JPH0795482B2 - バリスタの製造方法 - Google Patents

バリスタの製造方法

Info

Publication number
JPH0795482B2
JPH0795482B2 JP61077137A JP7713786A JPH0795482B2 JP H0795482 B2 JPH0795482 B2 JP H0795482B2 JP 61077137 A JP61077137 A JP 61077137A JP 7713786 A JP7713786 A JP 7713786A JP H0795482 B2 JPH0795482 B2 JP H0795482B2
Authority
JP
Japan
Prior art keywords
mol
grain growth
varistor
zno
growth promoter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61077137A
Other languages
English (en)
Other versions
JPS62232904A (ja
Inventor
雅昭 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61077137A priority Critical patent/JPH0795482B2/ja
Publication of JPS62232904A publication Critical patent/JPS62232904A/ja
Publication of JPH0795482B2 publication Critical patent/JPH0795482B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体電子部品をサージ電流から保護するため
の低電圧用のバリスタの製造方法に関するものである。
従来の技術 従来、ZnOを主成分とし、Bi2O3,CoO,Sb2O3,Cr2O3を始め
とする数種の金属酸化物を副成分とする酸化亜鉛型バリ
スタが、優れた電圧非直線性により、サージ吸収用の素
子として広く利用されてきた。この酸化亜鉛型バリスタ
は焼結体1mm当たりの立上がり電圧(バリスタ電圧:
V1mA)を調整することにより、種々の電圧回路に適用で
きる。現在、実用化されている酸化亜鉛型バリスタのV
1mA/mmは概ね10〜300Vである。また酸化亜鉛バリスタの
バリスタ電圧は、焼結体中のZnO粒子の直列数に依存
し、焼結体の厚みを一定とすると、バリスタ電圧を上げ
るためにはZnO粒子の成長を阻害し、逆に下げるために
は促進させれば良い。例えば、ZnO,Bi2O3,CoO,Sb2O3,Si
O2,NiO,Cr2O3,MnO2などから適当に調製された酸化亜鉛
型バリスタでは、ZnO粒子の大きさは10〜30μm程度、V
1mA/mmは80〜300Vである。一方、これらの成分にTiO2
加えた酸化亜鉛型バリスタは低電圧化し、ZnO粒子径は5
0〜100μm,V1mA/mmは20〜50Vとなる。
近年、家電機器,産業機器の制御回路のマイコン化が進
展し、これに伴い駆動回路電圧が低下し、そのほとんど
が10V以下である。ところが、トランジスタICを始めと
する半導体電子部品はサージ電流に極めて弱く、その対
策が不可欠のものとなっている。このような背景によ
り、バリスタ電圧が10V程度の低電圧回路用の酸化亜鉛
型バリスタが市場から強く求められている。このために
はZnO粒子径を200〜300μmにする必要がある。
上記低電圧回路用の酸化亜鉛型バリスタを製造する方法
として、例えば特公昭56−39526号公報に記載のものが
知られている。これは、ZnO99.5モル%,BaCO30.5モル%
を混合したのち焼結し、加水分解により30〜200μmのZ
nO結晶を得る。さらに、ZnO,Sb2O3,CoO,MnO2,NiO,Cr2O3
などを混合したのち焼結し、スピネル相成分を得る。こ
のスピネル相成分とZnO結晶を適当に分級し、別に用意
したZnO粉末にスピネル相成分を1〜50重量%,ZnO結晶
を1〜40重量%添加し、混合,成型,焼結し、V1mA/mm
が約10Vの低電圧バリスタが作成される。
発明が解決しようとする問題点 しかしながら、上記のような従来の方法によれば、ZnO
結晶粒を得るために焼成後、加水分解、分級が必要であ
り、さらにスピネル相成分の作成にも同様の工程が必要
なため、工数が非常に多く、時間的、エネルギー的ロス
が高いという欠点を有していた。さらに、ZnO結晶粒と
スピネル相成分、ZnO粉末を混合する際、それらの比重
の違いから均一な混合が困難で、ZnO結晶粒の偏在によ
りバリスタ電圧が大きく、バラツキが大きいという欠点
も同時に有していた。
本発明はこのような問題点を解決するもので、半導体電
子部品をサージ電流から保護するための低電圧用のバリ
スタの製造方法を提供することを目的とするものであ
る。
問題点を解決するための手段 この目的を達成するために本発明のバリスタの製造方法
は、ZnOを主成分とする基材となる造粒粉を得る第1の
工程と、少なくともAl2O3、ZnO、Bi2O3、TiO2を混合
し、粒成長促進剤となる造粒粉を得る第2の工程と、前
記第1の工程で得た基材となる造粒粉に前記第2の工程
で得た造粒粉を25〜80重量%添加、混合し原料粉を得る
第3の工程と、前記第3の工程で得た原料粉を成型、焼
成する第4の工程とを有し、前記第2の工程におけるAl
2O3は前記第3の工程において混合する前記第1の工程
で得た造粒粉に対し1.5〜5.0×10-3モル%含まれるよう
にするものである。
作用 上記方法を採用することにより、焼結体内部に80〜300
μmのZnO結晶粒が分散して配置され、電圧非直線指数
の優れた低電圧のバリスタを容易に得ることとなる。
実施例 以下、本発明の詳細を実施例に基づき説明する。
<実施例1> まず、ZnO粉末にBi2O3,CoO,MnO2,Sb2O3,NiO,Cr2O3,TiO2
をそれぞれ1.0モル%,0.4モル%,1.0モル%,0.05モル
%,0.8モル%添加し、これにバインダーと水を加え混合
する。これをスプレードライヤーにて乾燥造粒し基材を
得る。次に、粒成長促進剤として、前述の基材のスラリ
ーにAl2O3を0.5×10-3モル%,1.0×10-3モル%,1.5×10
-3モル%,2.5×10-3モル%,5.0×10-3モル%,7.5×10-3
モル%を添加し充分に混合し、スプレードライヤーにて
乾燥,造粒し、6種類の粉末を得る。この造粒粉を粒径
20μm〜100μmになるようにメッシュカットを行い、
粒成長促進剤として用いた。この粒成長促進剤を基材に
対し適当量混合し、低電圧バリスタの原料粉とした。こ
の原料粉を加圧成型後、1250℃で1〜5時間焼結させ、
バリスタ電圧、電圧非直線指数などを調べた。
第1図は基材に粒成長促進剤を40重量%添加した試料の
単位素子厚み当たりのバリスタ電圧(V1mA/mm)および
電圧非直線指数(α)と、粒成長促進剤中のAl2O3濃度
との関係を示した図である。また、第2図は粒成長促進
剤のみを焼結させた試料について、同様にV1mA/mmおよ
びαと、Al2O3濃度との関係である。第1図から、粒成
長促進剤中のAl2O3濃度が1.0×10モル%以下の時V1mA/m
mは20〜30V,αは約45,1.5〜5.0×10-3モル%の範囲でV
1mA/mmは目標とする16〜9V,αは約40,Al2O3濃度が5.0×
10-3モル%を越えるとV1mA/mmおよびαの低下が急激に
起きる。第2図は粒成長促進剤のみを焼結した場合のデ
ータである。第2図からAl2O3濃度とともににV1mA/mmが
低下し、ZnO粒成長が発生していることがわかる。この
ことからZnO粒成長の主原因がAl2O3にあると推測でき
る。しかし、Al2O3濃度を上げることのみでV1mA/mmを下
げると、第2図からバリスタとしての非常に重要な特性
である電圧非直線指数(α)が極端に低下することがわ
かる。
第3図および第4図は基材に添加する粒成長促進剤の種
類および量を変化させた場合のV1mA/mm,αを示したもの
である。第3図,第4図で粒成長促進剤中のAl2O3濃度
は曲線aが1.0×10-3モル%,bが2.5×10-3モル%,cが7.
5×10-3モル%である。そして、Al2O3濃度が1.0×10-3
モル%の場合、基材に対する粒成長促進剤の割合が増加
してもV1mA/mm,αはともにほとんど変化しない。一方、
Al2O3濃度が2.5×10-3モル%の場合、粒成長促進剤の添
加量が25〜80重量%の時、V1mA/mmは10〜15V、αは35〜
40と低電圧バリスタとして最適の特性を持つ。しかし、
添加量が80重量%を超えるとαが急激に低下し、バリス
タとして使用できなくなる。図示していないがAl2O3
度が5.0×10モル%の粒成長促進剤を用いた場合にも同
様の結果が得られた。また、Al2O3濃度が7.5×10-3モル
%の場合、粒成長促進剤の添加量が10〜40重量%の時、
V1mA/mmは約5Vに低下するものの、αが非常に悪くな
る。さらに、添加量が60重量%を超えると、ZnO粒子が
異常粒成長をし、すべての試料がショートする。以上の
結果から粒成長促進剤中のAl2O3が1.5〜5.0×10-3モル
%で、基材に対する添加量が25〜80重量%の時、V1mA/m
m10〜15V,α約40の低電圧バリスタを製造することがで
きる。
<実施例2> 次に、ZnO粉末にBi2O3,CoO,MnO2,Sb2O3,NiO,Cr2O3をそ
れぞれ1.0モル%,0.5モル%,0.5モル%,0.5モル%,0.5
モル%,0.1モル%添加し、これにバインダーと水を加え
混合する。これをスプレードライヤーにて乾燥,造粒し
基材を得る。これに上記実施例1と同一組成の粒成長促
進剤用に造粒粉を作成する。この造粒粉を粒径60〜200
μmになるようメッシュカットを行い、粒成長促進剤と
して用い、実施例1と同一の条件で試料を作成し、電気
的特性を調べた。
第5図は基材に粒成長促進剤を40重量%添加した試料の
単位素子厚み当りのバリスタ電圧(V1mA/mm)および電
圧非直線指数(α)と、粒成長促進剤中のAl2O3濃度と
の関係を示した図である。第6図は基材にAl2O3を0.5〜
7.5×10-3モル%添加した原料粉を成型,焼結した試料
のV1mA/mm,αの値である。この基材を用いた場合にも、
粒成長促進剤中のAl2O3濃度が1.5〜8.0×10-3モル%の
場合、V1mA/mmが60〜15Vに低下するがαは〜40程度と良
好な値を示す。一方、この基材に直接Al2O3を添加した
場合、Al2O3濃度が0〜7.5×10-3モル%で、V1mA/mmは
わずかに低下し、αはその濃度ともに大きく低下する。
第7図および第8図は基材に添加する粒成長促進剤の量
を変化された場合のV1mA/mm,αを示したものである。第
7図,第8図で粒成長促進剤中のAl2O3は曲線dが1.0×
10-3モル%,曲線eが2.5×10-3モル%,曲線fが7.5×
10-3モル%である。これよりAl2O3濃度が1.0×10-3モル
%の場合、粒成長促進剤の添加量を増してもV1mA/mmは
低下しない。一方、Al2O3濃度が2.5×10−-3モル%の場
合、粒成長促進剤の添加量が25重量%以上でV1mA/mmが
低下し、ZnO粒成長が発生している。また、αは80重量
%を超えると急激に低下する。図示していないが、Al2O
3濃度が5.0×10-3モル%の場合でも同様の傾向が確認さ
れた。そして、Al2O3濃度が7.5×10-3モル%の場合、基
材に対する添加量が低くてもV1mA/mmは低下するもの
の、αが非常に低下し、バリスタとして使用できなくな
る。以上の実験結果から、粒成長促進剤中のAl2O3の濃
度は1.5〜5.0×10-3モル%、基材に対する添加量は25〜
80重量%が最適であることがわかる。
発明の効果 以上のように本発明によれば、バリスタ特性を有する造
粒粉にAl2O3,TiO2などを含む焼結体自身がバリスタ特性
を有する造粒粉を粒成長促進剤として添加することによ
り、バリスタ電圧が低く、電圧非直線性の高い酸化亜鉛
バリスタを製造することができる。
なお、本実施例では基材および粒成長促進剤にZnO,Bi2O
3,CoO,MnO2,NiO,Sb2O3,TiO2,Cr2O3を用いたが、バリス
タとしての特性を向上させる他の金属酸化物、例えばSi
O2,PbO,SnO2,Ag2O,MgO,Pr6O11などを用いても本発明の
効果に変わりはない。
【図面の簡単な説明】
第1図〜第8図の図面はいずれも本発明例、参考例の特
性を示しており、第1図は粒成長促進剤中のAl2O3濃度
とV1mA/mmおよびαの関係の特性図、第2図は粒成長促
進剤のみを焼結させた試料のAl2O3濃度とV1mA/mm、およ
びαの関係の特性図、第3図および第4図は粒成長促進
剤の添加量とV1mA/mm,αとの関係を示す特性図、第5図
は粒成長促進剤中のAl2O3濃度とV1mA/mmおよびαの関係
の特性図、第6図は基材にAl2O3を添加した試料のAl2O3
濃度とV1mA/mm,αとの関係の特性図、第7図および第8
図は粒成長促進剤の添加量とV1mA/mm,αとの関係を示す
特性図である。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】ZnOを主成分とする基材となる造粒粉を得
    る第1の工程と、少なくともAl2O3、ZnO、Bi2O3、TiO2
    を混合し、粒成長促進剤となる造粒粉を得る第2の工程
    と、前記第1の工程で得た基材となる造粒粉に前記第2
    の工程で得た造粒粉を25〜80重量%添加、混合し原料粉
    を得る第3の工程と、前記第3の工程で得た原料粉を成
    型、焼成する第4の工程とを有し、前記第2の工程にお
    けるAl2O3は前記第3の工程において混合する前記第1
    の工程で得た造粒粉に対し1.5〜5.0×10-3モル%含まれ
    るようにするバリスタの製造方法。
JP61077137A 1986-04-03 1986-04-03 バリスタの製造方法 Expired - Lifetime JPH0795482B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61077137A JPH0795482B2 (ja) 1986-04-03 1986-04-03 バリスタの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61077137A JPH0795482B2 (ja) 1986-04-03 1986-04-03 バリスタの製造方法

Publications (2)

Publication Number Publication Date
JPS62232904A JPS62232904A (ja) 1987-10-13
JPH0795482B2 true JPH0795482B2 (ja) 1995-10-11

Family

ID=13625411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61077137A Expired - Lifetime JPH0795482B2 (ja) 1986-04-03 1986-04-03 バリスタの製造方法

Country Status (1)

Country Link
JP (1) JPH0795482B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289218A (ja) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd バリスタの製造方法
JPH01289210A (ja) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd バリスタの製造方法
JPH01289215A (ja) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd バリスタの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028121B2 (ja) * 1980-06-17 1985-07-03 松下電器産業株式会社 電圧非直線抵抗器の製造方法
US4436650A (en) * 1982-07-14 1984-03-13 Gte Laboratories Incorporated Low voltage ceramic varistor

Also Published As

Publication number Publication date
JPS62232904A (ja) 1987-10-13

Similar Documents

Publication Publication Date Title
JPH0795482B2 (ja) バリスタの製造方法
JP2548297B2 (ja) バリスタの製造方法
JP2548298B2 (ja) バリスタの製造方法
JP2558811B2 (ja) バリスタの製造方法
JPH0552642B2 (ja)
JPH01289206A (ja) 電圧依存性非直線抵抗体素子及びその製造方法
JP2536128B2 (ja) 電圧非直線抵抗素子の製造方法
JPS6249961B2 (ja)
JPH0630284B2 (ja) 電圧非直線抵抗素子の製造方法
JPH01289218A (ja) バリスタの製造方法
JPH10241910A (ja) 非直線抵抗体
JPH01289215A (ja) バリスタの製造方法
JPH0383846A (ja) バルスタの製造方法
JPH0212901A (ja) 酸化亜鉛バリスタの製造方法
JPH0729708A (ja) 電圧非直線抵抗体
CN117497267A (zh) 一种氧化锌高梯度非线性电阻片及其制备方法
JPH0729709A (ja) 電圧非直線抵抗体
JPH10312909A (ja) 低電圧用電圧非直線性抵抗器の製造方法
JPH03178101A (ja) 電圧非直線抵抗体
JPH01289210A (ja) バリスタの製造方法
JPH0352201A (ja) 電圧非直線抵抗器
JPH10241911A (ja) 非直線抵抗体
JPH0224363B2 (ja)
JPH0684609A (ja) 電圧非直線抵抗体磁器の製造方法
JPH07211518A (ja) 電圧非直線性抵抗器の製造方法

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term