JPH0794873B2 - 2-stage operation solenoid valve - Google Patents

2-stage operation solenoid valve

Info

Publication number
JPH0794873B2
JPH0794873B2 JP62127023A JP12702387A JPH0794873B2 JP H0794873 B2 JPH0794873 B2 JP H0794873B2 JP 62127023 A JP62127023 A JP 62127023A JP 12702387 A JP12702387 A JP 12702387A JP H0794873 B2 JPH0794873 B2 JP H0794873B2
Authority
JP
Japan
Prior art keywords
valve
piston
refrigerant
valve body
fluid passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62127023A
Other languages
Japanese (ja)
Other versions
JPS63293373A (en
Inventor
忠 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP62127023A priority Critical patent/JPH0794873B2/en
Publication of JPS63293373A publication Critical patent/JPS63293373A/en
Publication of JPH0794873B2 publication Critical patent/JPH0794873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電磁弁の開口を徐々に行う技術に関するもの
であり、特に複数台の室内ユニットを接続したマルチタ
イプのヒートポンプ式空調機に用いられる冷媒流路開閉
用電磁弁である。
TECHNICAL FIELD The present invention relates to a technique for gradually opening a solenoid valve, and is particularly used for a multi-type heat pump type air conditioner in which a plurality of indoor units are connected. 2 is a solenoid valve for opening and closing a refrigerant passage.

〔従来の技術〕[Conventional technology]

1台の室外ユニットと複数台の室内ユニットからなる空
気調和機としては、例えば第2図に示すようなヒートポ
ンプを利用したマルチエアコンがある。図においてAは
室外ユニット、Bは室内ユニット、Cは気化された冷媒
を圧縮する圧縮機、Dは4方弁、Eは冷媒液化防止のた
めに用いられる電磁弁、Fは電気式膨張弁、Gは逆止弁
である。図中の矢符号の実線は冷房時、破線は暖房時の
冷媒の流れる方向を示している。
An air conditioner including one outdoor unit and a plurality of indoor units is, for example, a multi-air conditioner using a heat pump as shown in FIG. In the figure, A is an outdoor unit, B is an indoor unit, C is a compressor for compressing vaporized refrigerant, D is a four-way valve, E is a solenoid valve used to prevent refrigerant liquefaction, and F is an electric expansion valve. G is a check valve. In the figure, the solid line of the arrow mark indicates the cooling medium flowing direction, and the broken line indicates the flowing direction of the refrigerant during heating.

このシステムでは、暖房時には電磁弁Eを開けて室内ユ
ニットへ高温高圧ガスとなっている冷媒の供給をする。
In this system, at the time of heating, the electromagnetic valve E is opened to supply the refrigerant, which is high-temperature and high-pressure gas, to the indoor unit.

一方冷房時にはこの電磁弁Eは不要であり、開口してお
けばよいのであるが、単に開口しておくためだけに通電
するのは無駄であり、開口し忘れる危険性もある。その
ために、冷房時にはこの電磁弁Eは通電を止めて閉止
し、室内ユニットBで蒸発し過熱蒸気となった冷媒ガス
はこの電磁弁Eと並列に設けられた逆止弁Gを通って圧
縮機Cに流れるようにしている。
On the other hand, at the time of cooling, the electromagnetic valve E is not necessary and may be opened. However, it is useless to energize only to keep it open, and there is a risk of forgetting to open it. Therefore, during cooling, the electromagnetic valve E stops energizing and closes, and the refrigerant gas evaporated in the indoor unit B and turned into superheated vapor passes through the check valve G provided in parallel with the electromagnetic valve E to compress the compressor. I am trying to flow to C.

このマルチシステムにおいて、暖房時に室内ユニットを
使用しない場合、その室内ユニットへの冷媒液化防止用
電磁弁Eを閉じて高温高圧のガスの状態にある冷媒の供
給を止める。しかし室内ユニットBに充満していたガス
はその後室内の温度により冷却され液化する。この液化
した冷媒が室内ユニットに溜るのを防ぐために膨張弁F
は開けておき、冷媒が室外ユニットA側に吸引されるよ
うにしておく。一方圧縮機Cは1台でも室内ユニットが
使用されていれば稼働するので、冷媒ガスの圧力は同じ
レベルを保つ。従って冷媒液化防止用電磁弁Eの両側に
は大きな圧力差がかかることになり、次に暖房をしよう
として電磁弁Eを開口すると、急激に大量の冷媒が通過
するので大きな冷媒通過音を発生するという問題を有し
ている。
In this multi-system, when the indoor unit is not used during heating, the refrigerant liquefaction prevention solenoid valve E is closed to the indoor unit to stop the supply of the refrigerant in the high temperature and high pressure gas state. However, the gas filled in the indoor unit B is cooled and liquefied by the temperature in the room thereafter. In order to prevent the liquefied refrigerant from accumulating in the indoor unit, the expansion valve F
Is opened so that the refrigerant is sucked to the outdoor unit A side. On the other hand, even if only one compressor C is used when the indoor unit is used, the pressure of the refrigerant gas is kept at the same level. Therefore, a large pressure difference is applied to both sides of the refrigerant liquefaction prevention solenoid valve E, and when the solenoid valve E is opened for heating next time, a large amount of refrigerant rapidly passes and a large refrigerant passage noise is generated. I have a problem.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の冷媒通過音が発生するのは、従来の電磁弁はその
電磁コイルに通電されると、直ちに弁を全開してしまい
開口速度を加減出来ないという欠点があるためである。
また冷房時のために逆止弁を並列に取りつけるので、器
具や配管が余計に必要となりコストアップの原因ともな
る。電磁弁と逆止弁を並列に設けるかわりに1つの可逆
弁を設けることも考えられるが、冷房時には弁として機
能しないことが要件であり、この目的に合う可逆弁はな
い。
The above-mentioned refrigerant passing sound is generated because the conventional solenoid valve has a drawback that when the solenoid coil is energized, the valve is immediately fully opened and the opening speed cannot be adjusted.
Also, since the check valves are mounted in parallel for cooling, extra equipment and piping are required, which causes a cost increase. It is conceivable to provide one reversible valve instead of providing the solenoid valve and the check valve in parallel, but it is a requirement that they do not function as valves during cooling, and there is no reversible valve for this purpose.

本発明は上記従来技術の欠点の解消を図ったもので、弁
の開口を徐々に行うとともに、逆方向の流れに対しては
弁として機能しない電磁弁を提供することを目的として
いる。
The present invention is intended to solve the above-mentioned drawbacks of the prior art, and an object thereof is to provide a solenoid valve that gradually opens a valve and does not function as a valve against a flow in the opposite direction.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の目的を達成するために、弁本体に第1
流体通路,第2流体通路開口部を設けるとともに、その
間に弁座を設け、弁室内に該弁座に接離する弁体を摺動
自在に嵌挿し、該弁体の上部にピストンを移動自在に設
け、該弁体とピストンとの間の弁室と上記第2流体通路
開口部との差圧を制御するパイロット電磁弁を設け、弁
体が弁座に当接している状態では該弁体はピストンとの
間に間隙を有し、該弁体の上昇時において該ピストンに
当接し押し上げることを特徴としている。
In order to achieve the above object, the present invention provides a first valve body.
A fluid passage and a second fluid passage opening are provided, and a valve seat is provided between them, and a valve body that comes into contact with and separates from the valve seat is slidably inserted into the valve chamber, and a piston is movable above the valve body. And a pilot solenoid valve for controlling the pressure difference between the valve chamber between the valve body and the piston and the second fluid passage opening, and the valve body is in contact with the valve seat. Has a gap between it and the piston, and when the valve body rises, it comes into contact with the piston and pushes it up.

〔実施例〕〔Example〕

本発明の実施例を第1図により説明する。図において1
は弁本体、2は弁室で、弁室の上部は拡大されて弁室拡
大部2′となっており、弁室と拡大部の間に仕切壁3が
介在している。弁室2の下部には第1流体通路開口部4
と、弁座5を形成された第2流体通路開口部6が設けら
れている。弁室2の下部には弁座5を開閉する弁体7が
摺動可能に嵌挿され、弁室上部の拡大部2′にはピスト
ン8がやはり摺動可能に嵌挿され、これら両者の間には
若干の間隙9があり、弁体7が弁座5から少し離れたと
きに当接するようになっている。ピストン8の上下の圧
力を均一にするために、ピストン8と弁室拡大部2′の
間に微小間隙による均圧路10が設けられている。弁体7
とピストン8の間の弁室2と第2流体通路6をつなぐ管
路11,11′とこの管路の中間にパイロット電磁弁12が設
けられ、管路の両端の差圧を制御する。符号P1は第1流
体通路4における圧力を示し、P2は第2流体通路6にお
ける圧力を示す。
An embodiment of the present invention will be described with reference to FIG. 1 in the figure
Is a valve body, 2 is a valve chamber, and the upper portion of the valve chamber is enlarged to form a valve chamber expanded portion 2 ', and a partition wall 3 is interposed between the valve chamber and the expanded portion. A first fluid passage opening 4 is provided at the bottom of the valve chamber 2.
And a second fluid passage opening 6 having a valve seat 5 is provided. A valve body 7 for opening and closing the valve seat 5 is slidably inserted in the lower portion of the valve chamber 2, and a piston 8 is also slidably inserted in an enlarged portion 2'of the upper portion of the valve chamber. There is a slight gap 9 between them so that the valve body 7 abuts when the valve body 7 is slightly separated from the valve seat 5. In order to make the upper and lower pressures of the piston 8 uniform, a pressure equalizing passage 10 with a minute gap is provided between the piston 8 and the valve chamber expanding portion 2 '. Disc 7
Pilot solenoid valve 12 is provided in the middle of the pipe lines 11 and 11 'that connect the valve chamber 2 between the piston 8 and the second fluid passage 6, and the pipe line 11 and 11' to control the differential pressure between both ends of the pipe line. Reference symbol P 1 indicates the pressure in the first fluid passage 4, and P 2 indicates the pressure in the second fluid passage 6.

第3図は第1図に示す電磁弁を第2図の従来のマルチシ
ステムに使用したもので、対応する構成要素には同一の
符号を付して示してある。
FIG. 3 shows the solenoid valve shown in FIG. 1 used in the conventional multi-system shown in FIG. 2. Corresponding components are designated by the same reference numerals.

次ぎに本発明の作用について第1図,第3図によって説
明する。室外ユニットAにより加熱され過熱蒸気となっ
た冷媒は、四方弁Dにより圧縮機Cに送られ高温高圧の
ガスとなり再び四方弁を通って電磁弁Eに供給される。
この電磁弁Eが開口されていると冷媒は室内ユニットB
へと流れ、室内ユニットの表面で室内の冷気と熱交換
し、室内を暖房するとともに自身は放熱して冷却され、
過冷却液となる。液化して冷媒は膨張弁Fを通り室外ユ
ニットAに戻って再び加熱され、暖房のサイクルを構成
する。複数の室内ユニットBのうち、不使用のものにつ
いては電磁弁Eを閉じて冷媒の供給を停止する。第1図
においてパイロット電磁弁12が閉じ、弁体7が弁座5に
圧接した状態になるが、高温高圧の冷媒は第1流体通路
4から弁室2および弁室拡大部2′に充満し、その圧力
はP1と等しくなる。一方P2はP1より低いので弁体7は弁
座5に圧接され弁は閉止の状態をたもつ。このまま不使
用としておけば、やがて室内ユニット内の圧力が下が
り、前述したようにP1とP2の差が大きくなってくる。
Next, the operation of the present invention will be described with reference to FIGS. The refrigerant that has been heated by the outdoor unit A and has become superheated steam is sent to the compressor C by the four-way valve D, becomes high-temperature and high-pressure gas, and is again supplied to the solenoid valve E through the four-way valve.
When the solenoid valve E is opened, the refrigerant is discharged from the indoor unit B.
Flows into the room, exchanges heat with the cool air in the room on the surface of the indoor unit, heats the room and at the same time radiates and cools itself.
It becomes supercooled liquid. The liquefied refrigerant passes through the expansion valve F, returns to the outdoor unit A, and is heated again to form a heating cycle. For the unused indoor units B, the electromagnetic valve E is closed to stop the supply of the refrigerant. In FIG. 1, the pilot solenoid valve 12 is closed and the valve body 7 is in pressure contact with the valve seat 5, but the high temperature and high pressure refrigerant is filled from the first fluid passage 4 into the valve chamber 2 and the valve chamber expansion portion 2 ′. , Its pressure is equal to P 1 . On the other hand, since P 2 is lower than P 1 , the valve element 7 is pressed against the valve seat 5 and the valve remains closed. If it is not used as it is, the pressure in the indoor unit will eventually decrease, and the difference between P 1 and P 2 will increase as described above.

P1とP2の差が大きくなった状態から再び使用する場合
は、まず第1図においてパイロット電磁弁12をオンにす
ると弁室の弁体7とピストン8の間にある冷媒が第2流
体通路6へと流出し、弁室の圧力が下がりP2と等しくな
るので弁体7は上方へ若干の間隙9だけ押し上げられ弁
は第1段階の開口をする。この開口は小さく通過する冷
媒の量も少ないことから冷媒の通過音は生じない。一方
弁室拡大部2′は当初P1の圧力となっていたが、均圧路
10から弁体上部へ徐々に冷媒が流出し、弁室拡大部2′
内の圧力は低下してピストン8は弁体7に徐々に押し上
げられるように上昇し、弁の第2段階の開口がされる。
When the pilot solenoid valve 12 is turned on in FIG. 1 when the valve is to be used again after the difference between P 1 and P 2 becomes large, the refrigerant between the valve body 7 and the piston 8 in the valve chamber becomes the second fluid. As it flows out into the passage 6 and the pressure in the valve chamber falls and becomes equal to P 2 , the valve body 7 is pushed upward by a slight gap 9 and the valve opens in the first stage. Since this opening is small and the amount of the refrigerant passing therethrough is small, no refrigerant passing sound is generated. On the other hand the valve chamber expanding section 2 'had initially a pressure of P 1, Hitoshi passage
The refrigerant gradually flows out from 10 to the upper part of the valve body, and the valve chamber expansion part 2 '
The internal pressure decreases and the piston 8 rises so as to be gradually pushed up by the valve body 7, and the valve is opened in the second stage.

弁が開口され冷媒が流れている状態であっても弁による
圧力降下によってP2はP1と等しくならず、若干低い圧力
となっている。
Even when the valve is opened and the refrigerant is flowing, P 2 is not equal to P 1 due to the pressure drop due to the valve, and the pressure is slightly lower.

弁を閉じる場合は、電磁弁12を閉じる。すると冷媒が第
1流体通路開口部から弁体7と弁本体1との間隙を通っ
て弁体7の上部に流入し弁体7の上部の圧力は上昇して
P1となり、弁体の下部は第2流体通路6に面しているの
でP1より若干低いP2の圧力しかないから、P1とP2の圧力
差及び弁体7の自重により弁体7は下方に押し下げられ
弁座5に当接して弁を閉じる。弁室拡大部2′の内部の
圧力も均圧路10からの冷媒の流入により、P1の圧力へと
上昇しピストン8は仕切壁3に当接する。
When closing the valve, the solenoid valve 12 is closed. Then, the refrigerant flows into the upper part of the valve body 7 through the gap between the valve body 7 and the valve body 1 from the opening of the first fluid passage, and the pressure of the upper part of the valve body 7 rises.
P 1 becomes, since there is only a slight pressure of lower P 2 than P 1 because the lower portion of the valve body facing the second fluid passage 6, the valve body by the weight of the pressure difference and the valve body 7 of the P 1 and P 2 7 is pushed down and abuts on the valve seat 5 to close the valve. The pressure inside the valve chamber expansion portion 2'also rises to the pressure P 1 due to the inflow of the refrigerant from the pressure equalizing passage 10, and the piston 8 contacts the partition wall 3.

本発明においては、ピストン8の慣性は弁体7のそれよ
り大きい方が弁の開口はよりゆっくりとなるので効果が
上がることから、ピストン8を下方に付勢するばね手段
を設けてもよい。均圧路10を狭くすれば第2段階の開口
を遅くすることができるので、ピストン8を嵌挿する弁
室は必ずしも拡大部である必要はなく、逆に小さくてし
もよい。
In the present invention, if the inertia of the piston 8 is larger than that of the valve body 7, the valve opening becomes slower and the effect is improved. Therefore, spring means for urging the piston 8 downward may be provided. Since the second-stage opening can be delayed by narrowing the pressure equalizing passage 10, the valve chamber in which the piston 8 is fitted and inserted does not necessarily have to be an enlarged portion, but may be made smaller on the contrary.

冷房時は、冷媒の流れる向きは反対となり、室内ユニッ
トで気化された冷媒は第2流体通路6に供給され、圧力
はP2の方がP1より高くなり、弁体7は押し上げられ冷媒
は弁を通過していく。即ち、この方向の流体の流れに対
しては弁として機能しない。従って第3図に図示するよ
うに逆止弁が不要となる。ただし、この場合電磁弁12は
閉じられていなければならず、もし開けられているとP2
の圧が弁体7の上下から加わり、受圧面積の大きい上方
からの力が強くなり、弁体7は弁座5に圧接されて開か
なくなってしまう。
During cooling, the refrigerant flows in the opposite direction, the refrigerant vaporized in the indoor unit is supplied to the second fluid passage 6, the pressure P 2 becomes higher than P 1 , the valve body 7 is pushed up, and the refrigerant becomes Pass through the valve. That is, it does not function as a valve for the fluid flow in this direction. Therefore, the check valve is not required as shown in FIG. However, in this case the solenoid valve 12 must be closed, and if it is opened P 2
Is applied from above and below the valve body 7, and the force from above with a large pressure receiving area becomes strong, and the valve body 7 is pressed against the valve seat 5 and cannot open.

〔発明の効果〕〔The invention's effect〕

本発明によれば、弁本体に第1流体通路,第2流体通路
開口部を設けるとともに、その間に弁座を設け、弁体の
上部にピストンを移動自在に設け、弁体とピストンとの
間の弁室と上記第2流体通路開口部との差圧を制御する
パイロット電磁弁を設け、弁体が弁座に当接している状
態では該弁体はピストンとの間に間隙を有し、該弁体の
上昇時において該ピストンに当接し押し上げることを特
徴としているので、第1流体通路から第2流体通路への
流れの流体に対しては、徐々に開口する電磁弁となり、
第2流体通路から第1流体通路への流れの流体に対して
は弁として機能させないことができる。
According to the present invention, the valve body is provided with the first fluid passage and the second fluid passage opening, the valve seat is provided between them, and the piston is movably provided on the upper portion of the valve body so that the piston is provided between the valve body and the piston. Is provided with a pilot solenoid valve for controlling the differential pressure between the valve chamber and the second fluid passage opening, and when the valve body is in contact with the valve seat, the valve body has a gap between it and the piston, It is characterized in that when the valve body rises, it abuts against the piston and pushes it up, so it becomes a solenoid valve that gradually opens for fluid flowing from the first fluid passage to the second fluid passage,
The fluid of the flow from the second fluid passage to the first fluid passage may not function as a valve.

以上のような簡単な構造によりヒートポンプ式マルチシ
ステム運転等における電磁弁開口時に発生する冷媒の通
過音を防止することができるという格別の効果を達成す
ることができる。
With such a simple structure as described above, it is possible to achieve a special effect of preventing the passage noise of the refrigerant generated when the solenoid valve is opened in the heat pump type multi-system operation or the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例の2段階動作型電磁弁の断面
図、 第2図はヒートポンプ式冷暖房装置のマルチシステムの
従来例を示す構成図、 第3図は同上のシステムへの本発明の使用例を示す構成
図であり、第4図は第1図のX−X線に沿う平面におい
て切断した断面図である。 1……弁本体、2……弁室、4……第1流体通路開口
部、5……弁座、6……第2流体通路開口部、7……弁
体、8……ピストン、9……間隙、12……パイロット電
磁弁。
FIG. 1 is a sectional view of a two-stage operation type solenoid valve of one embodiment of the present invention, FIG. 2 is a configuration diagram showing a conventional example of a multi-system of a heat pump type air conditioner, and FIG. 3 is a book for the same system. It is a block diagram which shows the usage example of invention, and FIG. 4 is sectional drawing cut | disconnected in the plane which follows the XX line of FIG. 1 ... Valve body, 2 ... Valve chamber, 4 ... First fluid passage opening, 5 ... Valve seat, 6 ... Second fluid passage opening, 7 ... Valve body, 8 ... Piston, 9 …… Gap, 12 …… Pilot solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】弁本体に第1流体通路,第2流体通路開口
部を設けるとともに、その間に弁座を設け、弁室内に該
弁座に接離する弁体を摺動自在に嵌挿し、該弁体の上部
にピストンを移動自在に設け、該弁体とピストンとの間
の弁室と上記第2流体通路開口部との差圧を制御するパ
イロット電磁弁を設け、弁体が弁座に当接している状態
では該弁体はピストンとの間に間隙を有し、該弁体の上
昇時において該ピストンに当接し押し上げることを特徴
とする2段階動作型電磁弁。
1. A valve body is provided with a first fluid passage opening and a second fluid passage opening portion, a valve seat is provided between them, and a valve element which is brought into contact with and separated from the valve seat is slidably fitted into the valve chamber. A piston is movably provided above the valve body, and a pilot solenoid valve for controlling the differential pressure between the valve chamber between the valve body and the piston and the second fluid passage opening is provided, and the valve body is a valve seat. The two-stage operation type solenoid valve, wherein the valve element has a gap between the piston and the piston when the valve element is in contact with the piston, and the valve element contacts and pushes up when the valve element rises.
JP62127023A 1987-05-26 1987-05-26 2-stage operation solenoid valve Expired - Lifetime JPH0794873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127023A JPH0794873B2 (en) 1987-05-26 1987-05-26 2-stage operation solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127023A JPH0794873B2 (en) 1987-05-26 1987-05-26 2-stage operation solenoid valve

Publications (2)

Publication Number Publication Date
JPS63293373A JPS63293373A (en) 1988-11-30
JPH0794873B2 true JPH0794873B2 (en) 1995-10-11

Family

ID=14949770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127023A Expired - Lifetime JPH0794873B2 (en) 1987-05-26 1987-05-26 2-stage operation solenoid valve

Country Status (1)

Country Link
JP (1) JPH0794873B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10240835B2 (en) 2012-10-03 2019-03-26 Denso Corportion Refrigeration cycle device and pilot on-off valve

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316852A (en) * 2005-05-11 2006-11-24 Saginomiya Seisakusho Inc Pilot operated solenoid valve and heat exchange system using the same
CN102052468A (en) * 2009-11-01 2011-05-11 浙江三花制冷集团有限公司 Flow path switch control device
CN108223891B (en) * 2014-12-08 2019-07-12 宝嘉智能科技(南通)有限公司 Power station main steam system top steam discharge electromagnetic relief valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531498Y2 (en) * 1977-12-02 1980-07-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10240835B2 (en) 2012-10-03 2019-03-26 Denso Corportion Refrigeration cycle device and pilot on-off valve

Also Published As

Publication number Publication date
JPS63293373A (en) 1988-11-30

Similar Documents

Publication Publication Date Title
US5070707A (en) Shockless system and hot gas valve for refrigeration and air conditioning
JP3062824B2 (en) Air conditioning system
KR920008442A (en) Air conditioner
US3332251A (en) Refrigeration defrosting system
JPH07151422A (en) Expansion valve with solenoid valve
JPH0794873B2 (en) 2-stage operation solenoid valve
JPH0321813B2 (en)
JP4325455B2 (en) Air conditioner with defrost function
JP4031560B2 (en) Air conditioner
JP2966597B2 (en) Two-way solenoid valve
KR101187709B1 (en) Air conditioner and its control method for the pressure equilibrium
JP3387586B2 (en) Expansion valve with solenoid valve
JPS591940B2 (en) Air conditioner refrigeration circuit
JP2512161B2 (en) Air conditioner
JP6902729B2 (en) Cascade refrigeration system
JPH04316778A (en) Solenoid valve device
US20160201957A1 (en) An expansion valve with a variable orifice area
JP2001241703A (en) Flow controller for refrigerant liquid of ice storage system
JP2000337720A (en) Air conditioner
JPH0367964A (en) Air conditioner
JPH04258585A (en) Electromagnetic valve
JPH0387573A (en) Control valve for refrigerant
JPH03175243A (en) Delayed-open type solenoid valve
JPS6040783B2 (en) Air conditioner refrigeration circuit
KR100436845B1 (en) Construction of Regeneration Compound Heating and Cooling System