JPH079777B2 - Contact material for vacuum valve - Google Patents

Contact material for vacuum valve

Info

Publication number
JPH079777B2
JPH079777B2 JP14215585A JP14215585A JPH079777B2 JP H079777 B2 JPH079777 B2 JP H079777B2 JP 14215585 A JP14215585 A JP 14215585A JP 14215585 A JP14215585 A JP 14215585A JP H079777 B2 JPH079777 B2 JP H079777B2
Authority
JP
Japan
Prior art keywords
amount
powder
vacuum
contact
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14215585A
Other languages
Japanese (ja)
Other versions
JPS625525A (en
Inventor
功 奥富
誠司 千葉
薫旦 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14215585A priority Critical patent/JPH079777B2/en
Publication of JPS625525A publication Critical patent/JPS625525A/en
Publication of JPH079777B2 publication Critical patent/JPH079777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、再点弧発生率を軽減できる真空バルブ用接点
材料に関するものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a contact material for a vacuum valve capable of reducing the re-ignition occurrence rate.

[発明の技術的背景とその問題点] 真空バルブ用接点に要求される特性は、耐溶着、耐電
圧、高しゃ断性である。
[Technical Background of the Invention and Problems Thereof] The characteristics required for a contact for a vacuum valve are welding resistance, withstand voltage, and high breaking property.

しかしこれら3要件に対しては相反する物理的性質が要
求されるので理想的に両立させることは困難であり、適
用する回路の優先要件を第1にして、他の要件は若干犠
牲にして対応しているのが現状である。
However, it is difficult to make these three requirements ideally compatible because they are required to have contradictory physical properties. Therefore, the priority requirement of the circuit to be applied is set to the first and other requirements are sacrificed slightly. It is the current situation.

例えば従来、高耐圧、大容量真空しゃ断器においては、
特公昭41−12131号公報に記載された発明のように溶着
防止成分(Bi,Te,Pbなど)を5重量%以下含有するCu合
金を電極接点として具備したものが知られている。
For example, in the conventional high-voltage, large-capacity vacuum breaker,
It is known that an electrode contact is provided with a Cu alloy containing 5% by weight or less of a deposition preventing component (Bi, Te, Pb, etc.) as in the invention described in JP-B-41-12131.

ところが、近年の高電圧化要求に対しては、耐電圧の面
で十分ではない。すなわち、真空しゃ断器は小形軽量,
メンテナンスフリー,環境調和など、他のしゃ断器に比
べ優れた特徴を有している。したがって、真空しゃ断器
においては従来一般的に使用されていた36kV以下の回路
から更に高電圧の回路へとその適用範囲が拡大され、さ
らに特殊回路、例えばコンデンサ回路を開閉する需要も
急増していることから、一層の耐高電圧化が必要となっ
ている。
However, with respect to the recent demand for higher voltage, it is not sufficient in terms of withstand voltage. That is, the vacuum circuit breaker is small and lightweight,
It has superior features compared to other circuit breakers such as maintenance-free and environmentally friendly. Therefore, in the vacuum circuit breaker, the range of application has been expanded from the conventionally used circuit of 36 kV or less to the circuit of higher voltage, and the demand for opening and closing special circuits, for example, capacitor circuits is also rapidly increasing. Therefore, higher withstand voltage is required.

さて、真空しゃ断器の耐高電圧化を図る上で問題となる
重要な要因の1つとして再点弧現象、再発弧現象が挙げ
られているが、再点弧現象は、製品の信頼性向上の観点
から重要視されているにもかかわらず、未だ防止技術は
勿論のこと直接的な発生原因についても明らかになって
いない。
The re-ignition phenomenon and the re-ignition phenomenon are mentioned as one of the important factors that are problematic in order to increase the withstand voltage of the vacuum circuit breaker. The re-ignition phenomenon improves the reliability of the product. Although it is regarded as important from the viewpoint of, the preventive technology as well as the direct cause has not been clarified.

また上記高耐圧化に伴って、接点材料に対しても、更に
高耐圧でかつ再点弧現象の発生頻度の低い特性を持つこ
とが要求されている。この場合、接点材料の高耐圧化、
無再点弧化を図るには、耐圧的に欠陥となる脆弱な溶着
防止成分の量そのものを極力少なくしたり、過度に集中
するのを避けること、ガス不純物やピンホール等を極力
少なくすること、接点合金自体の強度を大きくすること
等々が望ましい。
Further, with the increase in the withstand voltage, the contact material is also required to have a higher withstand voltage and a characteristic that the re-ignition phenomenon does not occur frequently. In this case, high withstand voltage of contact material,
In order to achieve non-re-ignition, the amount of fragile anti-adhesion components that are defective in pressure resistance itself should be minimized, excessive concentration should be avoided, and gas impurities and pinholes should be minimized. It is desirable to increase the strength of the contact alloy itself.

したがって、これらの観点からすれば、前述のCu−Bi合
金は満足できるものではない。
Therefore, from these viewpoints, the above-mentioned Cu-Bi alloy is not satisfactory.

一方、高耐圧で、かつ大電流しゃ断を要求する分野で
は、接点材料としてCu−Cr合金が適用される場合があ
る。このCu−Cr合金は、他の接点材料ほどには、構成材
料間の蒸気圧差がないため、均一な性能発揮を期待し得
る利点があり、使い方によってはその特徴を十分利用す
ることが出来る。
On the other hand, Cu-Cr alloy may be applied as a contact material in a field requiring high breakdown voltage and large current interruption. Since this Cu-Cr alloy has no vapor pressure difference between constituent materials as much as other contact materials, it has an advantage that uniform performance can be expected, and its characteristics can be fully utilized depending on the usage.

しかしながら、再点弧現象の発生に対しては未だ十分軽
減化された状態ではなく、特に真空バルブの小型化の観
点から、その改善が必要とされている。
However, the occurrence of the re-ignition phenomenon has not yet been sufficiently mitigated, and there is a need for improvement in view of downsizing of the vacuum valve.

ところで、このCu−Cr合金は一般に粉末冶金的手法によ
って製作されるため、原料粉末の物理的、化学的状態、
接点合金の焼結技術などが再点弧発生に対し特に関与し
ている項目と考えられる。前者の原料粉末については、
本発明者らは、接点材料を加熱する過程で放出されるガ
スの総量ならびに放出の形態について詳細な観察を行っ
たところ、これらの要因と再点弧現象の発生には重要な
相関関係があり、特に接点材料を構成する原材料の個々
について、これらガスの放出、なかでも融点近傍で突発
的に発生するガスの放出を制御することにより、再点弧
現象を効果的に抑制できることを見出した。
By the way, since this Cu-Cr alloy is generally manufactured by a powder metallurgy method, the physical and chemical states of the raw material powder,
It is considered that the contact alloy sintering technology is particularly involved in the occurrence of re-ignition. For the former raw material powder,
The present inventors have made detailed observations on the total amount of gas released in the process of heating the contact material and the morphology of the release, and there is an important correlation between these factors and the occurrence of the re-ignition phenomenon. It has been found that the re-ignition phenomenon can be effectively suppressed by controlling the release of these gases, particularly the release of gas that is suddenly generated near the melting point, for each of the raw materials that make up the contact material.

すなわち、接点材料を加熱していくと、吸着ガスのほと
んどは溶融点以下で脱ガスされ、溶融点近傍で固溶した
ガスが放出されるが、さらに溶融点以上で加熱放置する
と、極めて短時間(例えば数ミリ秒程度)ではあるがパ
ルス的な突発性ガスの放出(数回ないし数百回突発す
る)が観察される。
That is, when the contact material is heated, most of the adsorbed gas is degassed below the melting point and the solid solution gas is released near the melting point. Although it is (for example, about several milliseconds), a pulse-like burst gas release (several to hundreds of bursts) is observed.

これら突発性ガスにはC2H2、CH4等が若干含まれるが、
主体はCO、CO2、O2等の酸素系であることから、これら
突発性ガスは接点材料に混入している酸化物の分解によ
り放出されるものと考えられる。
These burst gases contain some C 2 H 2 , CH 4, etc.,
Entity from CO, it is the CO 2, O oxygen-based, such as 2, these sudden gas is thought to be released by the decomposition of the oxide mixed in the contact material.

本発明者らの研究によれば、再点弧現象の多く発生する
接点材料には、突発性ガスの放出も多い。
According to the research conducted by the present inventors, the contact material that frequently causes the re-ignition phenomenon also releases a large amount of sudden gas.

従って、上述の知見よりすれば、接点材料をその融点以
上の温度で保持して、この突発性ガスを予め放出させて
おくことにより、再点弧現象の発生を防止することが考
えられる。又、初めから酸化物の形態をもち、原料粉中
に混入している酸化物などの不純物については、原料粉
との粒径の違いを利用し主としてふるいわけで、予め除
去するが、スケルトン中に高導電材を溶浸する際溶浸工
程を一方向から行うことで酸化物などの不純物を一カ所
に集めて除去するなどによって、同じく再点弧現象を軽
減化させ得ることが確認されている。
Therefore, based on the above knowledge, it is considered that the re-ignition phenomenon is prevented by holding the contact material at a temperature equal to or higher than its melting point and releasing the sudden gas in advance. Also, impurities such as oxides that have an oxide form from the beginning and are mixed in the raw material powder are mainly removed by sieving using the difference in particle size from the raw material powder. It was also confirmed that the re-ignition phenomenon could be mitigated by carrying out the infiltration process from one direction when infiltrating the highly conductive material to collect and remove impurities such as oxides in one place. There is.

しかし原料中に存在する酸化物などの不純物はふるいわ
けや、溶浸工程では、除去することが出来ず、潜在的な
再点弧の一要因を占めていることが考えられる。しか
し、それでもその解決の一つの手段として原料粉(Cr
粉)を十分吟味し、介在物のより少ない原料粉を選択す
ることで、再点弧現象は、一層軽減化される傾向にある
ことを確認した。このように主として酸化物の介在の少
ない原料粉の選択は、再点弧現象の軽減に対して効果は
認められたものの、厳密な実験を進めると、未だ改善の
余地があることが判った。すなわち、Cr粉中の介在物が
実質的に全く認められないロットを選択してこれをCr原
料とし、Cuについても十分に吟味したロットを原料と
し、夫々を使用してCu−Cr合金を製造したところ、Cr粉
中に介在物の存在が認められる合金と、介在物の存在が
認められない合金とが製造され、再点弧発生は前者の介
在物の存在する合金を使用した真空バルブにより多く発
生していることが判った。結局、このことはCu粉中に固
溶していた或る種の元素と、焼結中の雰囲気との反応に
よって生成した介在物であると推考され、従って再点弧
特性を飛躍的に改善させるためには、原料に単に混入し
ている酸化物等の不純物以外に原料に特に固溶している
或る種の元素(固溶状態にあるため顕微鏡的には検出確
認出来ない)に注目する必要性のあることを示唆してい
る。
However, impurities such as oxides present in the raw material cannot be removed by sieving or infiltration process, and it is considered that they are a factor of potential re-ignition. However, the raw material powder (Cr
It was confirmed that the re-ignition phenomenon tends to be further reduced by carefully examining the powder) and selecting the raw material powder with less inclusions. Thus, although the selection of the raw material powder mainly containing less oxide was found to be effective in reducing the re-ignition phenomenon, it was found that there was still room for improvement when rigorous experiments were carried out. That is, a lot in which inclusions in the Cr powder are not substantially recognized is selected, this is used as a Cr raw material, and a lot that has been thoroughly examined for Cu is also used as a raw material, and Cu-Cr alloys are manufactured using each. As a result, an alloy in which the presence of inclusions was found in the Cr powder and an alloy in which the presence of inclusions was not found were produced, and re-ignition occurred with the vacuum valve using the former alloy with inclusions. It turns out that a lot has occurred. After all, this is presumed to be the inclusions formed by the reaction between certain elements that were solid-soluted in the Cu powder and the atmosphere during sintering, and therefore the re-ignition characteristics were dramatically improved. In order to do so, pay attention to a certain element that is particularly solid-soluted in the raw material (impurity cannot be detected and confirmed microscopically) in addition to impurities such as oxides that are simply mixed in the raw material. Suggest that there is a need to do so.

微小分析の結果上述した或る種の元素は、AlとSiである
ことが確認され、これが焼結、溶浸後Al2O3とSiO2を生
成し、顕微鏡的観察が可能となる介在物を形成している
ことを確認した。
As a result of microanalysis, it was confirmed that the above-mentioned certain elements were Al and Si, which produced Al 2 O 3 and SiO 2 after sintering and infiltration, and inclusions that enable microscopic observation. Was confirmed to have been formed.

[発明の目的] 本発明は、上述した知見に基づいてなされたもので、再
点弧発生頻度を飛躍的に低減することができる信頼性の
高い真空バルブ用接点材料を提供することを目的として
いる。
[Object of the Invention] The present invention has been made based on the above-mentioned findings, and an object of the present invention is to provide a highly reliable contact material for vacuum valves capable of dramatically reducing the frequency of re-ignition. There is.

[本発明の概要] 本発明の真空バルブ用接点材料は、Cr中に含有されるAl
量が0.0001〜0.01wt%、同じくSi量が0.0001〜0.01wt
%、同じくAl,Siの合計量が0.0002〜0.015wt%なる条件
を満たすCrを20〜80wt%、残部がCu,Agの一方又は双方
からなる合金により構成したものである。
[Summary of the Invention] The contact material for a vacuum valve of the present invention is Al contained in Cr.
Amount 0.0001-0.01wt%, Si amount 0.0001-0.01wt%
%, Similarly, 20 to 80 wt% of Cr that satisfies the condition that the total amount of Al and Si is 0.0002 to 0.015 wt%, and the balance is made of an alloy of one or both of Cu and Ag.

[発明の実施例] 第1図は本発明による接点材料を適用した真空バルブの
一構成例を示す正断面図、第2図はその要部拡大図であ
る。
[Embodiment of the Invention] FIG. 1 is a front sectional view showing a structural example of a vacuum valve to which a contact material according to the present invention is applied, and FIG. 2 is an enlarged view of a main part thereof.

第1図において、しゃ断室1は、セラミック等の絶縁材
料によりほぼ円筒状に形成された絶縁容器2と、この両
端に密閉機構3,3aを介して設けた金属製蓋体4および5
とで真空気密に密閉されている。さらにしゃ断室1内に
は、一対の電極棒6,7の互いに対向する端部にそれぞれ
固定電極8および可動電極9が配設されている。またこ
の可動電極9の電極棒7には、ベローズ10が取付けら
れ、しゃ断室1内を真空気密に保持しながら、電極9の
往復動による一対の電極8,9の開閉を可能にしている。
このベローズ10はフードにより覆われ、アーク蒸気の被
着を防止しており、またしゃ断室1内には更に円筒状金
属容器12が設けられ、絶縁容器2へのアーク蒸気の被着
を防止している。
In FIG. 1, a shut-off chamber 1 is composed of an insulating container 2 formed of an insulating material such as ceramic in a substantially cylindrical shape, and metal lids 4 and 5 provided at both ends of the insulating container 2 via sealing mechanisms 3 and 3a.
And it is hermetically sealed with vacuum. Further, in the shut-off chamber 1, fixed electrodes 8 and movable electrodes 9 are arranged at the ends of the pair of electrode rods 6, 7 facing each other. Further, a bellows 10 is attached to the electrode rod 7 of the movable electrode 9, and the pair of electrodes 8 and 9 can be opened and closed by the reciprocating movement of the electrode 9 while keeping the inside of the blocking chamber 1 airtight.
The bellows 10 is covered with a hood to prevent the deposition of arc vapor, and a cylindrical metal container 12 is further provided in the shutoff chamber 1 to prevent the deposition of arc vapor on the insulating container 2. ing.

一方、可動電極9は、その拡大構造を第2図に示すよう
に、電極棒7にろう材13によって固定されるか、または
かしめによって圧着接続(図示せず)されており、その
上には可動接点14がろう材15によって接合されている。
また固定電極8も向きが逆となるのみでほぼ同様であ
り、これには固定接点14aが設けられている。
On the other hand, the movable electrode 9 is fixed to the electrode rod 7 by a brazing material 13 or is crimped (not shown) by caulking, as shown in FIG. The movable contact 14 is joined by a brazing material 15.
The fixed electrode 8 is also almost the same except that the direction is reversed, and a fixed contact 14a is provided on this.

本発明による接点材料は、上記したような接点14,14aの
双方またはいずれか一方を構成するのに適したものであ
る。
The contact material according to the present invention is suitable for forming both and / or one of the contacts 14 and 14a as described above.

本発明の接点材料を製造するために用いられるCrは、従
来のそれと大いに異なるものである。
The Cr used to make the contact material of the present invention is very different from that of the prior art.

すなわち、Crを粉砕する過程でCr粉に吸着するガス、混
入する異物などは、制約した雰囲気での熱処理及び粉
砕、ふるいわけ工程によって充分に取りのぞくことが出
来る。また不純物として酸化物などが介在しているCr粉
も、顕微鏡的な分別が可能である。しかしCr中に固溶状
態にあるAl,Siは、顕微鏡的に分別することが不可能で
あり(これが先に述べたように焼結、溶浸雰囲気との反
応によって好ましくない酸化物を形成する)、再点弧現
象特性を飛躍的に改善させる為には最も注目を要する点
である。
That is, the gas adsorbed on the Cr powder in the process of crushing Cr, the foreign substances mixed in, and the like can be sufficiently removed by the heat treatment and crushing in a restricted atmosphere, and the sieving process. Further, Cr powder containing oxides as impurities can also be microscopically separated. However, Al and Si, which are in solid solution in Cr, cannot be separated microscopically (as described above, they form undesired oxides by reaction with sintering and infiltration atmosphere). ), This is the point that requires the most attention in order to dramatically improve the characteristics of the restriking phenomenon.

本発明による接点材料を製造する一例は、下記の如くで
ある。すなわち平均粒径100〜400メッシュ程度の粒度を
有し、かつ固溶するAlとSiの量に関し、前記厳選した条
件を満すCr粉を用いてCr粉の所定量とCuの所定量(又は
Ag)との混合粉末を4トン/cm2程度の圧力で加圧成型す
る。かくして得られた成型体を水素又は1×10-3mmHg程
度より高真空状態のもとで、1000℃又はこれより高い温
度にて、仮焼結又は本焼結を行う。仮焼結体については
スケルトン中の空孔中に水素又は1×10-3mmHg程度より
高真空でCuを溶浸する(Cuの場合は1100℃又はこれより
高い温度、Agの場合は1000℃又はこれより高い温度)。
更に必要によって溶着防止成分(Bi,Pb,Te,Sbなど)を
含有したCu又はAgあるいはCuとAgを溶浸し接点素材を得
ることも出来る。
An example of manufacturing the contact material according to the present invention is as follows. That is, having a particle size of about 100 to 400 mesh average particle size, and with respect to the amount of solid solution Al and Si, using a Cr powder that satisfies the conditions carefully selected, a predetermined amount of Cr powder and a predetermined amount of Cu (or
The mixed powder with Ag) is pressure-molded at a pressure of about 4 ton / cm 2 . The molded body thus obtained is pre-sintered or main-sintered at a temperature of 1000 ° C. or higher in a vacuum state of hydrogen or higher than about 1 × 10 −3 mmHg. As for the pre-sintered body, hydrogen or Cu is infiltrated into the holes in the skeleton in a vacuum higher than about 1 × 10 -3 mmHg (1100 ° C or higher for Cu, 1000 ° C for Ag). Or higher temperature).
If necessary, Cu or Ag or Cu and Ag containing an anti-fusing component (Bi, Pb, Te, Sb, etc.) can be infiltrated to obtain a contact material.

これらのプロセスは十分に管理した状態の坩堝または容
器を用いて、接点素材への坩堝などからの不純物,ガス
などの浸入,拡散を防止し、突発性ガスの発生の要因と
なる可能性のある因子を削除して行うことがポイントで
ある。
These processes use a crucible or container in a well-controlled state to prevent impurities and gases from entering and diffusing into the contact material from the crucible, which may cause the generation of sudden gas. The point is to delete the factor.

その意味において事前に坩堝などを所定条件で空焼きす
ることはすぐれた状態に管理するために重要である。
In that sense, it is important to burn the crucible and the like in advance under predetermined conditions in order to manage it in an excellent condition.

坩堝などの状態を管理すること以外に、その材質の選択
も突発性ガスの軽減化に対して重要な技術である。
In addition to managing the condition of crucibles, selection of the material is also an important technique for reducing sudden gas.

厳しく管理した条件下では、カーボン,石英なども所定
値以下の突発性ガスに維持出来るが、特に昇華の性質を
持つBN,AlN,Si3N4などは、その表面をクリーンに維持す
る観点から効果が容易に得られる。本発明による接点材
料として効果を十分に発揮させる為のサポート技術とし
て、坩堝,ボートなどは重要である。すなわち、仮焼
結,本焼結,溶浸時に接点材料を収容する坩堝,ボー
ト,板などの容器材料は、その状態を十分クリーンに管
理したものを用いることによって突発性ガスの少ない接
点素材を得るための効果的サポート技術である。このよ
うにして得られた接点材料に対して必要に応じて切削研
磨などの加工を行い、或いは可能なものは鍛造圧延など
塑性加工を与えることにより所望の形状の接点が得られ
る。
Under severely controlled conditions, carbon, quartz, etc. can also be maintained at an explosive gas below a specified value, but BN, AlN, Si 3 N 4, etc., which have the property of sublimation, are especially considered to maintain a clean surface. The effect is easily obtained. A crucible, a boat, etc. are important as a supporting technique for sufficiently exhibiting the effect as the contact material according to the present invention. That is, for the container material such as the crucible, the boat, and the plate that accommodates the contact material at the time of temporary sintering, main sintering, and infiltration, use a material whose contact state is sufficiently clean so that the contact material with less sudden gas is used. It is an effective support technology to obtain. If necessary, the contact material thus obtained is subjected to processing such as cutting and polishing, or if possible, subjected to plastic working such as forging rolling to obtain a contact having a desired shape.

尚、前述した本発明に於ける厳選した条件を満すCr粉と
は、粉末状態でのCr中のガス量が少ないこと、及びCr中
に固溶するAl,Siが少ないことの二つの要求を同時に満
すことを意味する。
Incidentally, the Cr powder satisfying the above-mentioned carefully selected conditions in the present invention means that there are two requirements that the amount of gas in Cr in the powder state is small and that Al and Si which are solid-solved in Cr are small. Means to meet at the same time.

現在、工業的に供給されているCrは、FeCr2O4,MgCr2O4
などのCr鉱石をAl或いはSiなど他の金属で還元して金属
Crを得る方法及び前記Cr鉱石を溶解して未溶解の非金属
不純物の分離、Cr以外の金属の分離を行い、これを電解
液として電気分解することで金属Crを得る方法が主体で
ある。しかし前者の方法によるCrは、ガス量(酸素、窒
素)が1,000ppm程度であるのに対してAl,Si,Feなどの不
純物を数1,000ppm〜10,000ppm含有しており、また後者
の方法によるCrは、逆にガス量(酸素、窒素)が1,000p
pm〜10,000ppmと著しく多いが、Al等の不純物は、少な
く、例えば数100ppm程度以下しか含有していないのが一
般的である。すなわち、上記した2つの方法によるCrを
対比して見ると前者の方法によるCrはガス量が少なく、
不純物が多いのに対して後者はこれと全く逆の関係にな
っているという特徴を持っている。それにもかかわら
ず、本発明に於ける真空バルブ用接点材料としてのCr原
料に対しては、前記ガス量と不純物の両者を或るレベル
以下に制約したものが要求される。
Currently, Cr that is industrially supplied is FeCr 2 O 4 or MgCr 2 O 4
Cr ore such as is reduced with other metal such as Al or Si
Mainly, a method of obtaining Cr and a method of dissolving the Cr ore to separate undissolved non-metallic impurities and a metal other than Cr, and electrolyzing this as an electrolytic solution to obtain metallic Cr. However, the Cr by the former method contains a few thousand ppm to 10,000 ppm of impurities such as Al, Si, and Fe, while the amount of gas (oxygen, nitrogen) is about 1,000 ppm, and by the latter method. On the contrary, Cr has a gas amount (oxygen, nitrogen) of 1,000p.
Although it is remarkably large as pm to 10,000 ppm, impurities such as Al are small, and for example, it is common to contain only a few hundred ppm or less. That is, when comparing the Cr by the above two methods, the Cr by the former method has a small gas amount,
The latter is characterized by the fact that there are many impurities, whereas the latter has a completely opposite relationship. Nevertheless, the Cr raw material as the contact material for the vacuum valve in the present invention is required to have both the amount of gas and the impurities limited to a certain level or less.

従って、本発明に於ける厳選した条件を満すCr粉の調製
は、例えば下記のようである。すなわち、まずCr含有率
のなるべく多いCr鉱石から、金属Crを得る。次にこの金
属Crに必要に応じて真空熱処理、水素熱処理を与えた後
非酸化性雰囲気中で粉砕し、かつAl2O3,SiO2,FeOなど未
だ粒状として混在している非金属粒子を浮遊選鉱などの
手段で除去すると共に、水素中熱処理と、真空中熱処理
との適宜組合せによって、主として酸素、窒素、水素ガ
スを除去し、目的のする粒度を持つCr粉を調製する、こ
のプロセスによって例えば粒子状態のAl2O3,SiO2,FeOな
どの混合物は、十分取り除かれるが、Cr中に固溶状態で
存在するAl,Siなどについては、勿論除去することが困
難である。従って、固溶状態にあるAl,Si量の制約に
は、スタート時のCr鉱石の選択が重要である。このよう
にして得た本発明の接点材料に使われる原料Cr中のガス
量は、先に示した工業的に供給される通常のCrの値であ
る1,000ppmより著しく少ない100ppm又は数100ppm程度を
確保した。
Therefore, the Cr powder satisfying the carefully selected conditions in the present invention is prepared, for example, as follows. That is, first, metallic Cr is obtained from a Cr ore having a Cr content as high as possible. Next, this metal Cr is subjected to vacuum heat treatment and hydrogen heat treatment as needed, and then crushed in a non-oxidizing atmosphere, and Al 2 O 3 , SiO 2 , FeO and other non-metal particles that are still mixed as particles are mixed. This process prepares Cr powder with desired particle size by removing oxygen, nitrogen, hydrogen gas mainly by appropriate combination of heat treatment in hydrogen and heat treatment in vacuum while removing by means such as flotation. For example, a mixture of Al 2 O 3 , SiO 2 , FeO and the like in a particle state is sufficiently removed, but Al, Si and the like existing in a solid solution state in Cr are, of course, difficult to remove. Therefore, the selection of Cr ore at the start is important for the restriction of the amount of Al and Si in the solid solution state. The amount of gas in the raw material Cr used for the contact material of the present invention thus obtained is 100 ppm or several 100 ppm, which is significantly less than 1,000 ppm, which is the value of the industrially supplied normal Cr shown above. Secured.

以下サンプルテストによって本発明をさらに具体的に説
明する。
Hereinafter, the present invention will be described in more detail with reference to sample tests.

なお、接点材料の評価は下記に示す再点弧発生確率にも
とずいて行なった。
The contact materials were evaluated based on the re-ignition occurrence probability shown below.

径30mm、厚さ5mmの円板状接点片を、デイマウンタブル
形真空バルブに装着し、6kV×500Aの回路を2000回しゃ
断した時の再点弧発生頻度を測定し、2台のしゃ断器
(バルブとして6本)のばらつき幅(最大および最小)
で示した。接点の装着に際しては、ベーキング加熱(45
0℃、30分)のみ行い、ろう材の使用ならびにこれに伴
なう加熱は行なわなかった。
A disc-shaped contact piece with a diameter of 30 mm and a thickness of 5 mm was attached to a demountable vacuum valve, and the frequency of re-ignition was measured when the circuit of 6 kV x 500 A was interrupted 2000 times, and two breakers were measured. (6 bulbs) variation width (maximum and minimum)
Indicated by. When installing the contacts, use baking heat (45
(0 ° C., 30 minutes) only, and no brazing material was used and the heating associated therewith was not performed.

ここで、サンプルテストの結果を表−1に示す。Here, the results of the sample test are shown in Table-1.

高純度Cuを黒鉛坩堝中に入れて真空中約1500℃で1時間
加熱して指向性凝固を行い、溶浸材用のCu塊を用意す
る。
High-purity Cu is put into a graphite crucible and heated in a vacuum at about 1500 ° C. for 1 hour for directional solidification to prepare a Cu mass for an infiltrant.

複数種のCr粉を用意して各Cr粉中に存在するSi及びAl含
有量を大小別に区別し、前記厳選した条件を満すCr粉
(原料)を選択する。
A plurality of types of Cr powders are prepared, and the Si and Al contents present in each Cr powder are distinguished by size, and a Cr powder (raw material) satisfying the above-mentioned carefully selected conditions is selected.

真空中2000℃で前熱処理した黒鉛容器中に、上述した各
厳選した条件を満すCr粉を収容後、真空度5×10-6Torr
中で1200℃×1時間焼結してCrスケルトンを得る。かく
して得られた各Crスケルトンと前記溶浸材用Cu塊とを接
触させ、一体とした状態で、真空中で2000℃で前加熱処
理した黒鉛容器中に収納し、再度真空度5×10-6Torr中
で1150℃×1時間加熱することにより、Crスケルトン内
の空孔中にCuを溶浸させてCu−Cr合金を得る。
After containing Cr powder satisfying the above-mentioned carefully selected conditions in a graphite container preheated at 2000 ° C. in vacuum, the degree of vacuum is 5 × 10 −6 Torr.
Sinter at 1200 ° C for 1 hour to obtain a Cr skeleton. Each Cr skeleton thus obtained was brought into contact with the Cu mass for infiltration material, and in an integrated state, they were housed in a graphite container preheated at 2000 ° C. in a vacuum, and the degree of vacuum was 5 × 10 again. By heating at 1150 ° C for 1 hour in 6 Torr, Cu is infiltrated into the pores in the Cr skeleton to obtain a Cu-Cr alloy.

表−1に於て、比較例1〜5及び実施例1〜3、実施例
−6は上記のように焼結温度1200℃、溶浸温度1150℃で
作製したものであり、実施例−4については厳選した条
件を満すCr粉を焼結用黒鉛容器へ収納する前に約6トン
/cm2で加圧成型し、焼結は真空度2×10-6Torr中で1380
℃×1時間、溶浸は真空度5×10-6Torr中で1150℃×1
時間加熱して行ったものである。又、実施例−5につい
ては厳選した条件を満すCr粉を約4トン/cm2で加圧成型
し、真空度5×10-6Torrで1200℃×1時間焼結した後、
真空度5×10-6Torr中で1150℃で1時間加熱して、Cuを
溶浸させたものである。更に実施例−6は溶浸材用のCu
塊以外に同等以上の品位を有するCu粉を用意する。この
Cu粉と前記厳選した条件を満すCr粉とを同量混合し、こ
の混合粉を前記前加熱処理した黒鉛容器中に収容して12
00℃×1時間、水素中での加熱によってスケルトンを得
て、残余の空孔中に前記溶浸材用のCu塊によって真空度
5×10-6Torrで1150℃×1時間加熱して溶浸させたもの
である。
In Table 1, Comparative Examples 1 to 5, Examples 1 to 3 and Example 6 are produced at the sintering temperature of 1200 ° C. and the infiltration temperature of 1150 ° C. as described above. About 6 tons before storing Cr powder that satisfies the carefully selected conditions in a graphite container for sintering
Pressure molding at 1 / cm 2 and sintering at 1380 in a vacuum of 2 × 10 -6 Torr
℃ × 1 hour, infiltration at a vacuum degree of 5 × 10 -6 Torr 1150 ℃ × 1
It was heated for an hour. Further, in Example-5, Cr powder satisfying the carefully selected conditions was pressure-molded at about 4 ton / cm 2 and sintered at 1200 ° C. for 1 hour at a vacuum degree of 5 × 10 −6 Torr,
It was heated at 1150 ° C. for 1 hour in a vacuum degree of 5 × 10 −6 Torr to infiltrate Cu. Further, Example-6 is Cu for infiltrant.
In addition to the lumps, prepare Cu powder of equal or higher quality. this
The same amount of Cu powder and Cr powder satisfying the above-mentioned carefully selected conditions were mixed, and the mixed powder was placed in the preheated graphite container.
A skeleton was obtained by heating in hydrogen at 00 ° C for 1 hour and melted in the remaining pores by heating the Cu ingot for the infiltrant at a vacuum degree of 5 × 10 -6 Torr at 1150 ° C for 1 hour. It is soaked.

実施例−7は99.99%のAgインゴットを更に真空中約135
0℃で、1時間黒鉛坩堝中で加熱後指向性凝固を行なっ
て、溶浸材用のAg塊を得る。Crは前記厳選した条件を満
すCr粉をSi3N4坩堝中で真空度4×10-6Torrで1000℃×
1時間加熱し、作製したスケルトンと前記Ag塊とを一体
化し、Si3N4坩堝中に収納し、真空度5×10-6Torrで105
0℃×1時間加熱してスケルトン内の空孔中へAgを溶浸
させ、Ag−Cr合金を得たものである。
Example-7 is the case where a 99.99% Ag ingot is further vacuumed for about 135
After heating in a graphite crucible for 1 hour at 0 ° C., directional solidification is carried out to obtain an Ag ingot for the infiltrant. Cr is a powder of Cr satisfying the above-mentioned carefully selected conditions in a Si 3 N 4 crucible at a vacuum degree of 4 × 10 -6 Torr and 1000 ° C ×
After heating for 1 hour, the prepared skeleton and the Ag lump are integrated and housed in a Si 3 N 4 crucible at a vacuum degree of 5 × 10 -6 Torr.
It was heated at 0 ° C for 1 hour to infiltrate Ag into the pores in the skeleton to obtain an Ag-Cr alloy.

各供試接点材料(Cu−Cr合金,Cu−Ag−Cr合金,Ag−Cr合
金)中のCr粒子のなかに存在するAl及びSi量と再点弧発
生確率特性とを表−1に対比させて示した。
Table 1 compares the amount of Al and Si present in the Cr particles in each test contact material (Cu-Cr alloy, Cu-Ag-Cr alloy, Ag-Cr alloy) with the probability of restriking occurrence. I showed it.

ここで、Al及びSi量は、イオンマイクロ・アナライザを
用いて既知量のCrを含有させたCu−Cr合金を標準試料と
し、強度比較によって求めると共に、前記Cu−Cr合金中
のCuを酸洗いによって除去してCrのみとし、Cr中のAl及
びSi発光分光分析法によって定量分析し比較確認したも
のである。
Here, the amount of Al and Si, Cu-Cr alloy containing a known amount of Cr using an ion micro-analyzer as a standard sample, is determined by strength comparison, and Cu in the Cu-Cr alloy is pickled It was removed by the method to obtain only Cr, and Al in Si and Si were quantitatively analyzed by the emission spectroscopic analysis method for comparison and confirmation.

原料Crには、Al2O3,SiO2などの非金属混入物がないのは
勿論であるが、顕微鏡観察によれば、供試接点材料のCr
粒子のなかにも、Al2O3,SiO2などの非金属介在物の存在
は無いことも確認している。
The raw material Cr is, of course, free of non-metallic contaminants such as Al 2 O 3 and SiO 2 , but according to the microscopic observation, the Cr
It was also confirmed that no non-metallic inclusions such as Al 2 O 3 and SiO 2 were present in the particles.

接点材料中のCr粒子のなかに存在するAl量が約400ppm,1
400ppm,2100ppm,5700ppm(比較例−3,2,5及び1)では
いずれも0.4%以上の高い再点弧発生確率を示すと共
に、6本の評価バルブのなかのばらつき幅も大きい傾向
を示した。又同じAl量が40ppmと著しく小量であるにも
拘わらず、Si量が著しく多い場合(比較例−4)には同
じく高い再点弧発生確率を示した。
The amount of Al present in the Cr particles in the contact material is approximately 400 ppm, 1
At 400 ppm, 2100 ppm, and 5700 ppm (Comparative Examples-3, 2, 5, and 1), 0.4% or more of the high re-ignition probability was shown, and the variation range among the six evaluation valves also tended to be large. . In addition, although the same amount of Al was 40 ppm, which was extremely small, when the amount of Si was extremely large (Comparative Example-4), a high probability of re-ignition occurred.

これに対して実施例1〜3に示すように、Al量が<10pp
m,20ppm,98ppmの如く100ppm以下で、かつSi量が<5ppm,
70ppm,50ppmの如く、100ppmの以下の場合には、極めて
低い再点弧発生確率を示した。以上述べた実施例1〜3
及び比較例1〜5については、約50wt%のCrを含有した
Cu−Crについての結果であるが、実施例−4〜6に示し
たように、Cr量が約79%,40%,20%についても同様にAl
量及びSi量が100ppm以下のときには、低い再点弧発生確
率を示した。更に、上述の実施例1〜6及び比較例1〜
5はCu−Cr合金について示したものであるが、高導電材
料がCuの代りにAgであっても(実施例−7)又、Cu−Ag
合金であっても(実施例−8)、Al量及びSi量が100ppm
以下のときには、低い再点弧発生確率を示した。
On the other hand, as shown in Examples 1 to 3, the Al amount is <10 pp.
m, 20ppm, 98ppm or less 100ppm or less, Si amount is <5ppm,
When the concentration was 100 ppm or less, such as 70 ppm and 50 ppm, the re-ignition probability was extremely low. Examples 1 to 3 described above
And Comparative Examples 1 to 5 contained about 50 wt% Cr.
As for the results for Cu-Cr, as shown in Examples-4 to 6, the same was true for the Cr contents of about 79%, 40% and 20%.
When the amount of Si and the amount of Si were less than 100ppm, a low probability of re-ignition occurred. Furthermore, the above Examples 1 to 6 and Comparative Examples 1 to 1
5 shows the Cu-Cr alloy, but even if the high conductive material is Ag instead of Cu (Example-7), Cu-Ag is also used.
Even if it is an alloy (Example-8), the amount of Al and the amount of Si are 100 ppm.
It showed a low probability of re-ignition when:

以上の実験結果から、供試接点材料中のCr粒子のなかに
存在するAl及びSi量が100ppm以内の場合には、低い再点
弧発生確率を持つことが判る。しかし1ppm以下では、計
測の精度及び含有量の制約の技術が工業的でないことな
どによってその下限量は1ppmが実質的な数値となる。
From the above experimental results, it is found that when the Al and Si contents in the Cr particles in the test contact material are within 100 ppm, the re-ignition probability is low. However, if it is 1 ppm or less, the lower limit amount is 1 ppm, which is a practical value, because the measurement accuracy and the technology for limiting the content are not industrial.

実施例1〜8(表−1)に示した各供試接点材料を作製
する際に使用した原料Crは、いずれも焼結・溶浸処理に
供する前に先にも述べた高純度水素中で400℃以上、好
ましくは1000以上の熱処理と、高真空中で800℃以上、
好ましくは1000℃以上の熱処理とを適宜組合せて与え、
しかも一方の熱処理から他の熱処理工程に移すときなど
反応性雰囲気(例えば大気中)に触れないように配慮し
て行ったものである。先にも述べたように原料Cr中のA
l,Siが数100ppm程度以下含有する場合には、ガス含有量
は数1,000〜10,000ppm含有するのが一般的であり、実施
例1〜8の場合も上述の水素中熱処理と、真空中熱処理
によって原料レベルでのCr中のガス量を調整したもので
ある。その効果は表−2に示した実施例9,10,11のよう
に、原料時点での(焼結・溶浸前)Cr中のガス量(本発
明の場合、特に酸素と窒素に注目すればよい)が、1,00
0ppm以下(実施例2及び11)のとき再点弧発生の抑制の
効果が、これより多い試料(実施例9及び10)よりも優
れている。従って,再点弧抑制に対して特に厳しい設計
を行う場合には、使用原料Cr中のガス管理も、接点合金
中のAl,Si量の管理に加えて行うことが望ましいと言え
る。
The raw material Cr used in producing each of the test contact materials shown in Examples 1 to 8 (Table 1) was the same as in the high purity hydrogen described above before being subjected to the sintering / infiltration treatment. At 400 ° C or higher, preferably 1000 ° C or higher, and 800 ° C or higher in high vacuum,
Preferably given in appropriate combination with a heat treatment of 1000 ℃ or more,
Moreover, it is performed so as not to come into contact with the reactive atmosphere (for example, in the air) when transferring from one heat treatment to another heat treatment. As mentioned above, A in the raw material Cr
When l and Si are contained in the range of several hundred ppm or less, the gas content is generally several 1,000 to 10,000 ppm, and also in the cases of Examples 1 to 8, the above-mentioned heat treatment in hydrogen and heat treatment in vacuum are performed. The amount of gas in Cr at the raw material level is adjusted by. The effect is that, as in Examples 9, 10 and 11 shown in Table 2, the amount of gas in Cr (before sintering / infiltration) at the time of raw material (in the case of the present invention, particular attention should be paid to oxygen and nitrogen). Good luck) but 1,00
When it is 0 ppm or less (Examples 2 and 11), the effect of suppressing the occurrence of restriking is superior to the samples (Examples 9 and 10) in which the amount is higher than this. Therefore, it can be said that it is desirable to control the gas in the raw material Cr in addition to the control of the amounts of Al and Si in the contact alloy when a particularly strict design is performed to suppress re-ignition.

尚、表−2に於けるガス量評価は、原料Cr中のガス量に
ついては約100メッシュのCr粉をカーボン坩堝中にて真
空中2400℃で加熱して抽出したもので、接点材料中のガ
ス量については、接点を約5mm3の大きさに切出しこれを
カーボン坩堝中にて真空中2400℃で加熱して抽出したも
のである。
In addition, the gas amount evaluation in Table-2 shows that about 100 mesh Cr powder was extracted by heating in a carbon crucible at 2400 ° C. in vacuum for the gas amount in the raw material Cr. Regarding the gas amount, the contact was cut into a size of about 5 mm 3 and this was extracted by heating in a carbon crucible at 2400 ° C. in a vacuum.

[発明の効果] 以上説明したように本発明によれば、Cr中に含有される
Al量が0.0001〜0.01wt%、同じくSi量が0.0001〜0.01wt
%、同じくAl,Siの合計量が0.0002〜0.015wt%なる条件
を満たすCrを20〜80wt%、残部がCu,Agの一方又は双方
からなる合金を真空バルブ用接点として採用することに
より、再点弧発生頻度を飛躍的に低減させることができ
る信頼性の高い真空バルブ用接点材料を提供することが
できる。
[Effects of the Invention] As described above, according to the present invention, it is contained in Cr.
Al content is 0.0001-0.01wt%, Si content is 0.0001-0.01wt%
%, Also 20 to 80 wt% of Cr satisfying the condition that the total amount of Al and Si is 0.0002 to 0.015 wt% and the balance of one or both of Cu and Ag is adopted as a contact for a vacuum valve. It is possible to provide a highly reliable contact material for a vacuum valve, which can drastically reduce the firing frequency.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による接点材料を採用した真空バルブの
一構成例を示す断面図、第2図はその要部拡大図であ
る。 1……しゃ断室、2……絶縁容器、6,7……電極棒、8
……固定電極、9……可動電極、14,14a……接点、13,1
5……ろう材。
FIG. 1 is a cross-sectional view showing a structural example of a vacuum valve employing a contact material according to the present invention, and FIG. 2 is an enlarged view of a main part thereof. 1 ... Shut-off chamber, 2 ... Insulation container, 6,7 ... Electrode rod, 8
...... Fixed electrode, 9 ...... Movable electrode, 14,14a ...... Contact, 13,1
5 ... brazing material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関口 薫旦 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜金属工場内 (56)参考文献 特開 昭59−186218(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kaoru Sekiguchi 8 Shinshinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Kanagawa Yokohama Metal Factory (56) Reference JP-A-59-186218 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Cr中に含有されるAl量が0.0001〜0.01wt
%、同じくSi量が0.0001〜0.01wt%、同じくAl,Siの合
計量が0.0002〜0.015wt%なる条件を満たすCrを20〜80w
t%、残部がCu,Agの一方又は双方からなる合金よりなる
真空バルブ用接点材料。
1. The amount of Al contained in Cr is 0.0001 to 0.01 wt.
%, Similarly Si content is 0.0001 to 0.01 wt%, and similarly, the total amount of Al and Si is 0.0002 to 0.015 wt% Cr, which is 20 to 80 w
A contact material for a vacuum valve, which is made of an alloy of t% and the balance of one or both of Cu and Ag.
JP14215585A 1985-06-28 1985-06-28 Contact material for vacuum valve Expired - Lifetime JPH079777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14215585A JPH079777B2 (en) 1985-06-28 1985-06-28 Contact material for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14215585A JPH079777B2 (en) 1985-06-28 1985-06-28 Contact material for vacuum valve

Publications (2)

Publication Number Publication Date
JPS625525A JPS625525A (en) 1987-01-12
JPH079777B2 true JPH079777B2 (en) 1995-02-01

Family

ID=15308638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14215585A Expired - Lifetime JPH079777B2 (en) 1985-06-28 1985-06-28 Contact material for vacuum valve

Country Status (1)

Country Link
JP (1) JPH079777B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310608A (en) * 2004-04-23 2005-11-04 Shibafu Engineering Corp Vacuum valve

Also Published As

Publication number Publication date
JPS625525A (en) 1987-01-12

Similar Documents

Publication Publication Date Title
US4743718A (en) Electrical contacts for vacuum interrupter devices
JP2908073B2 (en) Manufacturing method of contact alloy for vacuum valve
KR0170052B1 (en) Contact material for vacuum valve &amp; method of manufacturing the same
JPH0612646B2 (en) Contact material for vacuum valve
JPH079777B2 (en) Contact material for vacuum valve
JP2000235825A (en) Electrode member for vacuum circuit-breaker and manufacture thereof
JPH10255603A (en) Contact material for vacuum valve
JPH0682532B2 (en) Method for manufacturing contact alloy for vacuum valve
JP2937620B2 (en) Manufacturing method of contact alloy for vacuum valve
JP3251779B2 (en) Manufacturing method of contact material for vacuum valve
JPS62150618A (en) Manufacture of contact alloy for vacuum valve
JPH07320608A (en) Manufacture of contact material
JP2006032036A (en) Contact material for vacuum valve
JPH0573813B2 (en)
JP2878718B2 (en) Contact material for vacuum valve
JP3833519B2 (en) Vacuum circuit breaker
JP2511043B2 (en) Manufacturing method of contact alloy for vacuum valve
JP2009087746A (en) Contact material for vacuum breaker
JP4421173B2 (en) Vacuum circuit breaker
JP3478699B2 (en) Manufacturing method of contact alloy for vacuum circuit breaker
JP4476542B2 (en) Vacuum circuit breaker
JP2511019B2 (en) Contact material for vacuum valve
JP2653467B2 (en) Manufacturing method of contact alloy for vacuum valve
JP2002279865A (en) Vacuum circuit breaker
JPH05101752A (en) Manufacture of contact for vacuum valve

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term