JPS6040783B2 - Air conditioner refrigeration circuit - Google Patents

Air conditioner refrigeration circuit

Info

Publication number
JPS6040783B2
JPS6040783B2 JP2022380A JP2022380A JPS6040783B2 JP S6040783 B2 JPS6040783 B2 JP S6040783B2 JP 2022380 A JP2022380 A JP 2022380A JP 2022380 A JP2022380 A JP 2022380A JP S6040783 B2 JPS6040783 B2 JP S6040783B2
Authority
JP
Japan
Prior art keywords
valve
pipe
heat exchanger
pressure
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2022380A
Other languages
Japanese (ja)
Other versions
JPS56117058A (en
Inventor
正孝 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2022380A priority Critical patent/JPS6040783B2/en
Publication of JPS56117058A publication Critical patent/JPS56117058A/en
Publication of JPS6040783B2 publication Critical patent/JPS6040783B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は空気調和機の冷凍サイクルに関するもので、一
つのバイパス管で多目的の冷凍サイクル制御を可能とす
ることを目的の一つとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration cycle for an air conditioner, and one of its objects is to enable multi-purpose refrigeration cycle control with one bypass pipe.

従釆、空気調和機の冷凍サイクルにおいて、高低圧管路
間にバイパス管を設け、このバイパス管中に電磁弁を設
けた構成があるが、これらの電磁弁として用いられてい
たものは、一方向の冷媒流の停止および流通は可能であ
るが逆方向の冷煤流の停止が不可能であったり、また一
方向の冷媒流の停止および流通は可能であるが逆方向の
冷嬢流の流通が不可能であったため、バイパス管中の一
方向へ流れる冷煤流の停止と流通しかできなかった。
In the refrigeration cycle of an air conditioner, there is a configuration in which a bypass pipe is installed between high and low pressure pipes, and a solenoid valve is installed in this bypass pipe. It is possible to stop and circulate the refrigerant flow in one direction, but it is impossible to stop the cold soot flow in the opposite direction, or it is possible to stop and circulate the refrigerant flow in one direction, but it is not possible to stop the cold soot flow in the opposite direction. Since no flow was possible, the only way to do so was to stop the flow of cold soot in one direction in the bypass pipe.

すなわち、従来のこの種冷凍サイクルのバイパス回路に
用いられる電磁弁は第3図に示す如く構成されていた。
That is, the conventional solenoid valve used in the bypass circuit of this type of refrigeration cycle was constructed as shown in FIG.

第3図において、電磁弁1川ま冷煤管a,bおよび位置
の固定されている弁本体12と、亀滋コィル14により
引き上げられるプランジャー13とこのプランジャー1
3を押し下げるスプリング15等を納める筒体11より
構成され、以下のような動作を行う。今電磁コイル14
が非通電状態であるとすると、筒体11とプランジャー
13との間には若干のすき間があるため冷煤管a内部の
圧力Paと筒体11とプランジャー13のスプリング1
5と接する面とで作られる空間の圧力Pcは等しくなっ
ている。
In FIG. 3, a solenoid valve 1 includes cold soot pipes a and b, a valve body 12 whose position is fixed, a plunger 13 pulled up by a Kameji coil 14, and a plunger 1.
It is composed of a cylindrical body 11 that houses a spring 15 etc. that pushes down the cylindrical body 3, and performs the following operations. Now electromagnetic coil 14
Assuming that is in a non-energized state, there is a slight gap between the cylinder 11 and the plunger 13, so the pressure Pa inside the cold soot pipe a and the spring 1 of the cylinder 11 and the plunger 13
The pressures Pc in the space created by the contact surface and the contact surface Pc are equal.

そしてプランジャー13がスプリング15と接する面の
面積をApとし、弁本体12の穴17の断面積をAvと
し、スプリング1 5のプランジャー13の押し上げ力
をFs、プランジャーの自重をFpとすると、プランジ
ャー13の押し上げ力F,はF,=Fs+Fp+ApP
aとなる。一方プランジャー13を上方に押し上げよう
とする力F2は、F2=AvPRとなる。一般に前記面
積ApとAvの関係はAp》Avであるから、少くとも
圧力Fa>Pbの場合力F,とF2はF,>F2となる
ためプランジャー13は下方に強い力で押し下げられる
ことになり、弁本体12の穴16はプランジャー13の
先端で塞がれ、冷媒管aと冷煤管bは運通しない。この
状態から電磁コイル14に通電すると、コイル14の磁
力によりプランジャー13は力FCにより引き上げられ
るので、F.<F2十Fcという関係になりプランジャ
ー13は上方に引き上げられ、弁本体12の穴17は冷
媒管aと冷媒管bを蓮適する。
If the area of the surface where the plunger 13 contacts the spring 15 is Ap, the cross-sectional area of the hole 17 in the valve body 12 is Av, the pushing force of the spring 15 on the plunger 13 is Fs, and the weight of the plunger is Fp. , the push-up force F of the plunger 13 is F,=Fs+Fp+ApP
It becomes a. On the other hand, the force F2 that tries to push the plunger 13 upward becomes F2=AvPR. Generally, the relationship between the areas Ap and Av is Ap》Av, so at least when the pressure Fa>Pb, the forces F and F2 become F,>F2, so the plunger 13 is pushed downward with a strong force. Thus, the hole 16 of the valve body 12 is closed by the tip of the plunger 13, and the refrigerant pipe a and the cold soot pipe b are not allowed to flow. When the electromagnetic coil 14 is energized from this state, the plunger 13 is pulled up by the force FC due to the magnetic force of the coil 14. <F20Fc, the plunger 13 is pulled upward, and the hole 17 of the valve body 12 accommodates the refrigerant pipe a and the refrigerant pipe b.

一方コイル14の非電通時、袷煤管a内の圧力Pbが冷
媒管b内の圧力Paよりある程度大きくなると、F2>
F,という状態が生じ、プランジャー13が上方に押し
上げられることになるので、コイル14を非通電として
も冷煤管aから冷煤管bへの流れを止めることができな
い。
On the other hand, when the coil 14 is de-energized and the pressure Pb in the soot pipe a becomes higher than the pressure Pa in the refrigerant pipe b to some extent, F2>
Since the state F occurs and the plunger 13 is pushed upward, the flow from the cold soot pipe a to the cold soot pipe b cannot be stopped even if the coil 14 is de-energized.

したがって、冷房運転時と暖房運転時で流通方向が変わ
るバイパス管中の冷媒流れの停止・流通が自由に行なえ
ず、例えば冷房運転時の高圧管路から低圧管路を結んだ
バイパス管中の冷煤流の高圧管略から低圧管路への方向
のみ停止、流通可能なように電磁弁を設けておくと、冷
房運転時のみのバイパス管中の袷媒流の停止、流通しか
できず、暖房運転時のバイパス管中を逆方向に流れる冷
媒流を停止できなくなったり、また一切バイパス管中に
冷媒流を流せなくなってしまうという欠点があった。
Therefore, the refrigerant flow in the bypass pipe, whose flow direction changes between cooling and heating operations, cannot be freely stopped and circulated, and for example, during cooling operation, the refrigerant flow in the bypass pipe connecting a high-pressure pipe to a low-pressure pipe cannot be cooled. If a solenoid valve is installed so that the soot flow can only be stopped and allowed to flow from the high-pressure pipe to the low-pressure pipe, the soot medium flow in the bypass pipe can only be stopped and allowed to flow during cooling operation, and heating There is a drawback in that it is impossible to stop the flow of refrigerant flowing in the opposite direction through the bypass pipe during operation, or it is impossible to flow the refrigerant through the bypass pipe at all.

このことは言い換えると、冷房運転時、過負荷状態にな
ったり低負荷状態になったりした時このバイパス管に適
時稔媒を流すことにより過負荷や低負荷状態をなくした
り、また暖房運転時に熱源側熱交換器についた霜を取る
ためのバイパス回路の形成や、圧縮機停止時高低圧力の
バランスをはかるためにバイパスを行なうことはできる
が、他方、暖房運転時はいつも電磁弁を冷煤が流通して
しまうので暖房能力の低下をきたしたり、また電磁弁を
冷煤が流れないため過負荷制御、低負荷制御、圧縮機停
止時の圧力平衡促進ができないというような大きな欠点
を有している。
In other words, during cooling operation, when there is an overload or low load condition, the overload or low load condition can be eliminated by flowing the fermentation medium through this bypass pipe in a timely manner, and during heating operation, the heat source It is possible to create a bypass circuit to remove frost from the side heat exchanger, or to balance high and low pressure when the compressor is stopped, but on the other hand, it is possible to create a bypass circuit to remove frost from the side heat exchanger, or to balance high and low pressure when the compressor is stopped. This has major drawbacks, such as a decrease in heating capacity due to the flow of soot, and an inability to perform overload control, low load control, or promote pressure balance when the compressor is stopped because cold soot does not flow through the solenoid valve. There is.

またこのバイパス管中には各種制御を行なったために適
当なバイパス流量を確保するため、キャピラリーチュー
ブ等が設けられているが、この固定抵抗では各種制御を
それぞれ最適に行なえない問題がある。本発明は上記従
来の冷凍サイクルにみられる欠点を除去するものである
。以下、本発明をその一実施例を示す添付図面の第1図
,第2図を参考に説明する。
In addition, a capillary tube or the like is provided in this bypass pipe in order to ensure an appropriate bypass flow rate due to various controls, but there is a problem that various controls cannot be performed optimally with this fixed resistor. The present invention eliminates the drawbacks found in the conventional refrigeration cycles described above. Hereinafter, the present invention will be explained with reference to FIGS. 1 and 2 of the accompanying drawings showing one embodiment thereof.

第1図において、冷凍回路は圧縮機1、四方弁2、熱源
側熱交換器3、紋り装置4、利用側熱交換器5を順次連
結することにより構成され、熱源側熱交換器3と紋り装
置4を結ぶ第1管路6と、利用側熱交換器5と四方弁2
を結ぶ第2管路7とをバイパス管8で結び、さらにこの
バイパス管8中に、非通電時双方向においてキャピラリ
ーチュ−プ17と直列に弁前後差圧が大であっても弁閉
止が可能でかつ通電時双方向の流量が可変できる可逆式
熱電形可変抵抗弁9を設けている。
In FIG. 1, the refrigeration circuit is constructed by sequentially connecting a compressor 1, a four-way valve 2, a heat exchanger 3 on the heat source side, a heat exchanger 4 on the user side, and a heat exchanger 5 on the user side. A first pipe line 6 that connects the heating device 4, a user-side heat exchanger 5, and a four-way valve 2
A bypass pipe 8 is connected to a second conduit 7 that connects the valve, and a bypass pipe 8 is provided in the bypass pipe 8 in series with the capillary tube 17 in both directions when the current is not energized, so that the valve can be closed even if the differential pressure across the valve is large. A reversible thermoelectric variable resistance valve 9 is provided that can change the flow rate in both directions when energized.

次に前記可逆式熱電形可変抵抗弁9の構造について第2
図を参考に説明する。
Next, a second section regarding the structure of the reversible thermoelectric variable resistance valve 9 will be explained.
This will be explained with reference to the diagram.

可逆式熱蟹形可変抵抗弁9は弁部分19と弁駆動部分2
0とからなる。弁部分19は弁枠21と弁体22とから
なる。弁枠21は弁座部22を設けかつ流体が流出入す
る流出入ボート24,25を有し、各ボート24,25
にはそれぞれ冷媒管26,27が接続されている。弁体
22は連結された二つの上下部材28,29からなり、
これら両部材28,29中にボート24側と弁駆動部分
20内とを蓮通させる通路30,31を形成している。
両通路30,31間には冷媒が通路30から遍路31へ
向って流れるのを阻止する逆止弁32が設けられている
。なお、弁体22は弁枠21に形成した孔33内に上下
に摺動自在に設けられている。一方、弁駆動部分20は
、上ケーシング34と下ケーシング35と弁枠21とに
より密閉された空間36を形成している。この空間36
内には二つのバイメタル37,38が収納されており、
両バイメタル37,38はその両端にてスベーサ39,
40を介して並設されている。そして、両バイメタル3
7,38の中央部に孔41,42を穿設し、上ケーシン
グ34の内面中央部に固着された支持ピン43を上バイ
メタル37の孔41に上方から挿入し、また弁体22の
上端に形成したピン部分44を、下バイメタル38の孔
42に下方から挿入することにより、両バイメタル37
,38は空間36内に支持される。なお弁体22は座金
45を介して、スプリング46により常に上方向に付勢
されている。47は上バイメタル37を強制加熱する電
気ヒータであり、上バイメタル37に巻袋されている。
The reversible thermal crab type variable resistance valve 9 has a valve part 19 and a valve driving part 2.
Consists of 0. The valve part 19 consists of a valve body 21 and a valve body 22. The valve frame 21 is provided with a valve seat portion 22 and has inflow and outflow boats 24 and 25 through which fluid flows in and out.
Refrigerant pipes 26 and 27 are connected to the refrigerant pipes 26 and 27, respectively. The valve body 22 consists of two connected upper and lower members 28 and 29,
Passages 30 and 31 are formed in these members 28 and 29 to allow passage between the boat 24 side and the inside of the valve driving portion 20.
A check valve 32 is provided between the passages 30 and 31 to prevent the refrigerant from flowing from the passage 30 toward the pilgrimage route 31. Note that the valve body 22 is provided in a hole 33 formed in the valve frame 21 so as to be slidable up and down. On the other hand, the valve driving portion 20 forms a sealed space 36 with the upper casing 34, the lower casing 35, and the valve frame 21. this space 36
Two bimetals 37 and 38 are stored inside.
Both bimetals 37 and 38 have smooth surfaces 39 and 39 at both ends.
They are arranged in parallel via 40. And both bimetal 3
Holes 41 and 42 are bored in the center of the valve body 22, and a support pin 43 fixed to the center of the inner surface of the upper casing 34 is inserted from above into the hole 41 of the upper bimetal 37. By inserting the formed pin portion 44 into the hole 42 of the lower bimetal 38 from below, both bimetals 37
, 38 are supported within the space 36. Note that the valve body 22 is always urged upward by a spring 46 via a washer 45. 47 is an electric heater for forcibly heating the upper bimetal 37, and is wrapped around the upper bimetal 37.

48,49は前記電気ヒータ47の両端に接続される端
子であり、上ケーシング34を貫通して設けられている
Terminals 48 and 49 are connected to both ends of the electric heater 47 and are provided through the upper casing 34.

この上バイメタル37は電気ヒータ47により強制加熱
されることにより、その両端が上方(図中矢印A方向)
に移動するよう変形するものである。したがって電気ヒ
ータ47に通電すると、上バイメタル37が変形し、ス
プリング46にて弁体22を上方に押し上げ、弁座23
と弁体22の下端との間を開放させる。すなわち、弁を
開放する。この場合の弁の関度は、電気ヒータ47への
通電電力量により調整される。すなわち、大電力を通せ
ば、上バイメタル37は大きく変形湾曲し、弁の関度が
大きくなる。逆に電気ヒータ47への電力が小さい場合
には、上バイメタル37の変形量は少なく、弁の関度は
小さい。なお、下バイメタル38は、孔33と弁体22
との超動面から空間36内に流入した冷煤および周囲の
空気温度による温度影響を受け変形するもので、負荷状
態補償用のバイメタルである。また、この可逆式熱電形
膨張弁9は正逆流通式の可変抵抗弁であり、冷煤はボー
ト24から流入し、弁体22と弁座23との間に形成さ
れる紋り部を通ってボート25から流出するよう流れる
ことはもちろんのこと、この逆に、ボート25から流入
し、弁体22と弁座23との間に形成される紋り部を通
ってボート24より流出するよう流れることもできる。
なお、ボート25側が高圧となり、ボート24側が低圧
になった場合には、冷媒の一部は、弁体22と孔23と
の摺動面から空間36内に流入するが、この流入した冷
嫌は、通路30,31および逆止弁32を通ってボート
24へと流れ空間36内に溜ることはない。逆に、ボー
ト24側がボート25側より高圧になった場合には、逆
止弁32が閉じ、空間36内に冷媒が流入することはほ
とんどない。上記構成において、冷房運転により圧縮機
1から吐出した冷媒が四方弁2、熱源側熱交換器3、第
1管路6、紋り装置4、利用側熱交換器5、第2管路7
、四方弁2を順次通って再び圧縮機1へ戻る流れをして
いるとする。
This upper bimetal 37 is forcibly heated by the electric heater 47 so that both ends thereof are directed upward (in the direction of arrow A in the figure).
It transforms so that it moves. Therefore, when the electric heater 47 is energized, the upper bimetal 37 is deformed, and the spring 46 pushes the valve body 22 upward, causing the valve seat 23 to
and the lower end of the valve body 22 is opened. That is, the valve is opened. The valve function in this case is adjusted by the amount of electricity supplied to the electric heater 47. That is, when a large amount of electric power is passed through the upper bimetal 37, the upper bimetal 37 is greatly deformed and curved, and the valve resistance becomes large. Conversely, when the electric power applied to the electric heater 47 is small, the amount of deformation of the upper bimetal 37 is small, and the degree of deformation of the valve is small. Note that the lower bimetal 38 is connected to the hole 33 and the valve body 22.
It is a bimetal for load condition compensation, and deforms under the influence of the cold soot that flows into the space 36 from the super-dynamic surface and the temperature of the surrounding air. Further, this reversible thermoelectric expansion valve 9 is a variable resistance valve of a forward and reverse flow type, and cold soot flows in from the boat 24 and passes through the crest formed between the valve body 22 and the valve seat 23. It goes without saying that the flow flows out from the boat 25, but conversely, the flow flows from the boat 25 and flows out from the boat 24 through the crest formed between the valve body 22 and the valve seat 23. It can also flow.
Note that when the pressure on the boat 25 side becomes high and the pressure on the boat 24 side becomes low, a part of the refrigerant flows into the space 36 from the sliding surface between the valve body 22 and the hole 23, but this inflow flows through passages 30, 31 and check valve 32 to boat 24 and does not accumulate in space 36. Conversely, when the pressure on the boat 24 side becomes higher than that on the boat 25 side, the check valve 32 closes and almost no refrigerant flows into the space 36. In the above configuration, the refrigerant discharged from the compressor 1 during cooling operation is transferred to the four-way valve 2, the heat source side heat exchanger 3, the first pipe line 6, the frizz device 4, the user side heat exchanger 5, and the second pipe line 7.
, the flow passes through the four-way valve 2 in sequence and returns to the compressor 1 again.

またこの時バイパス管8中の可逆式熱電形可変抵抗弁9
は、先に説明した通りヒーター47を非通電状態にして
あるので冷嬢管26と冷媒管27は蓮適していない。し
たがって、バイパス管8を冷媒は流れない。ここで、熱
源側熱交換器3と利用側熱交換器5の温緑状態等により
第1管路6内の圧力Paが異状上昇したため、このPa
を下げるためにバイパス管8中の可逆式熱電形可変抵抗
弁9に最適の弁関度となるような電圧をかける。したが
って、可逆式熱電形可変抵抗弁9の動作は先に説明した
通り行なわれ、バイパス管8中を冷蝶が第1管路6側か
ら第2管路7側へ流れ圧力Paを低下させ、圧縮機1の
過負荷運転を防止することができる。またこの冷房運転
状態が第2管磯7中の圧力Pbが異状に低下したりして
圧縮機1へ液冷媒が戻ったり、利用側熱交換器5に霜が
つくいわゆる低負荷状態においても同様に可逆式熱霞形
可変抵抗弁9のヒーター47に最適の弁関度となる電圧
をかけて第1管路6から第2管路7へ袷煤を流しPbを
上昇させ低負荷状態を回避することができる。さらにこ
の冷房運転時圧縮機1を停止した時、可逆式熱電形可変
抵抗弁9のヒーター47に最大電圧をかけることにより
弁を全開にし、高圧状態の第1管路6から低圧状態の第
2管路7へ冷煤を流すことができ、これにより第1管路
6内の圧力Paと第2管路7内の圧力Pbの圧力差を短
時間のうちに小さくし、圧縮機1を再起勤しやすくする
こともできる。
At this time, the reversible thermoelectric variable resistance valve 9 in the bypass pipe 8
As explained above, since the heater 47 is de-energized, the refrigerant tube 26 and the refrigerant tube 27 are not suitable for use. Therefore, no refrigerant flows through the bypass pipe 8. Here, because the pressure Pa in the first pipe line 6 has increased abnormally due to the warm green state of the heat source side heat exchanger 3 and the usage side heat exchanger 5, this Pa
In order to lower the temperature, a voltage is applied to the reversible thermoelectric variable resistance valve 9 in the bypass pipe 8 to achieve the optimum valve resistance. Therefore, the operation of the reversible thermoelectric variable resistance valve 9 is performed as described above, and the cold butterfly flows in the bypass pipe 8 from the first pipe line 6 side to the second pipe line 7 side, reducing the pressure Pa. Overload operation of the compressor 1 can be prevented. The same applies when the cooling operation is in a so-called low load state where the pressure Pb in the second pipe 7 drops abnormally and the liquid refrigerant returns to the compressor 1, or where frost forms on the heat exchanger 5 on the user side. A voltage is applied to the heater 47 of the reversible thermal haze type variable resistance valve 9 to achieve the optimum valve resistance, and soot flows from the first pipe line 6 to the second pipe line 7 to increase Pb and avoid a low load state. can do. Furthermore, when the compressor 1 is stopped during this cooling operation, the maximum voltage is applied to the heater 47 of the reversible thermoelectric variable resistance valve 9 to fully open the valve, and the first pipe line 6 in a high pressure state is connected to the second pipe in a low pressure state. Cold soot can flow into the pipe line 7, thereby reducing the pressure difference between the pressure Pa in the first pipe line 6 and the pressure Pb in the second pipe line 7 in a short time, and restarting the compressor 1. It can also make it easier to work.

一方暖戻連転時は圧縮機1から吐出した冷媒は四方弁2
、第2管路7、利用側熱交換器5、紋り装置4、第1管
路6、熱源側熱交換器3、四方弁2を通って再び圧縮機
1へ戻る流れをしているとする。
On the other hand, during continuous heating, the refrigerant discharged from the compressor 1 is transferred to the four-way valve 2.
, the second pipe line 7, the user side heat exchanger 5, the heat exchanger 4, the first pipe line 6, the heat source side heat exchanger 3, the four-way valve 2, and then returning to the compressor 1 again. do.

またこの時バイパス管8中の可逆式熱電形可変抵抗弁9
は先に説明した通りヒーター47を非通電状態にしてあ
るので冷媒管26と冷煤管27は蓮通せず、バイパス管
8を冷嬢は流れない。ここで先の冷房時と同様に、熱源
側熱交換器3と利用側熱交換器5の温湿度状態により第
2管路7内の圧力Pbが異状上昇する、いわゆる過負荷
状態となると、この圧力Pbを下げるためにバイパス管
8中の可逆式熱電形可変抵抗弁9を開く。したがって、
可逆式熱電形可変抵抗弁9の動作は先に説明した通りに
行なわれ、バイパス管8中を第2管路7側から第1管路
6側へ冷媒が流れて圧力Pbを低下させ、圧縮機1の過
負荷運転を防止する。またこの暖房運転状態で、第1管
路6中の圧力Paが異状に低下したことによって圧縮機
1へ液冷媒が戻る、いわゆる低負荷状態になった時も、
同様に可逆式熱亀形可変抵抗弁9のヒーター47に最適
の弁関度となる電圧をかけることにより第2管路7から
第1管路6へ冷煤を流して、Paを上昇させ低負荷状態
を回避することができる。さらにこの暖房運転時圧縮機
iを停止した時、可逆式熱電形可変抵抗弁9のヒーター
47に最大電圧をかけることにより弁を全開にし、藤圧
状態の第2管路7から低圧状態の第1管略6へ袷媒を流
し、第2管路7内の圧力Pbと第1管路6内の圧力Pa
の圧力差を短時間のうちに小さくし、圧縮機1を再起勤
しやすくすることもできる。さらに暖房運転時、熱源側
熱交換器3に付いた霜を取り除くため、一時的に冷房サ
イクルに切換えた時バイパス管8中の可逆式熱電形可変
抵抗弁9のヒーター47に最適の開度となる電圧をかけ
ることによりバイパス管8に袷煤を流し、利用側熱交換
器6での吸熱量を減らし、利用側熱交換器5から冷風を
出さないようにして熱源側熱交換器3の除霜を行なうこ
ともできる。ところで可逆式熱電形可変抵抗弁9の代り
1こ第3図で示した従釆の電磁弁10を用いると、冷房
運転時は先の動作と同様の動作をするが、暖房運転時は
第2管路7側の圧力Pbのほうが第1管路6側の圧力P
aより高くなるため、プランジャー13が押し上げられ
てしまい、したがって、絶えず冷煤管27と冷嬢管26
が蓮通し、暖房能力が低下したりすることになる。
At this time, the reversible thermoelectric variable resistance valve 9 in the bypass pipe 8
As explained above, since the heater 47 is de-energized, the refrigerant pipe 26 and the cold soot pipe 27 do not pass through each other, and no cold fluid flows through the bypass pipe 8. Here, as in the case of cooling earlier, when the pressure Pb in the second pipe line 7 abnormally increases due to the temperature and humidity conditions of the heat source side heat exchanger 3 and the user side heat exchanger 5, a so-called overload condition occurs. In order to lower the pressure Pb, the reversible thermoelectric variable resistance valve 9 in the bypass pipe 8 is opened. therefore,
The operation of the reversible thermoelectric variable resistance valve 9 is performed as described above, and the refrigerant flows through the bypass pipe 8 from the second pipe line 7 side to the first pipe line 6 side, reducing the pressure Pb and compressing it. Prevent overload operation of machine 1. Also, in this heating operation state, when the liquid refrigerant returns to the compressor 1 due to an abnormal drop in the pressure Pa in the first pipe line 6, a so-called low load state occurs.
Similarly, cold soot flows from the second pipe line 7 to the first pipe line 6 by applying a voltage to the heater 47 of the reversible thermal tortoise variable resistance valve 9 to achieve the optimum valve resistance, thereby increasing Pa and lowering the temperature. Load conditions can be avoided. Furthermore, when the compressor i is stopped during heating operation, the maximum voltage is applied to the heater 47 of the reversible thermoelectric variable resistance valve 9 to fully open the valve, and the second pipe line 7, which is in the double pressure state, is connected to the second pipe line 7, which is in the low pressure state. 1 pipe 6, the pressure Pb in the second pipe 7 and the pressure Pa in the first pipe 6
It is also possible to reduce the pressure difference in a short time and make it easier to restart the compressor 1. Furthermore, during heating operation, in order to remove frost on the heat source side heat exchanger 3, when temporarily switching to the cooling cycle, the optimum opening degree of the heater 47 of the reversible thermoelectric variable resistance valve 9 in the bypass pipe 8 is set. By applying a voltage of You can also do frosting. By the way, if the slave solenoid valve 10 shown in FIG. 3 is used instead of the reversible thermoelectric variable resistance valve 9, the operation will be the same as the previous one during cooling operation, but the second one will operate during heating operation. The pressure Pb on the pipe line 7 side is higher than the pressure P on the first pipe line 6 side.
a, the plunger 13 is pushed up, and therefore the cold soot pipe 27 and the cold refrigerant pipe 26 are constantly
This will cause the heating capacity to decrease.

またこのような構成は、電磁弁10と直列にキヤピラリ
チュープ17がバイパス管8中に設けられることになり
、各種の制御をすべて最適に行うことができない。その
結果、従来の電磁弁10を用いて可逆式熱電形可変抵抗
弁9の代用を行うことはできず、無理して電磁弁10を
使用する場合は、出口管bどうしを向い合わせに2個使
用しなければならず、コスト的に高く、また故障が起こ
りやすいものとなる。上記実施例より明らかなように本
発明における空気調和機の冷凍回路は、冷房運転時の高
圧側と低圧側および暖房運転時の高圧側と低圧側を1本
のバイパス管で兼ねられるように設け、このバイパス管
中に、非遜電時双方向において大圧力差を有していても
弁開閉が可能でかつ通電時双方向の流れ量が可変できる
可逆式熱電形可変抵抗弁を設けたもので、1つの可逆式
熱電形可変抵抗弁で、冷房運転時の過負荷、低負荷(低
温)制御がそれぞれ最適に行なえるとともに、圧縮機停
止時の圧力バランスの促進、除霜運転時のバイパス制御
が可能となり、しかも回路を簡単にしかつ安価に作成で
き、保守も極めて簡単になる等の多大の効果を有するも
のである。
Further, in such a configuration, the capillary tube 17 is provided in the bypass pipe 8 in series with the solenoid valve 10, and various controls cannot be performed optimally. As a result, it is not possible to use the conventional solenoid valve 10 in place of the reversible thermoelectric variable resistance valve 9, and if you are forced to use the solenoid valve 10, it is necessary to use two solenoid valves with the outlet pipes b facing each other. It is costly and prone to failure. As is clear from the above embodiments, the refrigeration circuit of the air conditioner according to the present invention is provided so that a single bypass pipe can serve as both the high pressure side and low pressure side during cooling operation and the high pressure side and low pressure side during heating operation. A reversible thermoelectric variable resistance valve is installed in this bypass pipe, which can open and close the valve even if there is a large pressure difference in both directions when the current is not applied, and which can vary the flow rate in both directions when the current is applied. A single reversible thermoelectric variable resistance valve can optimally control overload and low load (low temperature) during cooling operation, promote pressure balance when the compressor is stopped, and provide bypass control during defrosting operation. It has many advantages, such as control, making the circuit simple and inexpensive, and making maintenance extremely easy.

図面の簡単な説頚 第1図は本発明の一実施例における空気調和機の冷凍回
路図、第2図は同冷凍回路を構成する可逆式熱電形可変
抵抗弁の断面図、第3図は従来例におけるバイパス回路
に設けた電磁弁の断面図である。
Brief description of the drawings: Figure 1 is a refrigeration circuit diagram of an air conditioner according to an embodiment of the present invention, Figure 2 is a sectional view of a reversible thermoelectric variable resistance valve constituting the refrigeration circuit, and Figure 3 is a sectional view of a reversible thermoelectric variable resistance valve that constitutes the refrigeration circuit. It is a sectional view of a solenoid valve provided in a bypass circuit in a conventional example.

1…・・・圧縮機、2・・・・・・四方弁、3・・…・
熱源側熱交換器、4・…・・紋り装置、5・・・・・・
利用側熱交換器、6・・・・・・第1管路、7…・・・
第2管路、8……バイパス管、9・・…・可逆式熱電形
可変抵抗弁。
1... Compressor, 2... Four-way valve, 3...
Heat source side heat exchanger, 4... Fingerprint device, 5...
Utilization side heat exchanger, 6... First pipe line, 7...
Second pipe line, 8... Bypass pipe, 9... Reversible thermoelectric variable resistance valve.

第1図第2図 第3図Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、四方弁、熱源側熱交換器、紋り装置、利用
側熱交換器により冷媒循環回路を形成し、前記熱源側熱
交換器と利用側熱交換器とを結ぶ第1管路における冷房
運転時高圧となりかつ暖房運転時低圧となる管路部と前
記利用側熱交換器と前記四方弁とを結ぶ第2管路とをバ
イパス管で接続し、このバイパス管中に、可逆式熱電形
可変抵抗弁を設けた空気調和機の冷凍回路。
1 A refrigerant circulation circuit is formed by a compressor, a four-way valve, a heat source side heat exchanger, a heat exchanger, and a usage side heat exchanger, and in the first pipe line connecting the heat source side heat exchanger and the usage side heat exchanger. A bypass pipe connects a pipe section that becomes high pressure during cooling operation and low pressure during heating operation and a second pipe line connecting the user-side heat exchanger and the four-way valve, and a reversible thermoelectric generator is installed in this bypass pipe. A refrigeration circuit for an air conditioner equipped with a variable resistance valve.
JP2022380A 1980-02-19 1980-02-19 Air conditioner refrigeration circuit Expired JPS6040783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022380A JPS6040783B2 (en) 1980-02-19 1980-02-19 Air conditioner refrigeration circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022380A JPS6040783B2 (en) 1980-02-19 1980-02-19 Air conditioner refrigeration circuit

Publications (2)

Publication Number Publication Date
JPS56117058A JPS56117058A (en) 1981-09-14
JPS6040783B2 true JPS6040783B2 (en) 1985-09-12

Family

ID=12021160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022380A Expired JPS6040783B2 (en) 1980-02-19 1980-02-19 Air conditioner refrigeration circuit

Country Status (1)

Country Link
JP (1) JPS6040783B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611297B2 (en) * 1988-01-12 1997-05-21 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JPS56117058A (en) 1981-09-14

Similar Documents

Publication Publication Date Title
JPH04295566A (en) Engine-driven air-conditioning machine
JPS6040783B2 (en) Air conditioner refrigeration circuit
JP2921213B2 (en) refrigerator
JPS591940B2 (en) Air conditioner refrigeration circuit
EP0060315B1 (en) Refrigeration system with refrigerant flow controlling valve and method of conserving energy in the operation of a compressor-condensor-evaporator type refrigeration system
JPH0419407Y2 (en)
JPH0518615A (en) Refrigerator
JPS6325270B2 (en)
JPS63293373A (en) Two stage operating type solenoid valve
JPH04161760A (en) Air-cooled heat pump type freezing cycle having reversible expansion valve
JPH1114164A (en) Freezing cycle with bypass pipeline
JPS59165876A (en) Refrigerating device
JP2000130889A (en) Valve fixing structure for refrigerating cycle with bypath
JPS6153628B2 (en)
JPH0442682Y2 (en)
JPS6216596Y2 (en)
JPH0221509B2 (en)
JPS6011789B2 (en) Multi-room air conditioner
JPS5926200Y2 (en) heat pump equipment
JPH0581819B2 (en)
JPS6244277Y2 (en)
JPH0410528Y2 (en)
JPS59165877A (en) Refrigeration device
JPS6315057A (en) Pilot type four-way changeover valve for refrigerator
JPS60596Y2 (en) air conditioner