JPH0798972B2 - Ultra low carbon steel melting method - Google Patents

Ultra low carbon steel melting method

Info

Publication number
JPH0798972B2
JPH0798972B2 JP3156755A JP15675591A JPH0798972B2 JP H0798972 B2 JPH0798972 B2 JP H0798972B2 JP 3156755 A JP3156755 A JP 3156755A JP 15675591 A JP15675591 A JP 15675591A JP H0798972 B2 JPH0798972 B2 JP H0798972B2
Authority
JP
Japan
Prior art keywords
hydrogen
decarburization
molten steel
gas
low carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3156755A
Other languages
Japanese (ja)
Other versions
JPH04333512A (en
Inventor
公治 山口
康夫 岸本
敏和 桜谷
勝 鷲尾
和久 浜上
廣 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP3156755A priority Critical patent/JPH0798972B2/en
Priority to US07/767,984 priority patent/US5152831A/en
Priority to KR1019910017388A priority patent/KR940006490B1/en
Priority to DE69118878T priority patent/DE69118878T3/en
Priority to EP91116861A priority patent/EP0520085B2/en
Priority to CA002052737A priority patent/CA2052737C/en
Publication of JPH04333512A publication Critical patent/JPH04333512A/en
Publication of JPH0798972B2 publication Critical patent/JPH0798972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製鋼炉で溶製された未
脱酸もしくは弱脱酸溶鋼をRH法、DH法、VOD法等
を用いて脱炭して、鋼中炭素濃度10ppm未満の極低
炭素鋼を迅速にかつ装置の操業性を損なうことなく溶製
することができる、真空脱炭処理による極低炭素鋼の製
造方法に関するものである。
FIELD OF THE INVENTION The present invention is to decarburize undeoxidized or weakly deoxidized molten steel produced in a steelmaking furnace by using the RH method, the DH method, the VOD method, etc., and the carbon concentration in the steel is less than 10 ppm. The present invention relates to a method for producing ultra-low carbon steel by vacuum decarburization, which can rapidly produce the ultra-low carbon steel without impairing the operability of the apparatus.

【0002】[0002]

【従来の技術】冷延鋼板の焼鈍プロセスの短期化及び能
率向上の観点から、連続焼鈍設備の採用が近年盛んであ
る。これに適合する素材として炭素濃度(重量分率、以
下〔C〕と記す)10ppmないし数ppmの極低炭素
鋼が要求されるようになってきた。
2. Description of the Related Art In recent years, continuous annealing equipment has been actively used from the viewpoint of shortening the annealing process of cold-rolled steel sheets and improving efficiency. Ultra-low carbon steel having a carbon concentration (weight fraction, hereinafter referred to as [C]) of 10 ppm to several ppm has been required as a material suitable for this.

【0003】極低炭素鋼は従来から、転炉において
〔C〕=0.02〜0.05重量%まで脱炭した溶鋼
を、RH法等の真空脱ガス装置を用いて減圧下で脱炭す
る方法により溶製されてきた。真空脱ガス装置による脱
炭では、〔C〕<50ppmの極低炭領域において、次
第に脱炭速度が低下するため、〔C〕<10ppmとい
った極低炭素鋼を工業的に大量に溶製することは困難で
あった。例えばRH真空脱ガス装置を用いて転炉で溶製
された未脱酸溶鋼を〔C〕<10ppmまで脱炭する場
合には、環流速度を増大するなどの対策をとったとして
も30〜40分以上といった長時間の脱炭処理を必要と
していた。
Ultra-low carbon steel is conventionally decarburized from molten steel decarburized in a converter to [C] = 0.02 to 0.05% by weight under reduced pressure using a vacuum degassing apparatus such as the RH method. Has been melted by the method. In decarburization with a vacuum degasser, the decarburization rate gradually decreases in the extremely low carbon region of [C] <50 ppm. Therefore, it is necessary to industrially produce a large amount of extremely low carbon steel such as [C] <10 ppm. Was difficult. For example, in the case of decarburizing undeoxidized molten steel melted in a converter using a RH vacuum degassing apparatus to [C] <10 ppm, even if measures such as increasing the reflux rate are taken, it is 30-40 It required decarburization for a long time such as more than a minute.

【0004】このような極低炭素濃度領域における反応
の律速過程は、溶鋼中の炭素の反応サイトへの物質移動
過程であると考えられていることから、反応界面積を増
大して反応速度を向上する試みがなされている。その場
合の反応サイトとしては、溶鋼内気泡/溶鋼界面、脱ガ
ス容器内鋼浴表面、気泡が鋼浴を離脱する際に随伴する
スプラッシュなどが想定されるが、その各々の寄与は必
ずしも明確ではなく、撹拌用あるいは環流用のArガス
量を増すことが上記3点に有効であろうとの観点から、
5Nm3 /分にも及ぶ大量のArガスを溶鋼中へ吹き込
む技術がRH脱ガス装置において採用されている現状に
とどまる。
Since the rate-determining process of the reaction in such an extremely low carbon concentration region is considered to be a mass transfer process of carbon in the molten steel to the reaction site, the reaction interface area is increased to increase the reaction rate. Attempts have been made to improve. The reaction sites in this case are assumed to be bubbles in the molten steel / melted steel interface, the surface of the steel bath in the degassing container, splashes that accompany bubbles when they leave the steel bath, but their contributions are not always clear. However, from the viewpoint that increasing the amount of stirring or refluxing Ar gas would be effective for the above three points,
The technology in which a large amount of Ar gas as high as 5 Nm 3 / min is blown into the molten steel is still used in the RH degasser.

【0005】さらに、極低炭素濃度域での脱炭反応の促
進方法としては、真空脱炭処理中に溶鋼中に多量の水素
を添加して脱ガス容器内で気泡を活発に発生させること
により気液界面積を増し脱炭反応を促進する方法が、特
開昭57−194206号公報に開示されている。真空
脱炭処理を継続しながら水素含有物質を添加する方法で
は、脱炭を効果的に促進するには235トン規模のRH
の場合で0.2〜1kg/分もの大量の水素ガスを溶鋼
鍋底部に設置した多孔質耐火物プラグ等を通して溶鋼中
に吹込む必要があった。本発明者らがこの方法について
250トン規模のRH脱ガス装置で実験を行ったところ
では、効果的に脱炭反応を促進するために5ppm程度
の鋼中水素濃度を維持するには、2.5Nm3 /分もの
大量の水素ガス相当の水素を溶鋼中に添加することが必
要である。
Further, as a method for promoting the decarburization reaction in an extremely low carbon concentration range, a large amount of hydrogen is added to the molten steel during the vacuum decarburization treatment to actively generate bubbles in the degassing vessel. A method for increasing the gas-liquid interface area and promoting the decarburization reaction is disclosed in JP-A-57-194206. In the method of adding the hydrogen-containing substance while continuing the vacuum decarburization treatment, in order to effectively promote the decarburization, the RH of 235 tons scale
In this case, it was necessary to blow a large amount of hydrogen gas of 0.2 to 1 kg / min into the molten steel through a porous refractory plug installed at the bottom of the molten steel pot. When the present inventors conducted experiments on this method using a RH degassing apparatus on a scale of 250 tons, in order to effectively promote the decarburization reaction, in order to maintain a hydrogen concentration in steel of about 5 ppm, 2. It is necessary to add a large amount of hydrogen gas equivalent to 5 Nm 3 / min to the molten steel.

【0006】[0006]

【発明が解決しようとする課題】RH真空脱ガス装置で
は、脱炭速度を増大するために環流速度を増大する方法
をとっても、〔C〕<10ppmまで脱炭するにはなお
30〜40分以上といった長時間の脱炭処理を必要と
し、大幅な溶製コストの増大と生産性の低下を招いてい
た。
In the RH vacuum degassing apparatus, even if the method of increasing the reflux rate to increase the decarburization rate is used, it is still necessary to decarburize for 30 to 40 minutes or more to decarburize to [C] <10 ppm. Such a long decarburization process is required, resulting in a large increase in melting cost and a decrease in productivity.

【0007】また真空脱炭処理中に溶鋼中に水素を添加
する方法では効果的に脱炭を促進するには大量の水素を
溶鋼中に添加する必要があった。しかし溶鋼鍋底部に設
置した多孔質耐火物プラグやインジェクションランスを
用いてこのような大量の水素ガスを取鍋内の溶鋼中に吹
込むことは、ガス撹拌に伴う溶鋼の飛散による設備損傷
の問題やガス吹込み羽口や浸漬管耐火物等の耐用性の観
点から工業的規模で実施することが困難であると考えら
れる。またRH脱ガス装置の場合浸漬管に設置された環
流ガス吹込み用羽口から水素ガスを吹込む方法も考えら
れるが、そのような方法では水素ガスの溶解効率が低
く、脱炭処理中の鋼中水素濃度が3ppm程度までしか
上昇せず、効果的な鋼中水素濃度が維持できないため脱
炭の促進効果が小さかった。
In addition, in the method of adding hydrogen to molten steel during vacuum decarburization, it was necessary to add a large amount of hydrogen to molten steel in order to effectively promote decarburization. However, injecting such a large amount of hydrogen gas into the molten steel in the ladle using a porous refractory plug or injection lance installed at the bottom of the molten steel ladle is a problem of equipment damage due to the molten steel scattering due to gas stirring. It is considered to be difficult to carry out on an industrial scale from the standpoint of durability of gas blown tuyere, dip tube refractory, etc. In the case of an RH degasser, a method of blowing hydrogen gas from a recirculating gas blowing tuyere installed in a dip tube is also conceivable. However, such a method has a low hydrogen gas dissolution efficiency and is not used during decarburization treatment. Since the hydrogen concentration in steel increased only up to about 3 ppm and the effective hydrogen concentration in steel could not be maintained, the decarburization promoting effect was small.

【0008】本発明は〔C〕<10ppmまでの極低炭
領域での脱炭を迅速に行うと共に、従来安定大量生産が
困難であった〔C〕<10ppmの超極低炭素鋼を安定
的に溶製可能な技術を提供しようとするものである。そ
の際に従来の方法に見られるような地金付きによる操業
性の悪化や、羽口や耐火物の耐用性などの問題を生じる
ことなく、工業的規模において上記課題を達成できる方
法を提供しようとするものである。
The present invention rapidly decarburizes in the extremely low carbon range of [C] <10 ppm, and stabilizes ultra-low carbon steel of [C] <10 ppm, which has been difficult to achieve stable mass production in the past. It is intended to provide technology that can be melted. At that time, it will be possible to provide a method capable of achieving the above-mentioned problems on an industrial scale without causing deterioration in operability due to the attachment of a metal as in the conventional method and problems such as durability of tuyere and refractory materials. It is what

【0009】[0009]

【課題を解決するための手段】本発明の技術手段は、製
鋼炉で溶製された未脱酸もしくは弱脱酸溶鋼をRH法、
DH法、VOD法等を用いて真空脱炭処理を行うにあた
り、所定の鋼中炭素濃度まで真空脱炭処理を行った後、
脱炭速度を低下させるかもしくは実質的に脱炭を停止し
て、水素を溶鋼中へ溶解させる水素添加処理を行って所
定水素濃度に調整し、その後再度真空脱炭処理を行うこ
とを特徴とする極低炭素鋼の溶製方法である。この場合
に〔C〕が25ppm以下の時点において前記水素添加
処理を行い、水素添加処理後の溶鋼中水素濃度(重量分
率、以下〔H〕と記す)を次の(1)式を満たす範囲と
するよう水素添加処理を行うとよい。
Means for Solving the Problems The technical means of the present invention is to use an RH method for producing undeoxidized or weakly deoxidized molten steel produced in a steelmaking furnace.
When performing vacuum decarburization treatment using the DH method, VOD method, etc., after performing vacuum decarburization treatment to a predetermined carbon concentration in steel,
It is characterized in that the decarburization rate is reduced or the decarburization is substantially stopped, a hydrogen addition treatment for dissolving hydrogen in molten steel is performed to adjust to a predetermined hydrogen concentration, and then the vacuum decarburization treatment is performed again. It is a method of melting ultra low carbon steel. In this case, the hydrogenation treatment was performed at a time when [C] was 25 ppm or less, and the hydrogen concentration in the molten steel after the hydrogenation treatment (weight fraction, hereinafter referred to as [H]) was in a range satisfying the following equation (1). It is advisable to perform hydrogenation treatment so that

【0010】 〔H〕≧(〔C〕−〔C〕final)/5+4 …(1) ただし、 〔H〕:溶鋼中水素濃度(ppm) 〔C〕final:脱炭目標〔C〕値(ppm) である。[H] ≧ ([C] − [C] final) / 5 + 4 (1) However, [H]: Hydrogen concentration in molten steel (ppm) [C] final: Target decarburization [C] value (ppm) ) Is.

【0011】また、水素添加処理中は脱ガス容器内の圧
力を20Torr以上とし、その後脱ガス容器内の圧力
2Torr以下として真空脱炭処理を行うとよい。ま
た、脱ガス容器内の圧力を30Torr以上とすれば、
必ずしも溶鋼中の深部から水素含有物質を添加する必要
はなく、脱ガス容器内の溶鋼浴面上に水素含有物質を添
加する手段によって水素添加処理を行ってもよい。
During the hydrogenation process, the pressure in the degassing vessel should be set to 20 Torr or higher, and then the pressure in the degassing vessel should be set to 2 Torr or lower to perform the vacuum decarburization processing. Moreover, if the pressure in the degassing container is set to 30 Torr or more,
It is not always necessary to add the hydrogen-containing substance from a deep portion in the molten steel, and hydrogenation treatment may be performed by means of adding the hydrogen-containing substance on the molten steel bath surface in the degassing vessel.

【0012】さらに、真空脱ガス装置としてRH真空脱
ガス装置を用いる場合には、水素を溶鋼中へ溶解させる
手段として、RH上昇管内側面の環流ガス用羽口、RH
上昇管内に吹込みガスが浮上するように鍋内溶鋼中に浸
漬されたインジェクションランス、RH脱ガス容器側面
に設置されたガス吹込み羽口、RH脱ガス容器内の溶鋼
浴面上に設置した水冷構造の昇降可能な上吹きランスの
うちいずれか一箇所以上から水素含有物質を吹込むこと
が好適である。
Further, when the RH vacuum degassing device is used as the vacuum degassing device, as means for dissolving hydrogen in the molten steel, a tuyere for recirculating gas on the inner surface of the RH riser pipe, RH
Injection lance immersed in molten steel in the pan so that the blown gas floats in the rising pipe, gas blowing tuyere installed on the side of the RH degassing vessel, installed on the molten steel bath surface in the RH degassing vessel It is preferable to blow the hydrogen-containing substance from any one or more of the upper blowing lances of the water cooling structure which can be moved up and down.

【0013】また、水素添加処理後に再度真空脱炭処理
を行う際に、RH脱ガス装置を用いる場合には、RH上
昇管内側面の環流ガス用羽口、溶鋼鍋に設置されたガス
吹込み羽口、鍋内溶鋼中に浸漬されたインジェクション
ランスのいずれか一箇所以上から水素含有物質を吹込む
ことによりさらに脱炭の促進が可能となる。前記水素含
有物質としては、水素ガス、水蒸気、水酸化カルシウ
ム、水酸化アルミニウム、水酸化マグネシウムのうち一
つ以上を含有するものを用いて前記水素添加処理を行
う。
When a vacuum decarburization process is carried out again after the hydrogenation process, if a RH degassing device is used, a recycle gas tuyere on the inner surface of the RH riser pipe and a gas blowing vane installed in a molten steel ladle. The decarburization can be further promoted by injecting the hydrogen-containing substance from at least one of the mouth and the injection lance immersed in the molten steel in the pot. As the hydrogen-containing substance, the hydrogenation treatment is performed using a substance containing at least one of hydrogen gas, water vapor, calcium hydroxide, aluminum hydroxide, and magnesium hydroxide.

【0014】[0014]

【作用】極低炭素濃度域での脱炭反応の促進方法とし
て、真空脱炭処理中に溶鋼中に多量の水素を添加して脱
ガス容器内で気泡を活発に発生させることにより気液界
面積を増し脱炭反応を促進する方法について、主として
250トン規模のRH脱ガス装置で実験を行ったところ
前述のように水素の添加方法に問題があり、工業的規模
においてこの方法を適用することは困難であった。そこ
で脱炭を促進するための効果的な水素添加方法について
発明者らが研究を行った結果、本方法を発明するに到っ
た。
[Operation] As a method of promoting the decarburization reaction in the extremely low carbon concentration range, a large amount of hydrogen is added to the molten steel during the vacuum decarburization treatment to actively generate bubbles in the degassing vessel, and thereby the gas-liquid interface Regarding the method of increasing the area and accelerating the decarburization reaction, experiments were conducted mainly with a 250-ton scale RH degasser, and as mentioned above, there was a problem with the method of adding hydrogen, and this method should be applied on an industrial scale. Was difficult. Therefore, as a result of the inventors' research on an effective hydrogenation method for promoting decarburization, the present invention has been invented.

【0015】真空脱炭処理を継続しながら水素含有物質
を添加する方法では、脱炭反応と同時に脱水素反応が起
こるために、脱炭促進に効果的な高い〔H〕を維持する
には高速で水素を添加する必要があった。しかし本発明
者らは、所定の〔C〕域において所定以上の〔H〕を得
られれば脱炭を促進するのに十分な効果が得られ、必ず
しも長時間にわたって高い〔H〕を維持する必要はない
ことを見出した。真空脱ガス処理中に〔H〕を高値に保
つことは、前述のように水素添加速度の問題で既存の設
備では操業上の困難を伴うが、一時的に真空脱ガス処理
を中断して〔H〕を上昇させるだけならば、比較的低い
添加速度でも容易に実現可能である。
In the method of adding the hydrogen-containing substance while continuing the vacuum decarburization treatment, the dehydrogenation reaction occurs at the same time as the decarburization reaction. Therefore, it is fast to maintain a high [H] effective for promoting decarburization. It was necessary to add hydrogen at. However, the inventors of the present invention can obtain a sufficient effect to promote decarburization if a predetermined [H] or more [H] is obtained in a predetermined [C] range, and it is necessary to maintain a high [H] for a long time. Found that there is no. Keeping [H] at a high value during the vacuum degassing process causes a difficulty in operation in the existing equipment due to the problem of the hydrogen addition rate as described above, but temporarily suspends the vacuum degassing process. If only H] is increased, it can be easily realized at a relatively low addition rate.

【0016】また、脱炭処理中の適当な時期において操
業真空度を低下させて脱ガス反応を抑制しつつ水素を添
加する水素添加処理により適当な〔C〕、〔H〕に調節
した後、再度操業真空度を向上させて脱ガス反応を活性
化する方法によっても効果的な脱炭の促進が可能であ
る。この場合〔H〕は水素添加処理で一旦上昇するが、
真空度を向上させた後は急速に低下して5分程度で2.
5ppm程度にまで低下する。一方、〔C〕は水素添加
処理中はあまり変化せず、その後の脱炭処理の初期5分
程度で急速に低下するが、〔H〕の低下と共に脱炭促進
効果も次第に低下し、〔H〕が2.5ppm程度以下に
まで低下すると脱炭速度は従来法のレベルまで低下す
る。
Further, after adjusting to appropriate [C] and [H] by a hydrogenation treatment in which hydrogen is added while suppressing the degassing reaction by lowering the operating vacuum degree at an appropriate time during the decarburization treatment, It is also possible to effectively promote decarburization by a method of activating the degassing reaction by improving the operation vacuum degree again. In this case, [H] rises once in the hydrogenation process,
After improving the degree of vacuum, it drops rapidly and takes about 5 minutes.2.
It decreases to about 5 ppm. On the other hand, [C] does not change much during the hydrogenation treatment and rapidly decreases in the initial 5 minutes or so of the subsequent decarburization treatment, but with the decrease of [H], the decarburization promoting effect also gradually decreases. ] To about 2.5 ppm or less, the decarburization rate drops to the level of the conventional method.

【0017】そこで、再脱炭処理開始から〔H〕<2.
5ppmとなるまでの間に〔C〕<10ppmまで脱炭
可能な再脱炭開始時の〔C〕initial,〔H〕i
nitialの範囲を図2に示す。図2の曲線よりも高
水素濃度、低炭素濃度の条件を選べば〔C〕<10pp
mまで脱炭可能であるが、脱炭速度と水素添加速度の兼
ね合いから全体の処理時間が最短となるよう条件を決め
ればよい。
Therefore, [H] <2.
[C] initial, [H] i at the start of re-decarburization that can decarburize to [C] <10 ppm until it reaches 5 ppm
The range of the initial is shown in FIG. If the conditions of higher hydrogen concentration and lower carbon concentration than the curve of FIG. 2 are selected, [C] <10 pp
Although it is possible to decarburize up to m, the conditions may be determined so that the total treatment time is the shortest in consideration of the decarburization rate and the hydrogen addition rate.

【0018】図7から〔C〕>25ppmにおいて水素
を添加する場合には、次第に水素添加の効果が小さくな
るため、さらに大幅に水素濃度を上昇する必要があり、
水素添加の効率や水素添加にかかる時間から考えると得
策ではない。また、通常の真空脱ガス装置では〔C〕=
25ppm付近から急に脱炭速度が低下することから
も、〔C〕<25ppmの領域において本発明法を適用
することが有利である。
From FIG. 7, when hydrogen is added at [C]> 25 ppm, the effect of hydrogen addition gradually decreases, so it is necessary to further increase the hydrogen concentration.
It is not a good idea considering the efficiency of hydrogenation and the time required for hydrogenation. Moreover, in a normal vacuum degassing device, [C] =
Since the decarburization rate suddenly decreases from around 25 ppm, it is advantageous to apply the method of the present invention in the range of [C] <25 ppm.

【0019】図7は脱炭目標値〔C〕finalを10
ppmとした場合のグラフであるが、この範囲では前記
(1)式を満たす範囲に再脱炭処理前の〔H〕init
ialを調節すれば、脱炭目標値以下に速やかに脱炭可
能であることがわかる。全体の処理時間を短縮するため
には、水素を高速で添加して水素添加処理時の時間も短
縮することが必要である。本発明法では水素添加処理中
の脱ガス容器内の圧力を高値に保つことにより脱水素反
応を抑制すると共に、脱ガス容器内における水素ガスの
溶鋼中への吸収により高速添加が可能である。〔H〕=
7ppmまで添加する場合、平衡水素分圧が約50To
rrであることから脱ガス容器内圧力を50Torr程
度にすればよいと考えられるが、適当な水素添加方法と
すれば20Torrの圧力でも実質的な水素添加速度に
大きな差はない。
FIG. 7 shows the decarburization target value [C] final of 10
It is a graph in the case of ppm, but in this range, [H] init before re-decarburization treatment is within the range that satisfies the above formula (1).
It can be seen that if ial is adjusted, decarburization can be promptly carried out below the decarburization target value. In order to shorten the overall processing time, it is necessary to add hydrogen at a high speed to shorten the time for hydrogenation processing. In the method of the present invention, the dehydrogenation reaction is suppressed by keeping the pressure in the degassing vessel during the hydrogenation treatment at a high value, and the high speed addition is possible by absorbing the hydrogen gas in the molten steel in the degassing vessel. [H] =
When adding up to 7ppm, equilibrium hydrogen partial pressure is about 50To
Since it is rr, it is considered that the pressure inside the degassing vessel should be set to about 50 Torr, but if a suitable hydrogenation method is used, even at a pressure of 20 Torr, there is no substantial difference in the hydrogenation rate.

【0020】図8は250t規模のRH脱ガス装置にお
いて、上昇管の環流ガス用羽口からH2 ガスを6.0N
3 /分、Arガスを1.0Nm3 /分吹込んだ場合
の、脱ガス容器内の圧力と水素ガスの溶解効率の関係を
示した図である。ここで〔H〕は3〜7ppmの範囲で
ある。従来法では、浸漬管内に大量の水素ガスを吹込む
こと自体は可能であったが、水素ガスの溶解効率が低い
ために、十分効果的な水素濃度が得られなかった。これ
に対して本発明法では浸漬管から大量の水素ガスを吹込
んだ場合でも溶解効率が高い。
FIG. 8 shows a 250 t scale RH degassing apparatus in which 6.0 N of H 2 gas is supplied from the tuyere of the circulating gas of the rising pipe.
FIG. 3 is a diagram showing the relationship between the pressure in the degassing vessel and the dissolution efficiency of hydrogen gas when bubbling m 3 / min and Ar gas at 1.0 Nm 3 / min. Here, [H] is in the range of 3 to 7 ppm. In the conventional method, it was possible to blow a large amount of hydrogen gas into the dipping tube itself, but a sufficiently effective hydrogen concentration could not be obtained because the hydrogen gas dissolution efficiency was low. On the other hand, according to the method of the present invention, the dissolution efficiency is high even when a large amount of hydrogen gas is blown from the immersion pipe.

【0021】さらに脱ガス容器内の圧力を30Torr
以上とすれば、脱ガス容器内の溶鋼中の比較的浅い部分
あるいは、脱ガス容器内の溶鋼浴面上から水素含有物質
を添加しても効率的な水素の添加が可能である。この方
法によれば、例えば上吹ランスを用いるなどして、比較
的設備上あるいは操業上の制約を受けずに、さらに高速
で水素ガスを吹込むことが可能である。
Further, the pressure inside the degassing vessel is set to 30 Torr.
According to the above, even if the hydrogen-containing substance is added from a relatively shallow portion in the molten steel in the degassing vessel or on the surface of the molten steel bath in the degassing vessel, it is possible to add hydrogen efficiently. According to this method, it is possible to inject hydrogen gas at a higher speed without being relatively restricted by facilities or operations, for example, by using an upper blowing lance.

【0022】図9は250t規模のRH脱ガス装置にお
いて、初期〔H〕濃度約2ppmの溶鋼は脱ガス容器内
に装入した上吹ランスを用いて溶鋼浴面から2.0mの
高さから10Nm3 /分の吹込速度で水素ガスを上吹し
た時の5分後の〔H〕濃度と脱ガス容器内圧力の関係を
示した図である。また同じ図に水素分圧と1600℃で
の平衡値〔H〕の関係も示した図である。
FIG. 9 shows a 250t scale RH degassing apparatus, in which molten steel having an initial [H] concentration of about 2 ppm was removed from a height of 2.0 m from the molten steel bath surface by using an upper blowing lance charged in the degassing vessel. It is the figure which showed the relationship between [H] density | concentration and degassing container internal pressure after 5 minutes when hydrogen gas was top-blown at the blowing speed of 10 Nm < 3 > / min. In the same figure, the relationship between the hydrogen partial pressure and the equilibrium value [H] at 1600 ° C is also shown.

【0023】RH脱ガス装置を用いる場合、水素添加処
理中の水素添加手段としては、図1〜図4に示す如く、
操業上容易な方法で高速の水素含有物質を脱ガス容器
内、あるいは溶鋼中を通じて脱ガス容器内へ供給するこ
とが肝要である。すなわち (a)上昇管内側面の環流ガス用羽口4(図1) (b)上昇管内に吹込みガスが浮上するように鍋内溶鋼
中に浸漬されたインジェクションランス5(図2) (c)脱ガス容器1内の溶鋼浴面上に設置した水冷構造
の昇降可能な上吹きランス6(図3) (d)脱ガス容器側面に設置されたガス吹込み羽口7
(図4) などにより上記のような高速のガス吹込みが可能であ
る。また、これらの手段のうち複数の手段を併用するこ
とにより、さらに高速で水素を溶解することも可能であ
る。
When the RH degasser is used, the means for adding hydrogen during the hydrogenation process is as shown in FIGS.
It is important to supply a high-speed hydrogen-containing substance into the degassing vessel or through the molten steel into the degassing vessel by an operationally easy method. That is, (a) Tuyere 4 for recirculating gas on the inner surface of the rising pipe (Fig. 1) (b) Injection lance 5 (Fig. 2) immersed in molten steel in the pan so that the blown gas floats in the rising pipe (Fig. 2). Upward-blowing lance 6 of water-cooling structure installed on the molten steel bath surface in the degassing vessel 1 (Fig. 3) (d) Gas blowing tuyere 7 installed on the side of the degassing vessel
(Fig. 4) and the like enable high-speed gas injection as described above. Further, by using a plurality of means among these means, it is possible to dissolve hydrogen at a higher speed.

【0024】また水素添加処理に続く再脱炭処理中にも
水素の添加を継続することは、高〔H〕状態を少しでも
長時間維持してさらに脱炭を促進するのに有効である。
この際の水素添加手段としては、脱ガス容器内での水素
の溶解効率が著しく低下することから、溶鋼中に水素含
有物質を吹込んで浮上距離をできるだけ長くとるなどし
て溶解速度を向上し、しかも操業上容易な手段であるこ
とが肝要である。RH脱ガス装置の場合には、上昇管内
側面の環流ガス用羽口(図1)、溶鋼鍋に設置されたガ
ス吹込み羽口(図5)、鍋内溶鋼中に浸漬されたインジ
ェクションランス(図6)などを用いて適切な速度で水
素含有物質を添加することにより、操業を阻害すること
なく、ある程度有効な水素の溶解が可能である。さらに
これらの添加手段のうち、複数の手段を併用することに
より、水素高速添加時の問題を軽減しつつ、水素の溶解
速度を増大して脱炭を促進することもできる。
Continuing the addition of hydrogen during the re-decarburization treatment subsequent to the hydrogenation treatment is effective for maintaining the high [H] state for a little longer time and further promoting the decarburization.
As the hydrogen addition means at this time, since the dissolution efficiency of hydrogen in the degassing vessel is significantly reduced, the dissolution rate is improved by blowing a hydrogen-containing substance into the molten steel to make the levitation distance as long as possible, Moreover, it is essential that the method is easy in operation. In the case of the RH degasser, the tuyere for circulating gas on the inner surface of the riser pipe (Fig. 1), the gas blowing tuyere installed in the ladle (Fig. 5), the injection lance immersed in the molten steel in the ladle ( By adding a hydrogen-containing substance at an appropriate rate using, for example, FIG. 6), it is possible to dissolve hydrogen to some extent effective without hindering the operation. Further, by using a plurality of means among these adding means, it is possible to accelerate the decarburization by increasing the dissolution rate of hydrogen while mitigating the problem at the time of high speed addition of hydrogen.

【0025】また上記の水素含有物質としては水素ガス
を含む気体のほか、水、水蒸気、水酸化カルシウムなど
でも直ちに解離して水素として溶鋼中に溶解するので同
等の効果が得られる。
As the above-mentioned hydrogen-containing substance, not only gas containing hydrogen gas but also water, steam, calcium hydroxide and the like are immediately dissociated and dissolved in the molten steel as hydrogen, so that the same effect can be obtained.

【0026】[0026]

【実施例】本発明法を250トン規模のRH脱ガス装置
において実施した場合の例を示す。転炉で溶製した
〔C〕が約350ppm、酸素濃度が約450ppmの
未脱酸溶鋼250トンをRH脱ガス装置を用いて脱炭処
理した。
EXAMPLE An example in which the method of the present invention is carried out in an RH degasser having a scale of 250 tons will be shown. 250 tons of undeoxidized molten steel having about 350 ppm of [C] and about 450 ppm of oxygen concentration melted in a converter was decarburized by using an RH degasser.

【0027】表1に実施例及び比較例を示した。実施例
1では、脱ガス容器1内の排気及び環流ガス用羽口4か
らArガス2.0Nm3 /分の吹込みを行い、通常の脱
炭処理を12分間行った。その後、6段ある排気エジェ
クタの運転を一部停止して脱ガス容器内圧力を約30T
orrとして脱炭速度を低下させ、図1に示したRH上
昇管の環流ガス用羽口4からH2 ガスを6.0Nm3
分、Arガスを1.0Nm3 /分、3分間吹込み、水素
添加処理を行った。水素添加処理によって〔H〕は約1
ppmから約7ppmに上昇した。その後停止した排気
エジェクタを再起動すると共に、H 2 ガスの吹込みを停
止してArガスのみ2.0Nm3 /分を上昇管の環流ガ
ス用羽口4から吹込み、再脱炭処理を5分間行った。再
脱炭処理開始前の時点での〔C〕は平均約25ppmで
あった。排気エジェクタの再起動後は、脱ガス容器内圧
力は1分間以内で2Torr以下まで低下した。再脱炭
処理終了後の〔C〕は平均約8ppm、〔H〕は平均約
3ppmであった。脱炭処理終了後はAl脱酸処理を5
分間引続き行った。
Table 1 shows examples and comparative examples. Example
1 is the tuyere 4 for exhaust and recirculation gas in the degassing container 1
Ar gas 2.0 Nm3 / Min.
The charcoal treatment was performed for 12 minutes. After that, there are 6 stages of exhaust ejector
The operation of the Kuta is partially stopped and the pressure inside the degassing container is set to about 30T.
As the orr, the decarburization rate was reduced to
H from the tuyere 4 for the circulating gas of the rising pipe2 Gas is 6.0 Nm3 /
Min, Ar gas 1.0 Nm3 / Min, blow for 3 minutes, hydrogen
An addition process was performed. [H] is about 1 by hydrogenation
It increased from ppm to about 7 ppm. Exhaust stopped after that
While restarting the ejector, H 2 Stop gas blow
Stop and Ar gas only 2.0Nm3 Per minute
It was blown from the tuyere 4 for soot and re-decarburized for 5 minutes. Again
Before starting decarburization, [C] is about 25ppm on average.
there were. After restarting the exhaust ejector, the internal pressure of the degassing container
The force dropped below 2 Torr within 1 minute. Recarburization
After treatment, [C] averages about 8 ppm and [H] averages about 8 ppm.
It was 3 ppm. After the decarburization treatment, Al deoxidation treatment is performed 5
Continued for a minute.

【0028】実施例2も、実施例1と同様、通常の脱炭
処理を12分間行った後、水素添加処理を3分間、再脱
炭処理を5分間、Al脱酸処理を5分間行った。実施例
1とは異なり、再脱炭処理中には図2に示したようなR
H上昇管の下方に浸漬したインジェクションランス5か
らH2 ガスを1.0Nm3 /分、上昇管の環流ガス用羽
口4からH2 ガスを2.5Nm3 /分、Arガスを1.
5Nm3 /分それぞれ吹込み、水素の添加を継続した。
再脱炭処理前の〔C〕は平均約25ppm、〔H〕は平
均約7ppmであった。再脱炭処理終了後の〔C〕は平
均約6ppm、〔H〕は平均約4.5ppmであった。
In Example 2, as in Example 1, the usual decarburization treatment was performed for 12 minutes, followed by hydrogenation treatment for 3 minutes, re-decarburization treatment for 5 minutes, and Al deoxidation treatment for 5 minutes. . Unlike in Example 1, R as shown in FIG.
1.0 Nm 3 / min of H 2 gas from the injection lance 5 immersed below the H ascending pipe, 2.5 Nm 3 / min of H 2 gas from the tuyere 4 for the circulating gas of the ascending pipe, and Ar gas of 1.
5 Nm 3 / min each was blown in, and hydrogen addition was continued.
Before re-decarburization treatment, [C] had an average of about 25 ppm and [H] had an average of about 7 ppm. After completion of the re-decarburization treatment, [C] had an average of about 6 ppm and [H] had an average of about 4.5 ppm.

【0029】実施例3は、実施例1と同様通常の脱炭処
理を12分間行った後、脱ガス容器内圧力を約30To
rrとして水素添加処理を3分間行い、その後再度全段
のエジェクタを運転して再脱炭処理を5分間、Al脱酸
処理を5分間行った。水素添加処理中は図3に示したよ
うに、上昇管の環流ガス用羽口4からH2 ガスを2.5
Nm3 /分、Arガスを1.5Nm3 /分それぞれ吹込
むと共に、鉛直下向きのラバールノズル1個を持つ水冷
構造の上吹きランスを脱ガス容器内の仮想浴面から2.
5mの高さまで下降して、H2 10Nm3 /分を溶鋼浴
面に吹付けた。再脱炭処理中は、上吹ランスを上昇し、
環流ガス用羽口4からのH2 ガス2.5Nm3 /分とA
rガス1.5Nm3 /分の吹込みを継続した。再脱炭処
理前の〔C〕は平均約25ppm、〔H〕は平均約7p
pmであった。再脱炭処理後の〔C〕は平均約7pp
m、〔H〕は平均約3.8ppmであった。
In Example 3, the same decarburization treatment as in Example 1 was performed for 12 minutes, and then the pressure in the degassing vessel was adjusted to about 30 To.
As rr, hydrogenation treatment was performed for 3 minutes, and then the ejectors in all stages were operated again to perform re-decarburization treatment for 5 minutes and Al deoxidation treatment for 5 minutes. As in the hydrogenation process are shown in FIG. 3, the H 2 gas from the recirculation gas tuyere 4 in the riser 2.5
Nm 3 / min, 2 Ar gas 1.5 Nm 3 / min respectively with blown, the lance over a water-cooled structure having one vertically downward Laval nozzle from the virtual bath surface of the degassing vessel.
It was lowered to a height of 5 m and H 2 10 Nm 3 / min was sprayed onto the molten steel bath surface. During the recarburization process, the upper blowing lance is raised,
H 2 gas from circulating tuyere 4 2.5 Nm 3 / min and A
Blow of 1.5 Nm 3 / min of r gas was continued. Before re-decarburization, [C] is about 25ppm on average, and [H] is about 7p on average.
It was pm. [C] after re-decarburization is about 7pp on average
m and [H] were on average about 3.8 ppm.

【0030】比較例1は、実施例1の場合と同じRH脱
ガス装置を用いて、通常の脱炭処理20分間とAl脱酸
処理5分間を行い、水素添加を行わない場合である。脱
炭処理終了後の〔C〕は平均約17ppmであった。比
較例2は、実施例1の場合と同じRH脱ガス装置を用い
て、通常の脱炭処理5分間の後、水素を添加しつつ脱炭
処理を15分間、Al脱酸処理を5分間行った場合であ
る。脱炭処理中の水素添加は上昇管の環流ガス用羽口4
からH2 ガスを6.0Nm3 /分、Arガスを1.0N
3 /分それぞれ吹込んで行い、その間は通常の脱炭処
理と同様全段の排気エジェクタを運転した。脱炭処理終
了後の〔C〕は平均約12ppm、〔H〕は平均約3.
5ppmであった。
Comparative Example 1 is a case where the same RH degassing apparatus as in Example 1 was used to carry out a normal decarburizing treatment for 20 minutes and an Al deoxidizing treatment for 5 minutes without hydrogenation. [C] after the decarburization treatment was about 17 ppm on average. In Comparative Example 2, using the same RH degassing apparatus as in Example 1, after the normal decarburizing treatment for 5 minutes, the decarburizing treatment was performed for 15 minutes while adding hydrogen, and the Al deoxidizing treatment was performed for 5 minutes. That is the case. Hydrogen addition during decarburization is done by the tuyere 4
To H 2 gas at 6.0 Nm 3 / min and Ar gas at 1.0 N
Each m 3 / min was blown in, and during that time, the exhaust ejectors of all stages were operated in the same manner as in the ordinary decarburization treatment. After decarburization, [C] averages about 12 ppm and [H] averages about 3.
It was 5 ppm.

【0031】脱炭処理終了後の〔C〕値の平均値と標準
偏差を表1に示した。実施例はいずれの場合も〔C〕<
10ppmまで迅速に脱炭が可能でばらつきも小さい。
Table 1 shows the average values and standard deviations of the [C] values after the decarburization treatment. In any of the examples, [C] <
Decarburization up to 10 ppm is possible with little variation.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】本発明によって極低炭域での脱炭を迅速
に行うことができ、その結果〔C〕<10ppmの極低
炭素鋼を安定して大量に溶製できるようになった。また
本発明法では溶鋼の飛散による設備損傷の危険や耐火物
の異常損耗等の操業阻害要因がなく、さらに既存設備の
ガス吹込み配管に水素ガスを供給するだけの小改造で実
施が可能なため、広く工業的に適用可能である。
Industrial Applicability According to the present invention, decarburization in an extremely low carbon area can be carried out rapidly, and as a result, it becomes possible to stably produce a large amount of [C] <10 ppm of extremely low carbon steel. Further, in the method of the present invention, there is no risk of equipment damage due to splashing of molten steel and operational obstruction factors such as abnormal wear of refractories, and further, it can be carried out with a small modification by simply supplying hydrogen gas to the gas blowing pipe of the existing equipment. Therefore, it is widely industrially applicable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する設備の態様を示すRH装置の
模式断面図である。
FIG. 1 is a schematic cross-sectional view of an RH device showing an aspect of equipment for carrying out the present invention.

【図2】本発明を実施する設備の態様を示すRH装置の
模式断面図である。
FIG. 2 is a schematic cross-sectional view of an RH device showing an aspect of equipment for carrying out the present invention.

【図3】本発明を実施する設備の態様を示すRH装置の
模式断面図である。
FIG. 3 is a schematic cross-sectional view of an RH device showing an aspect of equipment for carrying out the present invention.

【図4】本発明を実施する設備の態様を示すRH装置の
模式断面図である。
FIG. 4 is a schematic cross-sectional view of an RH device showing an aspect of equipment for carrying out the present invention.

【図5】本発明を実施する設備の態様を示すRH装置の
模式断面図である。
FIG. 5 is a schematic cross-sectional view of an RH device showing an aspect of equipment for carrying out the present invention.

【図6】本発明を実施する設備の態様を示すRH装置の
模式断面図である。
FIG. 6 is a schematic cross-sectional view of an RH device showing an aspect of equipment for carrying out the present invention.

【図7】水素添加処理後、再脱炭処理前の〔C〕、
〔H〕の〔C〕<10ppmを得るための好適範囲を示
すグラフである。
FIG. 7 [C] after hydrogenation treatment and before re-decarburization treatment
It is a graph which shows the suitable range for obtaining [C] <10 ppm of [H].

【図8】RH上昇管の環流ガス用羽口から水素ガスを吹
込んだ場合の脱ガス容器内圧力と水素ガスの溶解効率の
関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the pressure in the degassing container and the hydrogen gas dissolution efficiency when hydrogen gas is blown from the recirculating gas tuyere of the RH riser pipe.

【図9】脱ガス容器内で水素ガスを上吹きした場合の脱
ガス容器内圧力と〔H〕濃度の関係を示すグラフであ
る。
FIG. 9 is a graph showing the relationship between the pressure inside the degassing container and the [H] concentration when hydrogen gas is blown upward in the degassing container.

【符号の説明】[Explanation of symbols]

1 脱ガス容器 2 溶鋼鍋 3 溶鋼 4 環流ガス用
羽口 5 インジェクションランス 6 上吹きラン
ス 7 ガス吹込み羽口 8 ポーラスプ
ラグ
1 Degassing Container 2 Molten Steel Pan 3 Molten Steel 4 Tufts for Circulating Gas 5 Injection Lance 6 Top Blowing Lance 7 Gas Blowing Tuyer 8 Porous Plug

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鷲尾 勝 千葉市川崎町1番地 川崎製鉄株式会社 千葉製鉄所内 (72)発明者 浜上 和久 千葉市川崎町1番地 川崎製鉄株式会社 千葉製鉄所内 (72)発明者 西川 廣 千葉市川崎町1番地 川崎製鉄株式会社 千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaru Washio 1 Kawasaki-cho, Chiba City Kawasaki Steel Co., Ltd. Chiba Steel Works (72) Inventor Kazuhisa Hamaue 1 Kawasaki-machi Chiba City Kawasaki Steel Co., Ltd. Chiba Steel Works (72) ) Inventor Hiroshi Nishikawa 1 Kawasaki-cho, Chiba City Kawasaki Steel Works Chiba Works

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼を真空脱ガス装置により脱炭して極
低炭素鋼を溶製するにあたり、所定鋼中炭素濃度まで真
空脱炭処理を行った後、脱炭速度を低下させるかもしく
は実質的に脱炭を停止して水素を溶鋼中へ溶解させる水
素添加処理を行って所定鋼中水素濃度に調整し、その後
再度真空脱炭を行うことを特徴とする極低炭素鋼の溶製
方法。
1. When decarburizing molten steel with a vacuum degassing apparatus to produce ultra-low carbon steel, the decarburizing rate is reduced or substantially reduced after vacuum decarburizing treatment to a predetermined carbon concentration in steel. A method for melting ultra-low carbon steel, characterized in that the decarburization is stopped temporarily and hydrogen is added to the molten steel to adjust the hydrogen concentration in the specified steel, and then vacuum decarburization is performed again. .
【請求項2】 溶鋼中平均炭素濃度〔C〕(ppm)が
25ppm以下の時点において前記水素添加処理を行
い、水素添加処理後の溶鋼中水素濃度〔H〕(ppm)
を下式を満たす範囲とするよう水素添加処理を行うこと
を特徴とする請求項1記載の極低炭素鋼の溶製方法。 〔H〕≧(〔C〕−〔C〕final)/5+4 ただし、〔C〕final:脱炭目標〔C〕値(pp
m)
2. The hydrogen concentration in molten steel [H] (ppm) after the hydrogenation treatment is performed when the average carbon concentration [C] (ppm) in the molten steel is 25 ppm or less.
The method for smelting ultra-low carbon steel according to claim 1, wherein the hydrogenation treatment is performed so as to satisfy the following formula. [H] ≧ ([C] − [C] final) / 5 + 4 where [C] final: decarburization target [C] value (pp
m)
【請求項3】 所定鋼中炭素濃度まで真空脱炭処理を行
った後、脱ガス容器内の圧力を20Torr以上としつ
つ前記水素添加処理を行い、その後脱ガス容器内の圧力
を2Torr以下として真空脱炭処理を行うことを特徴
とする請求項1又は2記載の極低炭素鋼の溶製方法。
3. After performing vacuum decarburization treatment to a predetermined carbon concentration in steel, the hydrogenation treatment is performed while the pressure in the degassing vessel is set to 20 Torr or higher, and then the pressure in the degassing vessel is set to 2 Torr or lower and vacuumed. The method for melting ultra low carbon steel according to claim 1 or 2, wherein decarburization treatment is performed.
【請求項4】 前記水素添加処理が、脱ガス容器内の圧
力を30Torr以上としつつ、脱ガス容器内の溶鋼浴
面上に水素含有物質を添加する手段であることを特徴と
する請求項1〜3のいずれか記載の極低炭素鋼の溶製方
法。
4. The hydrogenation treatment is a means for adding a hydrogen-containing substance onto the molten steel bath surface in the degassing vessel while maintaining the pressure in the degassing vessel at 30 Torr or higher. The melting method of the ultra-low carbon steel according to any one of 1 to 3.
【請求項5】 前記真空脱ガス装置としてRH真空脱ガ
ス装置を用い、前記水素添加処理として、RH上昇管内
側面の環流ガス用羽口、RH上昇管内に吹き込みガスが
浮上するように鍋内溶鋼中に浸漬されたインジェクショ
ンランス、RH脱ガス容器壁面に設置された羽口、RH
脱ガス容器内の溶鋼浴面上に設置した水冷構造の昇降可
能な上吹きランスのうち一つ以上の吹込み手段から水素
含有物質を吹込むことを特徴とする請求項1〜4のいず
れか記載の極低炭素鋼溶製方法。
5. An RH vacuum degassing device is used as the vacuum degassing device, and as the hydrogenation treatment, a recycle gas tuyere on the inner surface of the RH rising pipe and a molten steel in a pan so that the blown gas floats in the RH rising pipe. Injection lance immersed inside, RH degassing vessel tuyere installed on the wall surface, RH
5. The hydrogen-containing substance is blown from at least one blowing means of an upward blowing lance of a water cooling structure installed on the molten steel bath surface in the degassing vessel. Ultra low carbon steel melting method described.
【請求項6】 前記真空脱ガス装置としてRH脱ガス装
置を用い、前記水素添加処理後にRH上昇管内側面の環
流ガス用羽口、溶鋼鍋に設置されたガス吹込み羽口、鍋
内溶鋼中に浸漬されたインジェクションランスのうち一
つ以上の吹込み手段から水素含有物質を吹込むことを特
徴とする請求項1〜5のいずれか記載の極低炭素鋼溶製
方法。
6. An RH degassing device is used as the vacuum degassing device, and after the hydrogenation treatment, a tuyere for recirculating gas on the inner surface of the RH riser pipe, a gas blowing tuyere installed in a molten steel ladle, and a molten steel in the ladle. The method for melting ultra-low carbon steel according to any one of claims 1 to 5, wherein the hydrogen-containing substance is blown from at least one blowing means of the injection lance immersed in the.
【請求項7】 前記水素含有物質として、水素ガス、
水、水蒸気、水酸化カルシウム、水酸化アルミニウム、
水酸化マグネシウムのうち一つ以上を含有するものを用
いて前記水素添加処理を行うことを特徴とする請求項1
〜6のいずれか記載の極低炭素鋼の溶製方法。
7. The hydrogen-containing substance is hydrogen gas,
Water, steam, calcium hydroxide, aluminum hydroxide,
The hydrogenation treatment is performed by using one containing at least one of magnesium hydroxide.
7. The melting method of the ultra-low carbon steel according to any one of to 6.
JP3156755A 1990-10-03 1991-06-27 Ultra low carbon steel melting method Expired - Fee Related JPH0798972B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3156755A JPH0798972B2 (en) 1990-10-03 1991-06-27 Ultra low carbon steel melting method
US07/767,984 US5152831A (en) 1991-06-27 1991-09-30 Method of producing ultra-low-carbon steel
KR1019910017388A KR940006490B1 (en) 1991-06-27 1991-10-02 Method of producing ultra-low-carbon steel
DE69118878T DE69118878T3 (en) 1991-06-27 1991-10-02 Process for producing low-carbon steels
EP91116861A EP0520085B2 (en) 1991-06-27 1991-10-02 Method of producing ultra-low-carbon steel
CA002052737A CA2052737C (en) 1991-06-27 1991-10-03 Method of producing ultra-low-carbon steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-263848 1990-10-03
JP26384890 1990-10-03
JP3156755A JPH0798972B2 (en) 1990-10-03 1991-06-27 Ultra low carbon steel melting method

Publications (2)

Publication Number Publication Date
JPH04333512A JPH04333512A (en) 1992-11-20
JPH0798972B2 true JPH0798972B2 (en) 1995-10-25

Family

ID=26484423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3156755A Expired - Fee Related JPH0798972B2 (en) 1990-10-03 1991-06-27 Ultra low carbon steel melting method

Country Status (1)

Country Link
JP (1) JPH0798972B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194206A (en) * 1981-05-26 1982-11-29 Kawasaki Steel Corp Production of molten extra low carbon steel
JPS63143216A (en) * 1986-12-05 1988-06-15 Nippon Steel Corp Melting method for extremely low carbon and low nitrogen steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194206A (en) * 1981-05-26 1982-11-29 Kawasaki Steel Corp Production of molten extra low carbon steel
JPS63143216A (en) * 1986-12-05 1988-06-15 Nippon Steel Corp Melting method for extremely low carbon and low nitrogen steel

Also Published As

Publication number Publication date
JPH04333512A (en) 1992-11-20

Similar Documents

Publication Publication Date Title
KR100214927B1 (en) Vacuum refining method of molten metal
KR940006490B1 (en) Method of producing ultra-low-carbon steel
CN113621759B (en) Method for improving RH refining effect by adopting hydrogen
US5221326A (en) Method of producing ultra-low-carbon steel
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JPH0420967B2 (en)
KR101796088B1 (en) Refining method of alloy steel
JPH01246314A (en) Production of extremely low carbon steel by vacuum degassing treatment
JP2767674B2 (en) Refining method of high purity stainless steel
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JPH0798972B2 (en) Ultra low carbon steel melting method
JP3777630B2 (en) Method for heat refining of molten steel
JPH11315315A (en) Metallurgical reaction apparatus for treating molten metal under reduced pressure
JP2724030B2 (en) Melting method of ultra low carbon steel
JP2773883B2 (en) Melting method of ultra low carbon steel by vacuum degassing
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
JP3706451B2 (en) Vacuum decarburization method for high chromium steel
JPH08109410A (en) Finish decarburization refining of stainless steel
JP3785257B2 (en) Method for degassing stainless steel
JP2795597B2 (en) Vacuum degassing and decarburization of molten stainless steel
JP3769779B2 (en) Method for melting ultra-low carbon Cr-containing steel
JP3153983B2 (en) Melting method for high purity stainless steel
JPH04214817A (en) Method for smelting extremely low carbon and extremely low nitrogen steel
JPH04318119A (en) Production of high clean steel
JPH04228515A (en) Production of dead soft steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980224

LAPS Cancellation because of no payment of annual fees