin is performed. At that time, the hydrochloric acid solution was passed under the following conditions: concentration 3 to 8% by weight, space velocity (SV) 2 to 5 / hour, regeneration level 60 to 100 g (HCl) / 1000.
Using ml (cation exchange resin) as a guide, adjust and change according to the load condition of the weakly acidic cation exchange resin. Then, saline is injected from the pipe 9 and the lower liquid collecting pipe 4 in an upward flow, and the waste liquid is discharged from the dispersion pipe 3 and the pipe 7, whereby the mixed bed 2 is made to have a strong basic anion exchange resin layer and a weak acidity. A second step of stratifying and separating the cation exchange resin layer is performed.

【0012】この第2工程で用いる食塩水は、大きな枠
としては回生操作が行なわれる10〜20重量%の範囲から
選ばれるが、その中から次の条件を満たす比重のものが
使用される。即ち、上記第1工程を経た時点における両
イオン交換樹脂それぞれの形のものの比重(強塩基性陰
イオン交換樹脂ではそれの負荷形のものの比重と、弱酸
性陽イオン交換樹脂ではそれの再生形のものの比重)の
間の比重に食塩水の濃度調整を行ない、これを使用して
両樹脂の完全な成層分離を図る。
The salt solution used in the second step is selected from the range of 10 to 20% by weight in which a regenerating operation is carried out as a large frame. Among them, one having a specific gravity satisfying the following conditions is used. That is, the specific gravity of each form of both ion exchange resins at the time of passing through the first step (specific gravity of the loaded form of the strongly basic anion exchange resin and that of the regenerated form of the weakly acidic cation exchange resin). The specific gravity between those) is adjusted to the specific gravity between them, and this is used to achieve complete stratification of both resins.

【0013】食塩水の注入は両イオン交換樹脂が流動す
る流速5〜8 m/時で10分間程度、両樹脂の成層分離が完
遂されるまで行なうが、食塩水の注入により、強塩基性
陰イオン交換樹脂に吸着された色素成分の脱離、即ち回
生操作も同時に行なわれるので、樹脂の汚染状況に応じ
て適宜注入時間を延長してもよいし、また50〜80℃程度
に昇温して注入しても良い。
Injection of saline solution is carried out at a flow rate of both ion exchange resins of 5 to 8 m / hour for about 10 minutes until the layer separation of both resins is completed. Desorption of the dye component adsorbed on the ion-exchange resin, that is, regeneration operation is also performed at the same time, so the injection time may be appropriately extended depending on the contamination condition of the resin, or the temperature may be raised to about 50 to 80 ° C. You may inject it.

【0014】上記第2工程に続いて第3工程として強塩
基性陰イオン交換樹脂の再生を行なうが、その操作手順
は、さきに従来法において説明したと同じ手順、即ち再
生剤としての苛性ソ−ダ溶液を、配管6、分散管3より
下向流で通薬し、成層分離されて上層に位置する強塩基
性陰イオン交換樹脂を再生した後、その廃液は中間コレ
クタ−5より排出する。
The strongly basic anion exchange resin is regenerated as a third step following the second step. The operation procedure is the same as that described in the conventional method, that is, caustic soot as a regenerant. -The Da solution is passed through the pipe 6 and the dispersion pipe 3 in a downward flow to regenerate the strongly basic anion exchange resin which is stratified and located in the upper layer, and then the waste liquid is discharged from the intermediate collector-5. .

【0015】再生剤の苛性ソ−ダ溶液の通薬条件は濃度
3〜5重量%、空間速度2〜6/時、再生レベル80〜100 g
(NaOH)/1000 ml(陰イオン交換樹脂)の範囲である。苛
性ソ−ダ溶液の通薬により強塩基性陰イオン交換樹脂の
再生を行なった後は、必要に応じ上記従来法と同様な操
作手順により脱塩水を導入して両樹脂層を水洗する。こ
れに続いて、成層分離されていた陰、陽両イオン交換樹
脂層を、常法に従って混床状態にする第4工程を行な
い、これが終れば次のショ糖液の精製工程に移る。
The replenishing conditions of the caustic soda solution of the regenerant are concentration.
3-5% by weight, space velocity 2-6 / hour, playback level 80-100 g
The range is (NaOH) / 1000 ml (anion exchange resin). After the strong basic anion exchange resin is regenerated by passing through a caustic soda solution, demineralized water is introduced by an operation procedure similar to the above-mentioned conventional method to wash both resin layers with water, if necessary. Following this, a fourth step of bringing the anion and cation ion exchange resin layers which have been stratified and separated into a mixed bed state according to a conventional method is carried out, and when this is completed, the next step of purifying the sucrose solution is carried out.

【0016】[0016]

【実施例】次に本発明方法の実施例を説明するが、本発
明はその要旨を越えない限り、以下の実施例によって制
限を受けるものでない。 実施例1 強塩基性陰イオン交換樹脂であるダイヤイオンPA312[三
菱化成(株)製,ダイヤイオンは同社登録商標]2000 mlと
弱酸性陽イオン交換樹脂であるダイヤイオンWK11[三菱
化成(株)製]1000 mlを内径10 cm,長さ100 cmのジャケッ
ト付ガラスカラムに充填して混床を形成させる。
EXAMPLES Next, examples of the method of the present invention will be described, but the present invention is not limited by the following examples unless it exceeds the gist. Example 1 Diaion PA312 [manufactured by Mitsubishi Kasei Co., Ltd., Diaion is a registered trademark of Mitsubishi Kasei Co., Ltd.] 2000 ml which is a strongly basic anion exchange resin and Diaion WK11 [Mitsubishi Kasei Co., Ltd.] which is a weakly acidic cation exchange resin. 1000 ml is packed into a jacketed glass column with an inner diameter of 10 cm and a length of 100 cm to form a mixed bed.

【0017】この混床に5重量%の塩酸水溶液1200 mlを
カラム上端から空間速度2.5/時の下向流で通薬し(第1
工程)、次いで濃度17重量%(比重1.13)の食塩水をカラ
ム底部より流速7.5 m/時の上向流で15分間注入し、強
塩基性陰イオン交換樹脂層と弱酸性陽イオン交換樹脂層
に成層分離する(第2工程)。この第2工程における食塩水
の注入時、強塩基性陰イオン交換樹脂(ダイヤイオンPA3
12)は負荷形(Cl形)であって、そのときの比重は1.08で
あり、一方弱酸性陽イオン交換樹脂(ダイヤイオンWK11)
は再生形(H形)であって、そのときの比重は1.16であ
り、使用した食塩水の比重は、上記のように両樹脂の比
重の中間に当る。
To this mixed bed, 1200 ml of a 5 wt% hydrochloric acid aqueous solution was passed from the upper end of the column in a downward flow of space velocity 2.5 / hour (first
Process), and then 17% by weight (specific gravity 1.13) saline solution was injected from the bottom of the column at an upward flow rate of 7.5 m / h for 15 minutes to form a strong basic anion exchange resin layer and a weakly acidic cation exchange resin layer. The layer is separated into layers (second step). During injection of saline solution in this second step, strong basic anion exchange resin (Diaion PA3
12) is a load type (Cl type), and the specific gravity at that time is 1.08, while a weakly acidic cation exchange resin (Diaion WK11)
Is a regenerated type (H type), the specific gravity at that time is 1.16, and the specific gravity of the saline solution used is in the middle of the specific gravity of both resins as described above.

【0018】上記第2工程に続いて濃度4重量%の苛性ソ
−ダ水溶液3800 mlを空間速度5/時でカラム上端より下
向流で通薬し、カラム底部より上方13 cmの位置にある
中間コレクタ−より排出することにより強塩基性陰イオ
ン交換樹脂層を再生する(第3工程)。次いで脱塩水の合
計量40 lを空間速度5/時でカラムの上端及び底部より
夫々20 lづつ注入し、中間コレクタ−より排出すること
により両樹脂を水洗し、しかる後、カラム底部より加圧
空気を送入して各樹脂層を混合し、混床を形成させる
(第4工程)。以上のようにして再生操作を終えた後、下
記に示す物性からなるショ糖液(1回分50 l)を液温50
℃、空間速度2/時でカラム混床に通液し、得られた処
理液の電気伝導率とスタンマ−色価(SCV)を測定した。
Following the second step, 3800 ml of a caustic soda aqueous solution having a concentration of 4% by weight was passed downward at a space velocity of 5 / hour from the upper end of the column, and the position was 13 cm above the bottom of the column. The strongly basic anion exchange resin layer is regenerated by discharging it from the intermediate collector (third step). Then, a total volume of 40 l of demineralized water was injected at a space velocity of 5 / hour, 20 l from the top and bottom of the column, respectively, and both resins were washed with water by discharging from the intermediate collector, and then pressurized from the bottom of the column. Introduce air to mix each resin layer and form a mixed bed
(4th step). After the regeneration operation was completed as described above, a sucrose solution (50 l for 1 batch) having the physical properties shown below was added at a solution temperature of 50.
The mixture was passed through a column mixed bed at a space velocity of 2 / hour at a temperature of ℃, and the electrical conductivity and the stamper color value (SCV) of the obtained treatment liquid were measured.

【0019】(ショ糖液の物性) 電気伝導率 310μS/cm ブリックス 50 pH 7.3 スタンマ−色価 0.3(Physical properties of sucrose solution) Electric conductivity 310 μS / cm Brix 50 pH 7.3 Stamper color value 0.3

【0020】上記ショ糖液の脱色、脱塩処理が終われば
再び上記再生法により混床を再生し、このようにして、
ショ糖液の精製処理と陰,陽イオン交換樹脂の再生処理
を繰り返す。この繰り返しにおける第30回目の50 lのシ
ョ糖液の精製時に排出されてきた処理液について測定し
た電気伝導率[μS/cm・25℃]を図2に、またスタンマ
−色価を図3に示す。
When the sucrose solution has been decolorized and desalted, the mixed bed is regenerated by the above regeneration method.
The purification process of sucrose solution and the regeneration process of anion and cation exchange resin are repeated. The electrical conductivity [μS / cm · 25 ° C] measured for the treated solution discharged during the 30th purification of 50 l sucrose solution in this repetition is shown in Fig. 2 and the stamma color value is shown in Fig. 3. Show.

【0021】比較例1 上記実施例1におけると同じカラムを用い、同一銘柄の
樹脂の同等量により混床を形成させたショ糖液精製装置
で比較試験を行なった。この比較例での樹脂の再生は次
のように行なった。まず、カラム底部より脱塩水を流速
7.5 m/時の上向流で15分間注入し、強塩基性陰イオン
交換樹脂層と弱酸性陽イオン交換樹脂層に成層分離し
た。次にカラム上端より塩酸水溶液を下向流で通薬し、
再生廃液をカラム底部より排出する。これに続いて苛性
ソ−ダ水溶液をカラム上端より通薬し、再生廃液は中間
コレクタ−より排出して両樹脂層を再生した。
Comparative Example 1 A comparative test was conducted by using the same column as in Example 1 above and using a sucrose solution purifying apparatus in which a mixed bed was formed with an equal amount of resins of the same brand. Regeneration of the resin in this comparative example was performed as follows. First, flow demineralized water from the bottom of the column.
It was injected at an upward flow of 7.5 m / hour for 15 minutes, and stratified into a strongly basic anion exchange resin layer and a weakly acidic cation exchange resin layer. Next, pass an aqueous hydrochloric acid solution downward from the top of the column,
Drain the regeneration waste liquid from the bottom of the column. Following this, an aqueous solution of caustic soda was passed through from the upper end of the column, and the waste liquid for regeneration was discharged from an intermediate collector to regenerate both resin layers.

【0022】各再生剤液の濃度、通薬条件は実施例1と
同じにした。そして両樹脂層の再生を行なった後は、実
施例1と同じ手順により水洗を行ない、しかる後、混床
を形成させ、次のショ糖液の精製を行ない、更に再生を
繰り返すというように、ショ糖液の精製処理とイオン交
換樹脂の再生処理を繰り返す。そして、実施例1におけ
ると同様に、30回目に処理されたショ糖液について電気
伝導率とスタンマ−色価を測定する。その結果を実施例
1のものと比較するため、電気伝導率の変化を図2に、
スタンマ−色価の変化を図3に示す。
The concentrations of the respective regenerant liquids and the conditions for passing the chemicals were the same as in Example 1. Then, after regenerating both resin layers, washing with water is carried out by the same procedure as in Example 1, after which a mixed bed is formed, the next sucrose solution is purified, and the regeneration is further repeated. The purification treatment of the sucrose solution and the regeneration treatment of the ion exchange resin are repeated. Then, as in Example 1, the electrical conductivity and the stamper color value of the sucrose solution treated for the 30th time are measured. In order to compare the result with that of Example 1, the change in electrical conductivity is shown in FIG.
Fig. 3 shows the change in the color number of the stamper.

【0023】[0023]

【発明の効果】食塩水を用いた混床の再生時に、強塩基
性陰イオン交換樹脂層と弱酸性陽イオン交換樹脂層の成
層分離が極めた良好に行なわれるので、分離不完全によ
る再生不良が解消され、同時に強塩基性陰イオン交換樹
脂には回生操作が付加されることになり、色素成分の蓄
積が防止されるので、純度の安定した精製ショ糖液が得
られる。
EFFECTS OF THE INVENTION During regeneration of a mixed bed using a saline solution, the strong basic anion exchange resin layer and the weakly acidic cation exchange resin layer are separated very well, so that the regeneration is defective due to imperfect separation. Is eliminated, and at the same time, a regenerative operation is added to the strongly basic anion exchange resin, and the accumulation of dye components is prevented, so that a purified sucrose solution with stable purity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するにあたって使用する混床
式ショ糖液精製装置の垂直断面略図。
FIG. 1 is a schematic vertical cross-sectional view of a mixed bed type sucrose solution purifying apparatus used for carrying out the method of the present invention.

【図2】実施例及び比較例における処理ショ糖液の電気
伝導率の変化比較図。
FIG. 2 is a comparative diagram showing changes in electric conductivity of treated sucrose solutions in Examples and Comparative Examples.

【図3】実施例及び比較例における処理ショ糖液のスタ
ンマ−色価の変化比較図。
FIG. 3 is a comparative diagram of changes in the stamma-color value of treated sucrose solutions in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1樹脂塔 2混床 3分散管 4下部集液管 5中間コレクタ− 1 Resin Tower 2 Mixed Bed 3 Dispersion Tube 4 Lower Liquid Collection Tube 5 Intermediate Collector-

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 強塩基性陰イオン交換樹脂と弱酸性陽イ
オン交換樹脂を充填してなる混床式ショ糖液精製装置を
再生するにあたり、強塩基性陰イオン交換樹脂と弱酸性
陽イオン交換樹脂との混床に塩酸溶液を接触させる第1
工程、この混床の底部より食塩水を注入して強塩基性陰
イオン交換樹脂層と弱酸性陽イオン交換樹脂層に成層分
離する第2工程、上記強塩基性陰イオン交換樹脂層に苛
性ソ−ダ溶液を接触させる第3工程、上記強塩基性陰イ
オン交換樹脂層と弱酸性陽イオン交換樹脂層とを混床に
する第4工程を順次行なうことを特徴とする混床式ショ
糖液精製装置の再生法。
1. A strong basic anion exchange resin and a weakly acidic cation exchange resin are used for regenerating a mixed bed type sucrose solution purifying apparatus filled with a strongly basic anion exchange resin and a weakly acidic cation exchange resin. First contacting hydrochloric acid solution to the mixed bed with resin
Step, a second step of injecting saline from the bottom of this mixed bed to stratify the strongly basic anion exchange resin layer and the weakly acidic cation exchange resin layer, and the strong basic anion exchange resin layer to the caustic soda layer. A mixed-bed sucrose solution, characterized in that a third step of contacting the Da solution and a fourth step of mixing the strongly basic anion exchange resin layer and the weakly acidic cation exchange resin layer are sequentially performed. Regeneration method of refining equipment.
【請求項2】 第2工程において使用する食塩水の比重
を、混床を構成している強塩基性陰イオン交換樹脂の負
荷形での比重と、同じく混床を構成している弱酸性陽イ
オン交換樹脂の再生形での比重との間に調整することを
特徴とする請求項1記載の混床式ショ糖液精製装置の再
生法。
2. The specific gravity of the saline solution used in the second step is the same as the specific gravity of the strongly basic anion exchange resin constituting the mixed bed in the loaded form, and the weak acidic cation which also constitutes the mixed bed. The method for regenerating a mixed-bed sucrose solution purifying apparatus according to claim 1, wherein the ion-exchange resin is adjusted to a specific gravity in a regenerated form.
JP27295793A 1993-10-06 1993-10-06 Regeneration method of mixed bed type sucrose solution purification equipment Expired - Lifetime JP3638624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27295793A JP3638624B2 (en) 1993-10-06 1993-10-06 Regeneration method of mixed bed type sucrose solution purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27295793A JP3638624B2 (en) 1993-10-06 1993-10-06 Regeneration method of mixed bed type sucrose solution purification equipment

Publications (2)

Publication Number Publication Date
JPH0799999A true JPH0799999A (en) 1995-04-18
JP3638624B2 JP3638624B2 (en) 2005-04-13

Family

ID=17521148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27295793A Expired - Lifetime JP3638624B2 (en) 1993-10-06 1993-10-06 Regeneration method of mixed bed type sucrose solution purification equipment

Country Status (1)

Country Link
JP (1) JP3638624B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355100A (en) * 2001-05-31 2002-12-10 Japan Organo Co Ltd Mixed bed molasses-purifying device, method for regenerating mixed bed molasses-purifying device and method for purifying molasses
JP2012086123A (en) * 2010-10-18 2012-05-10 Japan Organo Co Ltd Method for separating mixed resin of mixed bed resin packed column
CN112295609A (en) * 2020-09-29 2021-02-02 华能莱芜发电有限公司 Renewable ion exchange resin tower and regeneration method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355100A (en) * 2001-05-31 2002-12-10 Japan Organo Co Ltd Mixed bed molasses-purifying device, method for regenerating mixed bed molasses-purifying device and method for purifying molasses
JP4593830B2 (en) * 2001-05-31 2010-12-08 オルガノ株式会社 Mixed-bed type sugar solution refining device, regenerating method of mixed-bed type sugar solution purifying device, and purification method
JP2012086123A (en) * 2010-10-18 2012-05-10 Japan Organo Co Ltd Method for separating mixed resin of mixed bed resin packed column
CN112295609A (en) * 2020-09-29 2021-02-02 华能莱芜发电有限公司 Renewable ion exchange resin tower and regeneration method thereof
CN112295609B (en) * 2020-09-29 2024-05-10 华能莱芜发电有限公司 Renewable ion exchange resin tower and regeneration method thereof

Also Published As

Publication number Publication date
JP3638624B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
JP4210403B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP6265750B2 (en) Method and apparatus for purifying sucrose solution
JP3638624B2 (en) Regeneration method of mixed bed type sucrose solution purification equipment
JPS6260942B2 (en)
JP3765653B2 (en) Separation method of mixed resin in mixed bed type ion exchange resin tower and regeneration method of mixed bed type sucrose purification device
US3252897A (en) Process for purifying weak electrolytes and nonelectrolytes
JP3592452B2 (en) Mixed-bed sugar liquid purification equipment
JP2002361247A (en) Method for manufacturing pure water
JPH0577400B2 (en)
GB2063094A (en) Water purification by ion exchange
JP2845489B2 (en) Regeneration method of mixed-bed sucrose liquid purification equipment
JP4216998B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP2654053B2 (en) Condensate desalination equipment
JPH10128128A (en) Method for separation and regeneration of ion exchange resin
JP2000153166A (en) Regeneration of mixed bed type ion exchange apparatus
JPH0999244A (en) Method for separating and regenerating ion exchange resin
JPS621307B2 (en)
JP2742975B2 (en) Regeneration method of ion exchange device
JP4294203B2 (en) Regeneration method of sugar liquid purification equipment
JP4245745B2 (en) Mixed bed type sugar liquid purification equipment
JP2664495B2 (en) Method for purification or regeneration of contaminated or used process sulfolane
JPH0724778B2 (en) Regeneration method of mixed ion exchange resin
JPS5924663B2 (en) Solution processing method
JP3963599B2 (en) Acid component removal method
JPS6259630B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

EXPY Cancellation because of completion of term