EP0060315B1 - Refrigeration system with refrigerant flow controlling valve and method of conserving energy in the operation of a compressor-condensor-evaporator type refrigeration system - Google Patents

Refrigeration system with refrigerant flow controlling valve and method of conserving energy in the operation of a compressor-condensor-evaporator type refrigeration system Download PDF

Info

Publication number
EP0060315B1
EP0060315B1 EP81102013A EP81102013A EP0060315B1 EP 0060315 B1 EP0060315 B1 EP 0060315B1 EP 81102013 A EP81102013 A EP 81102013A EP 81102013 A EP81102013 A EP 81102013A EP 0060315 B1 EP0060315 B1 EP 0060315B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
pressure
compressor
flow
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81102013A
Other languages
German (de)
French (fr)
Other versions
EP0060315A1 (en
Inventor
William Jacob Houk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robertshaw US Holding Corp
Original Assignee
Ranco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ranco Inc filed Critical Ranco Inc
Priority to DE8181102013T priority Critical patent/DE3172186D1/en
Priority to EP81102013A priority patent/EP0060315B1/en
Publication of EP0060315A1 publication Critical patent/EP0060315A1/en
Application granted granted Critical
Publication of EP0060315B1 publication Critical patent/EP0060315B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • the present invention relates to a refrigeration system including a compressor, a refrigerant condensing heat exchanger, a refrigerant evaporating heat exchanger, a refrigerant expansion device for enabling condensed refrigerant to expand into said evaporating heat exchanger, and refrigerant flow controlling valve means for controlling flow of refrigerant between the refrigerant condensing heat exchanger and the refrigerant evaporating heat exchanger, said valve means including a refrigerant pressure responsive member movable to condition said valve means to block refrigerant flow in response to changes in refrigerant pressure caused by the compressor ceasing operation and movable to condition the valve means to enable refrigerant flow in response to changes in refrigerant pressure caused by the compressor starting operation.
  • the invention also relates to a method of conserving energy in the operation of a compressor-condenser-evaporator type refrigeration system wherein the compressor operation is initiated and terminated in response to a sensed condition.
  • valve means was provided solely in order to prevent excessive accumulation of coolant in the evaporator during periods when the compressor was not operating. There was no provision for ensuring that the valve means should operate rapidly and no appreciation of the importance of this measure.
  • chillers and coolers In the regulation system of the sort generally employed in household refrigerators, chillers and coolers of various descriptions include a positive displacement refrigerant compressor, a refrigerant condenser and a refrigerant evaporator to which refrigerant flows from the condensor via an expansion device which restricts the refrigerant flow.
  • High pressure gaseous refrigerant is discharged from the compressor into the condenser where heat is transferred from the refrigerant resulting in its liquification at high pressure.
  • the refrigerant passes through the expansion device and returns to its gaseous state in the evaporator, absorbing heat from the surroundings of the evaporator in the process and resulting in the evaporator producing a cooling effect.
  • Low pressure gaseous refrigerant is returned to the compressor intake from the evaporator.
  • the compressor is typically cycled on and off in response to the sensed temperature of a medium (air, water, etc.) cooled by the evaporator.
  • a medium air, water, etc.
  • the compressor is cycled off so that the flow of high pressure gaseous refrigerant from the compressor is terminated, but the refrigerant already delivered to the condenser continues to condense and flow to the evaporator through the expansion device until the pressures in the condenser and evaporator equalize or until the compressor is cycled on again.
  • solenoid valve operates rapidly enough to maintain the pressure difference across the compressor, its operation had some drawbacks including the fact that the valve actuating solenoid is energized while the compressor is deenergized. This energization represents an additional source of system power consumption thus reducing the energy saving effect of the valve. Furthermore, solenoids can create operating noises which are disconcerting to system users because the noise occurs when the system is otherwise deactivated.
  • An object of the present invention is to improve the known system mentioned in the introduction to achieve energy conservation when the compressor is cycled on and off whilst also avoiding the disadvantage of the electrically controlled valves as mentioned above.
  • a system as mentioned in the introduction characterised by a control device for cycling the compressor on and off according to a sensed condition, by means for transmitting refrigerant pressure from the high pressure side of the compressor to opposed pressure faces of said pressure responsive member, and by means effective to retard the transmission of pressure changes to one of said pressure faces.
  • the method mentioned in the introduction is characterised by a) sensing time rate of reduction in refrigerant pressure resulting from termination of operation of the compressor; b) blocking refrigerant flow to the evaporator when the sensed rate of reduction in refrigerant pressure exceeds a predetermined value so that refrigerant remains in the condenser while the compressor remains inactive; c) sensing time rate of increase in refrigerant pressure resulting from initiation of compressor operation; and d) enabling refrigerant flow to the evaporator when the rate of increase in refrigerant pressure exceeds a predetermined value.
  • the present invention may be applied to a refrigeration system having a refrigerant compressor, a refrigerant condensing heat exchanger, or condenser, a refrigerant evaporating heat exchanger, or evaporator, and a refrigerant expansion device between the heat exchangers. Reduction of refrigerant pressure due to termination of compressor operation is quickly sensed and refrigerant flow from the condensing heat exchanger to the evaporating heat exchanger is rapidly blocked. Increased refrigerant pressure resulting from initiation of compressor operation is sensed and refrigerant flow to the evaporating heat exchanger is enabled.
  • a refrigeration system embodying the invention includes a refrigerant flow controlling valve for blocking and enabling refrigerant flow from the condensing heat exchanger.
  • a refrigerant pressure responsive member moves to condition the valve for blocking refrigerant flow when the compressor is cycled off and moves to condition the valve for enabling refrigerant flow when the compressor is cycled on.
  • Preferred systems employ a flexible diaphragm exposed to system refrigerant pressures and movable in response to pressure changes to effect operation of the refrigerant flow controlling valve.
  • One preferred device is fail-safe in that the diaphragm is biased to a position in which the valve enables refrigerant flow and if the diaphragm is perforated or develops leakage the valve enables system refrigerant flow regardless of the operating condition of the compressor.
  • FIGURE 1 of the drawings A refrigeration system 10 embodying the present invention is illustrated by FIGURE 1 of the drawings and includes a positive displacement refrigerant compressor 12, a refrigerant condensing heat exchanger, or condenser, 14, a conventional refrigerant expansion device 16, and a refrigerant evaporating heat exchanger, or evaporator, 18.
  • the compressor 12 can be of any suitable or conventional design which is constructed so that it can be started and operated with its discharge at a substantially higher pressure than its intake.
  • the compressor 12 is driven by an electric motor 20 which in turn is energized and deenergized in response to operation of a thermostat 22 which is schematically illustrated.
  • the evaporator 18 is disposed within a refrigerated space 24 (schematically illustrated) and the thermostat switch contacts 22a are operated in response to temperature sensed by the thermostat in the space 24.
  • the thermostat 22 When the sensed temperature rises to a predetermined level the thermostat 22 is operated so that the motor 20 is energized to drive the compressor 12. Gaseous refrigerant at the compressor intake is compressed and delivered to the condenser 14. As the refrigerant passes through the condenser 14, heat is transferred from the refrigerant causing it to liquefy and flow from the condenser to the expansion device 16 in liquid form.
  • the expansion device provides a flow restriction so that the liquid refrigerant flowing through the expansion device undergoes a significant pressure drop.
  • the expansion device 16 can be of any suitable construction, such as a length of capillary tubing.
  • Refrigerant which has passed through the expansion device expands and returns to a vapor or gaseous form in the evaporator 18.
  • heat from the refrigerated space 24 is absorbed by the refrigerant causing the space temperature to be reduced.
  • thermostat switch contacts 22a are actuated again to deenergize the compressor drive motor 20.
  • the compressor 12 is thus cycled on and off the thermostat 22 to maintain the temperature levels in the space 24 within a predetermined range.
  • the refrigeration system 10 includes a refrigerant pressure responsive flow controlling valve 30 for blocking the flow of refrigerant between the condenser 14 and the evaporator 18 when the compressor 12 is cycled off and for enabling refrigerant flow from the condenser 14 to the evaporator 18 when the compressor is cycled on.
  • the flow controlling valve 30 is illustrated as including a housing 32 (illustated schematically in cross section), a refrigerant pressure responsive member 34 in the housing defining movable walls of separate chambers 36, 38 and structure for communicating refrigerant pressure to the refrigerant pressure responsive member 34.
  • the structure for communicating refrigerant pressure to the member 34 includes refrigerant passages 40, 42 which, respectively, communicate refrigerant exiting the condensing heat exchanger 14 with the respective chambers 36, 38.
  • Refrigerant flows into the valve 30 via the passage 42 and is delivered from the valve 30 to the expansion device 16 via a discharge passage 43.
  • a valving port structure 44 forms part of the housing discharge flow passage 43 and defines a discharge valving port 46 opening into the chamber 38.
  • a refrigerant flow restriction is interposed between the passages 40, 42 so that when the compressor is cycled on and off, the refrigerant pressures in the chambers 36, 38 change relative to each other but equalize after a period of time.
  • the flow restriction is formed by an orifice 47 in the passage 40.
  • the illustrated pressure responsive member 34 is a flexible, imperforate diaphragm which extends across the housing interior and defines opposed faces 34a, 34b.
  • the diaphragm face 34b forms an annular valving surface which is seat- able on an outlet valving port 46 to block refrigerant flow through the valve 30.
  • the diaphragm 34 is biased toward a position in which the valving surface is spaced from the port 46 so that refrigerant flows through the valve 30.
  • a helical compression spring 50 is illustrated surrounding the port structure 44 and reacting against the diaphragm 34 for this purpose. When the refrigerant pressures acting on the diaphragm 34 are equal therefore, the valve 30 is open and permits refrigerant flow through it.
  • the compressor 12 When the compressor 12 has been operating sufficiently long to cause the sensed temperature in the space 24 to just reach the level at which the thermostat operates to cycle the compressor off, the refrigerant pressures in the chambers 36, 38 are equal and the valve 30 is open, allowing unrestricted-refrigerant flow through it.
  • the compressor cycles off the refrigerant pressure in the condenser 14 is abruptly reduced.
  • the flow restricting orifice 47 prevents the pressure in the chamber 36 from being reduced as abruptly as the pressure reduction in the chamber 38 resulting in the diaphragm 34 shifting toward the valving port 46 and closing the valve 30.
  • the refrigerant in the port structure 44 and the discharge passage 43 continues to flow through the expansion device 16 resulting in the refrigerant pressure in the port structure 44 and passage 43 being reduced toward the low pressure level in the evaporator 18.
  • This low pressure is distributed across the relatively large circular diaphragm area indicated by the reference character 55 within the valving port area.
  • the diaphragm area 55 is sufficiently large, compared to the overall area of the diaphragm face 34b, that when the refrigerant pressures in the chambers 36, 38 equalize with the valve closed, the net force acting on the diaphragm face 34a exceeds the spring biasing force and the pressure forces acting on the face 34b.
  • the valve 30 thus remains in condition for blocking refrigerant flow through the expansion device while the compressor remains cycled off. Condensed refrigerant thus remains in the condenser 14 throughout the "off" cycle of the compressor.
  • the compressor 12 is constructed so that it is capable of starting against a refrigerant pressure head without stalling the drive motor 20. Compressors having such capabilities are known and therefore details of the compressor construction are not set forth.
  • the valve 30 has the advantage of being failsafe in operation. That is, if the diaphragm 34 should fail or a large refrigerant leakage path were to develop around the diaphragm, the valve 30 will simply remain open at all times and not interfere with operation of the refrigeration system 10.
  • valve 30 During an initial "pull down" of the system 10, e.g. when the system is operated after it has remained inactive for a long period of time and is completely filled with refrigerant vapor at ambient atmosphere temperature, the valve 30 remains open as the pressure in the condenser slowly increases. Subsequent cycling of the compressor results in the valve 30 functioning as desired in the manner described.
  • FIGURES 2-5 illustrate a modified refrigeration system 10' which is substantially the same as the refrigeration system 10 illustrated by FIGURE 1 with the exception of the refrigerant flow control valve, indicated by the reference character 130 in FIGURES 2-5, the refrigerant condensing heat exchanger, or condenser, 14' and the compressor 12'.
  • the refrigerant condenser 14' is formed by two heat exchange units 14a' and 14b' the first of which receives refrigerant discharged from a first compressor discharge 12a', transfers heat from the refrigerant and returns the refrigerant to a second compressor inlet 12b'.
  • the second condenser unit 14b' receives the refrigerant discharged from the compressor 12' and functions like the refrigerant condenser 14 referred to in connection with FIGURE 1.
  • the heat exchanger unit 14a' enables oil entrained with refrigerant in the compressor to condense and return to the compressor so that the compressor remains lubricated at all times during operation of the system with a minimum amount of lubricant circulating through the system.
  • the refrigerant flow control valve 130 functions to block refrigerant flow to the expansion device and evaporator when the compressor cycles off and enables refrigerant flow from the condenser through the expansion device in response to the refrigerant compressor 12' being cycled on.
  • the valve 130 is provided with a refrigerant intake port 132 communicating with the discharge of the condensed unit 14b', a refrigerant exhaust port 134 by which refrigerant is delivered to the evaporator via the expansion device, and a refrigerant port 136 in pressure communication with the outlet of the first condenser unit 14a'.
  • the refrigerant flow control valve 130 is formed by a housing 140 containing a refrigerant flow controlling valve assembly generally indicated by the reference character 142, and a refrigerant pressure responsive member 144 which operates the valve assembly 142.
  • the housing 140 is preferably constructed from a generally cup-like sheet metal housing unit 150 having a second sheet metal closure member 152 hermetically joined to it. Molded plastic core members 154, 156 are disposed within the housing to provide internal refrigerant flow passages and to provide support for the valve assembly 142 and other internal components of the flow control valve 130.
  • valve assembly 142 is formed by a generally annular valve seat member 160 defining a central refrigerant flow passage 162 from which refrigerant flowing into the valve 130 through the intake port 132 may exit via the exhaust port 134.
  • a poppet valving member 164 is disposed adjacent the valve seat 160 and defines a valving face 166 which, when seated on the valve seat 160, blocks flow of refrigerant from the housing 140.
  • An operating pin 168 is joined to the poppet valving member and projects through the refrigerant flow passage 162.
  • the valving member ⁇ 164 is biased toward its closed position by a spring 170 which reacts between a suitable retainer element and the valving member itself.
  • the valve assembly 142 is movable between its open and closed positions by an actuating lever 172 which is supported adjacent the projecting end of the operating pin 168 for pivotal movement about a pivot pin 174.
  • the projecting end of the actuating lever extends beyond the location of the operating pin 168 and is associated with a biasing spring 178 which urges the actuating lever 172 in a direction for closing the valve member 142.
  • the refrigerant pressure responsive member 144 is preferably formed by a flexible rubber-like imperforate diaphragm which is seated between the housing element 150 and the core member 154 to define pressure chambers 180, 182 on its opposite sides.
  • valve assembly 142 permits refrigerant from the discharge of the refrigerant condensing heat exchanger unit 14b' to flow through the valve intake port 132 to the chamber 180 via a passage 184 formed by the core members 154, 156.
  • Figure 2 illustrates the valve 130 in this condition of operation.
  • the refrigerant flows from the chamber 180 to the expansion device and evaporator via the valving assembly 142 and valve discharge port 134. It should be noted that refrigerant can not flow from the valve 130 via the chamber 182 so that the refrigerant pressure in the chamber 182 remains substantially the same as the pressure at the discharge of the condenser unit 14a'.
  • the valve assembly 142 is conditioned to permit refrigerant flow through the valve 130 by the diaphragm 144.
  • the refrigerant pressure exiting the condenser unit 14a' is communicated to the chamber 182 via the port 136. Since the refrigerant flowing to the chamber 180 is subjected to a pressure drop resulting from passage through the condenser unit 14b' and through a flow restrictor 186 formed in the passage 184, the refrigerant pressure in the chamber 182 is sufficiently greater than refrigerant pressure in the chamber 180 that the diaphragm 144 deflects toward and moves the projecting end of the actuating lever 172 to open the valve assembly 142.
  • the refrigerant passage 184 is provided with a ball check valve 188 which opens to enable substantially unrestricted flow of the liquid refrigerant from the chamber 180 into the passage 184 toward the discharge of the condenser 14b'. This assures that motion of the diaphragm 144 is not impeded by the liquid phase refrigerant in the chamber 180 as it might otherwise be if the liquid refrigerant were trapped in the chamber 180 and forced to flow through the restrictor 186.
  • the check valve 188 is illustrated in its non-restricting condition in Figure 3. As soon as liquid refrigerant begins to flow through the valve 130 the ball check valve 188 is returned to its flow restricting position as illustrated by Figure 2.
  • valve assembly 142 opens briefly to permit a small amount of refrigerant to flow through it to the expansion device and thus relieve the back pressure against which the compressor must work it is next cycled on.
  • the pressure relief function of the valve assembly 142 is controlled by the area of the poppet valving member 164 and operating pin 168 exposed to the high pressure refrigerant (in the chamber 180) and the force exerted by the biasing spring 170 on the poppet valving member. Movement of the poppet valving member 164 to relieve the high pressure side of the system 10' occurs independently of the actuating lever 172. When the refrigerant pressure is relieved the spring 170 recloses the valve assembly.
  • valve assembly 142 is closed by virtue of the forces provided by the biasing springs 170, 178 which coact to assure closure of the poppet valving member 164 on its seat 160 in the absence of differential refrigerant pressures.
  • a bypass valve 190 is provided to assure refrigerant flow through the flow controlling valve 130 during an initial cycle of compressor operation.
  • the valve 190 is preferably formed by a flexible rubber-like diaphragm 192 supported between the core members 154, 156 for movement toward and away from a relatively large area valving port 196 formed on a hollow projection molded into the core member 156.
  • the diaphragm 192 is imperforate and has its major face opposite from the valve port 196 exposed to pressure from the discharge of the condenser 14a'. Pressure from the condenser 14a' is transmitted to the diaphragm 192 via the refrigerant port 136, the chamber 182 and a passage 198 formed in the core member 154 between the chamber 182 and the diaphragm 192. This refrigerant pressure tends to close the bypass valve 190 by urging the diaphragm 192 into sealing engagement with the valve seat 196.
  • the refrigerant pressure from the condenser 14a' is opposed by a biasing spring 200 reacting between the diaphragm 192 and the core member 156 and refrigerant pressure forces applied to the opposite face of the diaphragm 192.
  • FIGURE 4 illustrates the condition of the flow control valve 130 at the end of the a long period of system inactivity with refrigerant pressure in the system 10' equalized.
  • FIG. 5 When the compressor is cycled on, gaseous refrigerant begins to flow through the system 10' via the open bypass valve 190.
  • This condition of the flow control valve 130 is illustrated by Figure 5.
  • the refrigerant flows from the condenser 14b' through the valve intake port 132, the passage 184, a passage between the chamber 180 and the bypass valve 190, and to the expansion device 16 and evaporator 18 through the bypass valve port 196 and flow passages 202, 204, 206 formed internally in the flow control valve 130.
  • the flow passage 202 is formed by a slot-like channel in the core member 156 which communicates with the bypass valve seat 196 and directs refrigerant flowing through the bypass valve into the passage 204.
  • the passage 204 is formed by an annular chamber extending about the housing 140 and formed between the core member 154 and the housing member 150.
  • the passage 206 is constructed like the passage 202 and extends between the passage 204 and the valve refrigerant outlet port 134.
  • the flow of gaseous refrigerant through the passage 184 is effective to close the ball check valve 188 but the pressure drops created by the condenser unit 14b' and restrictor 186 in the flow of the gaseous refrigerant are insufficient to force closure of the bypass valve 190.
  • the refrigerant begins liquefying in the condenser 14' and eventually liquefied refrigerant flows into the valve 130 from the condenser unit 14b'.
  • the flow of liquefied refrigerant from the condenser in the establishment of differential fluid pressure forces on the diaphragm 144 (due to the pressure drops created by the condenser unit 14b' and the flow restrictor 186) which causes the valve assembly 142 to open as described previously.
  • the differential refrigerant pressure is likewise applied to the bypass valve diaphragm 192 resulting in the diaphragm 192 seating on the valve port 196 and blocking further bypass flow.
  • the flow control valve 130 thus returns to its operating condition illustrated by Figure 2.
  • the bypass valve 190 remains closed during subsequent normal operating of the system 10'. After the bypass valve closes the refrigerant pressure acting on the diaphragm 192 within the area of the bypass valve port 196 is reduced below the pressure in the chamber 180, primarily by virtue of the pressure drop experienced by the refrigerant flowing through the valve assembly 142. Accordingly the net closing force acting on the diaphragm 192 increases and is effective to prevent the diaphragm 192 from reopening as soon as the compressor cycles off. When the compressor is cycled off, and the valve assembly 142 closes, the refrigerant pressure acting on the diaphragm 192 within the area of the bypass valve port 196 continues to be reduced to approximately the same level as the evaporator. This assures that the net actuating force applied to the diaphragm 192 is sufficient to maintain the bypass valve closed throughout a compressor off cycle of any reasonably expectable duration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Temperature-Responsive Valves (AREA)

Description

  • The present invention relates to a refrigeration system including a compressor, a refrigerant condensing heat exchanger, a refrigerant evaporating heat exchanger, a refrigerant expansion device for enabling condensed refrigerant to expand into said evaporating heat exchanger, and refrigerant flow controlling valve means for controlling flow of refrigerant between the refrigerant condensing heat exchanger and the refrigerant evaporating heat exchanger, said valve means including a refrigerant pressure responsive member movable to condition said valve means to block refrigerant flow in response to changes in refrigerant pressure caused by the compressor ceasing operation and movable to condition the valve means to enable refrigerant flow in response to changes in refrigerant pressure caused by the compressor starting operation.
  • The invention also relates to a method of conserving energy in the operation of a compressor-condenser-evaporator type refrigeration system wherein the compressor operation is initiated and terminated in response to a sensed condition.
  • Such a system is known from CH-A-188 957. However, in this early proposal, the valve means was provided solely in order to prevent excessive accumulation of coolant in the evaporator during periods when the compressor was not operating. There was no provision for ensuring that the valve means should operate rapidly and no appreciation of the importance of this measure.
  • In the regulation system of the sort generally employed in household refrigerators, chillers and coolers of various descriptions include a positive displacement refrigerant compressor, a refrigerant condenser and a refrigerant evaporator to which refrigerant flows from the condensor via an expansion device which restricts the refrigerant flow. High pressure gaseous refrigerant is discharged from the compressor into the condenser where heat is transferred from the refrigerant resulting in its liquification at high pressure. The refrigerant passes through the expansion device and returns to its gaseous state in the evaporator, absorbing heat from the surroundings of the evaporator in the process and resulting in the evaporator producing a cooling effect. Low pressure gaseous refrigerant is returned to the compressor intake from the evaporator.
  • The compressor is typically cycled on and off in response to the sensed temperature of a medium (air, water, etc.) cooled by the evaporator. When a desired low temperature level is sensed the compressor is cycled off so that the flow of high pressure gaseous refrigerant from the compressor is terminated, but the refrigerant already delivered to the condenser continues to condense and flow to the evaporator through the expansion device until the pressures in the condenser and evaporator equalize or until the compressor is cycled on again. This results in an unnecessary additional cooling effect beyond the desired temperature level and, more importantly, requires the compressor to pump the condenser back up to operating pressure each time the compressor is cycled on. In applications such as household refrigerators it has been estimated that approximately seven percent of the energy consumption of the appliance is attributable to the operation of the compressor in restoring the condenser pressure.
  • Therefore, in order to reduce that portion of refrigeration system energy consumption attributable to restoring the condenser pressure when the compressor is cycled on, it has been proposed to replace the pressure operated valve of CH-A-188 957 by a fast-acting electrically actuated refrigerant valve. The proposed valve is operated by a solenoid which is energized to close the valve and deenergized to open the valve. Whenever the compressor is operating the solenoid is deenergized so that refrigerant flows normally through the system. When the compressor cycles off, the solenoid is energized, closing the valve and blocking flow of refrigerant from the condenser. Thus the condenser remains at an elevated pressure during periods when the compressor is inactive because refrigerant flow from it is blocked.
  • When the compressor is energized again the refrigerant valve reopens so that the refrigeration system immediately begins operating at close to its optimal performance level.
  • Although the solenoid valve operates rapidly enough to maintain the pressure difference across the compressor, its operation had some drawbacks including the fact that the valve actuating solenoid is energized while the compressor is deenergized. This energization represents an additional source of system power consumption thus reducing the energy saving effect of the valve. Furthermore, solenoids can create operating noises which are disconcerting to system users because the noise occurs when the system is otherwise deactivated.
  • While it is possible to construct such a refrigerant valve so that the solenoid is energized to open the valve and therefore is energized only when the compressor operates, failure of the solenoid in such circumstances would result in blockage of refrigerant flow through the system when the compressor is energized. This type of failure could damage the system.
  • An object of the present invention is to improve the known system mentioned in the introduction to achieve energy conservation when the compressor is cycled on and off whilst also avoiding the disadvantage of the electrically controlled valves as mentioned above.
  • This is achieved, according to one aspect of the invention, by a system as mentioned in the introduction characterised by a control device for cycling the compressor on and off according to a sensed condition, by means for transmitting refrigerant pressure from the high pressure side of the compressor to opposed pressure faces of said pressure responsive member, and by means effective to retard the transmission of pressure changes to one of said pressure faces.
  • According to another aspect of the invention, the method mentioned in the introduction is characterised by a) sensing time rate of reduction in refrigerant pressure resulting from termination of operation of the compressor; b) blocking refrigerant flow to the evaporator when the sensed rate of reduction in refrigerant pressure exceeds a predetermined value so that refrigerant remains in the condenser while the compressor remains inactive; c) sensing time rate of increase in refrigerant pressure resulting from initiation of compressor operation; and d) enabling refrigerant flow to the evaporator when the rate of increase in refrigerant pressure exceeds a predetermined value.
  • The present invention may be applied to a refrigeration system having a refrigerant compressor, a refrigerant condensing heat exchanger, or condenser, a refrigerant evaporating heat exchanger, or evaporator, and a refrigerant expansion device between the heat exchangers. Reduction of refrigerant pressure due to termination of compressor operation is quickly sensed and refrigerant flow from the condensing heat exchanger to the evaporating heat exchanger is rapidly blocked. Increased refrigerant pressure resulting from initiation of compressor operation is sensed and refrigerant flow to the evaporating heat exchanger is enabled.
  • A refrigeration system embodying the invention includes a refrigerant flow controlling valve for blocking and enabling refrigerant flow from the condensing heat exchanger. A refrigerant pressure responsive member moves to condition the valve for blocking refrigerant flow when the compressor is cycled off and moves to condition the valve for enabling refrigerant flow when the compressor is cycled on.
  • Preferred systems employ a flexible diaphragm exposed to system refrigerant pressures and movable in response to pressure changes to effect operation of the refrigerant flow controlling valve. One preferred device is fail-safe in that the diaphragm is biased to a position in which the valve enables refrigerant flow and if the diaphragm is perforated or develops leakage the valve enables system refrigerant flow regardless of the operating condition of the compressor.
  • Other features and advantages of the invention will become apparent from the following description of preferred embodiments made in reference to the following detailed description and from the drawings which form part of the specification.
    • FIGURE 1 is a schematic representation of a refrigeration system embodying the present invention with portions illustrated in cross section;
    • FIGURE 2 schematically illustrates an alternative embodiment of a refrigeration system embodying the invention with portions illustrated in cross section; and,
    • FIGURES 3-5 illustrate a portion of the system of FIGURE 2 in cross section in various operative conditions.
  • A refrigeration system 10 embodying the present invention is illustrated by FIGURE 1 of the drawings and includes a positive displacement refrigerant compressor 12, a refrigerant condensing heat exchanger, or condenser, 14, a conventional refrigerant expansion device 16, and a refrigerant evaporating heat exchanger, or evaporator, 18. The compressor 12 can be of any suitable or conventional design which is constructed so that it can be started and operated with its discharge at a substantially higher pressure than its intake. The compressor 12 is driven by an electric motor 20 which in turn is energized and deenergized in response to operation of a thermostat 22 which is schematically illustrated. The evaporator 18 is disposed within a refrigerated space 24 (schematically illustrated) and the thermostat switch contacts 22a are operated in response to temperature sensed by the thermostat in the space 24.
  • When the sensed temperature rises to a predetermined level the thermostat 22 is operated so that the motor 20 is energized to drive the compressor 12. Gaseous refrigerant at the compressor intake is compressed and delivered to the condenser 14. As the refrigerant passes through the condenser 14, heat is transferred from the refrigerant causing it to liquefy and flow from the condenser to the expansion device 16 in liquid form. The expansion device provides a flow restriction so that the liquid refrigerant flowing through the expansion device undergoes a significant pressure drop. The expansion device 16 can be of any suitable construction, such as a length of capillary tubing.
  • Refrigerant which has passed through the expansion device expands and returns to a vapor or gaseous form in the evaporator 18. As the refrigerant changes state in the evaporator 18, heat from the refrigerated space 24 is absorbed by the refrigerant causing the space temperature to be reduced.
  • When the temperature in the space 24 is reduced sufficiently, the thermostat switch contacts 22a are actuated again to deenergize the compressor drive motor 20. The compressor 12 is thus cycled on and off the thermostat 22 to maintain the temperature levels in the space 24 within a predetermined range.
  • The refrigeration system 10 includes a refrigerant pressure responsive flow controlling valve 30 for blocking the flow of refrigerant between the condenser 14 and the evaporator 18 when the compressor 12 is cycled off and for enabling refrigerant flow from the condenser 14 to the evaporator 18 when the compressor is cycled on. The flow controlling valve 30 is illustrated as including a housing 32 (illustated schematically in cross section), a refrigerant pressure responsive member 34 in the housing defining movable walls of separate chambers 36, 38 and structure for communicating refrigerant pressure to the refrigerant pressure responsive member 34.
  • In the embodiment of the invention illustrated by FIGURE 1 the structure for communicating refrigerant pressure to the member 34 includes refrigerant passages 40, 42 which, respectively, communicate refrigerant exiting the condensing heat exchanger 14 with the respective chambers 36, 38. Refrigerant flows into the valve 30 via the passage 42 and is delivered from the valve 30 to the expansion device 16 via a discharge passage 43. A valving port structure 44 forms part of the housing discharge flow passage 43 and defines a discharge valving port 46 opening into the chamber 38.
  • A refrigerant flow restriction is interposed between the passages 40, 42 so that when the compressor is cycled on and off, the refrigerant pressures in the chambers 36, 38 change relative to each other but equalize after a period of time. As illustrated by FIGURE 1 the flow restriction is formed by an orifice 47 in the passage 40. When the compressor is cycled on, the pressure in the chamber 38 abruptly increases relative to the pressure in the chamber 36 due to the flow restrictor 47. The pressure in the chamber 36 gradually builds to equalize the pressure in the chamber 38 as the compressor continues to operate. When the compressor is cycled off, the pressure in the chamber 38 is promptly reduced while the pressure in the chamber 36 tends to remain relatively higher. The pressure in the chamber 36 decays gradually as a result of flow through the restrictor 47 until the chamber pressures are again equalized. In short, refrigerant pressure changes in the chamber 36 lag the refrigerant pressure changes in the chamber 38.
  • The illustrated pressure responsive member 34 is a flexible, imperforate diaphragm which extends across the housing interior and defines opposed faces 34a, 34b. The diaphragm face 34b forms an annular valving surface which is seat- able on an outlet valving port 46 to block refrigerant flow through the valve 30. The diaphragm 34 is biased toward a position in which the valving surface is spaced from the port 46 so that refrigerant flows through the valve 30. A helical compression spring 50 is illustrated surrounding the port structure 44 and reacting against the diaphragm 34 for this purpose. When the refrigerant pressures acting on the diaphragm 34 are equal therefore, the valve 30 is open and permits refrigerant flow through it. When the refrigerant pressure force acting on the diaphragm face 34a exceeds the sum of the spring biasing force and the refrigerant pressure force acting on the face 34b the diaphragm valving surface seats on the valving port 46 to block refrigerant flow through the valve 30.
  • When the compressor 12 has been operating sufficiently long to cause the sensed temperature in the space 24 to just reach the level at which the thermostat operates to cycle the compressor off, the refrigerant pressures in the chambers 36, 38 are equal and the valve 30 is open, allowing unrestricted-refrigerant flow through it. When the compressor cycles off, the refrigerant pressure in the condenser 14 is abruptly reduced. The flow restricting orifice 47 prevents the pressure in the chamber 36 from being reduced as abruptly as the pressure reduction in the chamber 38 resulting in the diaphragm 34 shifting toward the valving port 46 and closing the valve 30. When this occurs the refrigerant in the port structure 44 and the discharge passage 43 continues to flow through the expansion device 16 resulting in the refrigerant pressure in the port structure 44 and passage 43 being reduced toward the low pressure level in the evaporator 18. This low pressure is distributed across the relatively large circular diaphragm area indicated by the reference character 55 within the valving port area. The diaphragm area 55 is sufficiently large, compared to the overall area of the diaphragm face 34b, that when the refrigerant pressures in the chambers 36, 38 equalize with the valve closed, the net force acting on the diaphragm face 34a exceeds the spring biasing force and the pressure forces acting on the face 34b. The valve 30 thus remains in condition for blocking refrigerant flow through the expansion device while the compressor remains cycled off. Condensed refrigerant thus remains in the condenser 14 throughout the "off" cycle of the compressor.
  • When the sensed space temperature rises sufficiently to cause the thermostat to cycle the compressor on again, the refrigerant pressure in the valve chamber 38 rises abruptly relative to the pressure in the chamber 36 because of the flow restricting orifice 47. The pressure differential thus created across the diaphragm 34 reopens the valve 30 to enable the condensed refrigerant to immediately begin flowing to the expansion device 16 via the valve 30. Equalization of the refrigerant pressure across the diaphragm 34 when the valve 30 is open is ineffective to change the diaphragm position and the valve 30 thus remains opened so long as the compressor continues to operate.
  • As noted previously the compressor 12 is constructed so that it is capable of starting against a refrigerant pressure head without stalling the drive motor 20. Compressors having such capabilities are known and therefore details of the compressor construction are not set forth.
  • The valve 30 has the advantage of being failsafe in operation. That is, if the diaphragm 34 should fail or a large refrigerant leakage path were to develop around the diaphragm, the valve 30 will simply remain open at all times and not interfere with operation of the refrigeration system 10.
  • During an initial "pull down" of the system 10, e.g. when the system is operated after it has remained inactive for a long period of time and is completely filled with refrigerant vapor at ambient atmosphere temperature, the valve 30 remains open as the pressure in the condenser slowly increases. Subsequent cycling of the compressor results in the valve 30 functioning as desired in the manner described.
  • FIGURES 2-5 illustrate a modified refrigeration system 10' which is substantially the same as the refrigeration system 10 illustrated by FIGURE 1 with the exception of the refrigerant flow control valve, indicated by the reference character 130 in FIGURES 2-5, the refrigerant condensing heat exchanger, or condenser, 14' and the compressor 12'.
  • The refrigerant condenser 14' is formed by two heat exchange units 14a' and 14b' the first of which receives refrigerant discharged from a first compressor discharge 12a', transfers heat from the refrigerant and returns the refrigerant to a second compressor inlet 12b'. The second condenser unit 14b' receives the refrigerant discharged from the compressor 12' and functions like the refrigerant condenser 14 referred to in connection with FIGURE 1. The heat exchanger unit 14a' enables oil entrained with refrigerant in the compressor to condense and return to the compressor so that the compressor remains lubricated at all times during operation of the system with a minimum amount of lubricant circulating through the system.
  • The refrigerant flow control valve 130 functions to block refrigerant flow to the expansion device and evaporator when the compressor cycles off and enables refrigerant flow from the condenser through the expansion device in response to the refrigerant compressor 12' being cycled on. The valve 130 is provided with a refrigerant intake port 132 communicating with the discharge of the condensed unit 14b', a refrigerant exhaust port 134 by which refrigerant is delivered to the evaporator via the expansion device, and a refrigerant port 136 in pressure communication with the outlet of the first condenser unit 14a'.
  • The remaining portions of the system 10' are the same as described above in connection with FIGURE 1 and are indicated by corresponding reference characters.
  • The refrigerant flow control valve 130 is formed by a housing 140 containing a refrigerant flow controlling valve assembly generally indicated by the reference character 142, and a refrigerant pressure responsive member 144 which operates the valve assembly 142. The housing 140 is preferably constructed from a generally cup-like sheet metal housing unit 150 having a second sheet metal closure member 152 hermetically joined to it. Molded plastic core members 154, 156 are disposed within the housing to provide internal refrigerant flow passages and to provide support for the valve assembly 142 and other internal components of the flow control valve 130.
  • Referring to Figure 2 the valve assembly 142 is formed by a generally annular valve seat member 160 defining a central refrigerant flow passage 162 from which refrigerant flowing into the valve 130 through the intake port 132 may exit via the exhaust port 134. A poppet valving member 164 is disposed adjacent the valve seat 160 and defines a valving face 166 which, when seated on the valve seat 160, blocks flow of refrigerant from the housing 140. An operating pin 168 is joined to the poppet valving member and projects through the refrigerant flow passage 162. The valving member·164 is biased toward its closed position by a spring 170 which reacts between a suitable retainer element and the valving member itself.
  • The valve assembly 142 is movable between its open and closed positions by an actuating lever 172 which is supported adjacent the projecting end of the operating pin 168 for pivotal movement about a pivot pin 174. The projecting end of the actuating lever extends beyond the location of the operating pin 168 and is associated with a biasing spring 178 which urges the actuating lever 172 in a direction for closing the valve member 142.
  • The refrigerant pressure responsive member 144 is preferably formed by a flexible rubber-like imperforate diaphragm which is seated between the housing element 150 and the core member 154 to define pressure chambers 180, 182 on its opposite sides.
  • During normal operation of the system 10' and when the compressor is operating, the valve assembly 142 permits refrigerant from the discharge of the refrigerant condensing heat exchanger unit 14b' to flow through the valve intake port 132 to the chamber 180 via a passage 184 formed by the core members 154, 156. Figure 2 illustrates the valve 130 in this condition of operation. The refrigerant flows from the chamber 180 to the expansion device and evaporator via the valving assembly 142 and valve discharge port 134. It should be noted that refrigerant can not flow from the valve 130 via the chamber 182 so that the refrigerant pressure in the chamber 182 remains substantially the same as the pressure at the discharge of the condenser unit 14a'.
  • The valve assembly 142 is conditioned to permit refrigerant flow through the valve 130 by the diaphragm 144. The refrigerant pressure exiting the condenser unit 14a' is communicated to the chamber 182 via the port 136. Since the refrigerant flowing to the chamber 180 is subjected to a pressure drop resulting from passage through the condenser unit 14b' and through a flow restrictor 186 formed in the passage 184, the refrigerant pressure in the chamber 182 is sufficiently greater than refrigerant pressure in the chamber 180 that the diaphragm 144 deflects toward and moves the projecting end of the actuating lever 172 to open the valve assembly 142.
  • When the compressor 12' is cycled off, the refrigerant pressure at the discharge of the condenser unit 14a' decays rapidly compared to the decay rate of the refrigerant pressure at the discharge of the second condenser 14b' resulting in the diaphragm 144 being shifted away from the valve actuating lever 172. The valve assembly 142 is closed by the spring 170 acting on the valving member 164 to prevent further refrigerant flow into the expansion device. Figure 3 illustrates the valve 130 in this condition of its operation.
  • When the compressor is reenergized the refrigerant pressure at the outlet of the condenser 14a' increases relatively rapidly compared to the refrigerant pressure rise at the discharge of the condenser 14b. The differential pressure forces are transmitted to the diaphragm 144 causing it to shift and reopen the valve assembly 142.
  • In order to facilitate motion of the diaphragm 144 toward the actuating lever 172 the refrigerant passage 184 is provided with a ball check valve 188 which opens to enable substantially unrestricted flow of the liquid refrigerant from the chamber 180 into the passage 184 toward the discharge of the condenser 14b'. This assures that motion of the diaphragm 144 is not impeded by the liquid phase refrigerant in the chamber 180 as it might otherwise be if the liquid refrigerant were trapped in the chamber 180 and forced to flow through the restrictor 186. The check valve 188 is illustrated in its non-restricting condition in Figure 3. As soon as liquid refrigerant begins to flow through the valve 130 the ball check valve 188 is returned to its flow restricting position as illustrated by Figure 2.
  • Under certain circumstances the refrigerant pressure in the high pressure side of the system 10' may increase during the compressor off cycle and reach a level at which the compressor cannot safely be started without possible damage to it or it's drive motor. When this occurs the valve assembly 142 opens briefly to permit a small amount of refrigerant to flow through it to the expansion device and thus relieve the back pressure against which the compressor must work it is next cycled on. The pressure relief function of the valve assembly 142 is controlled by the area of the poppet valving member 164 and operating pin 168 exposed to the high pressure refrigerant (in the chamber 180) and the force exerted by the biasing spring 170 on the poppet valving member. Movement of the poppet valving member 164 to relieve the high pressure side of the system 10' occurs independently of the actuating lever 172. When the refrigerant pressure is relieved the spring 170 recloses the valve assembly.
  • When the refrigeration system 10' has been out of use for a considerable period of time the refrigerant pressure in the system may equalize with substantially all of the refrigerant in the system returning to its gaseous or vapor state. The valve assembly 142 is closed by virtue of the forces provided by the biasing springs 170, 178 which coact to assure closure of the poppet valving member 164 on its seat 160 in the absence of differential refrigerant pressures.
  • When the compressor is first operated at the conclusion of a long period of system inactivity, the refrigerant in the condenser 14' is in its gaseous state. Operation of the compressor does not therefore initially create significant pressure rises in the condenser and for this reason the diaphragm 144 tends to remain stationary. The refrigerant pressure buildup in the high pressure side of the system 10' can be so gradual that differential refrigerant pressure across the diaphragm 144 remains inadequate to enable the diaphragm to open the valve assembly 142. In some circumstances, therefore, the valve assembly 142 can remain closed as the compressor continues to operate, preventing refrigerant flow to the evaporator. In effect, the system would appear to be inoperative since no refrigeration effect would result. Figure 4 of the drawings illustrates the flow control valve 130 and these circumstances.
  • In order to avoid the possibility of the flow control valve 130 preventing normal operation of the system 10' after a sustained period of system inactivity, a bypass valve 190 is provided to assure refrigerant flow through the flow controlling valve 130 during an initial cycle of compressor operation. The valve 190 is preferably formed by a flexible rubber-like diaphragm 192 supported between the core members 154, 156 for movement toward and away from a relatively large area valving port 196 formed on a hollow projection molded into the core member 156.
  • The diaphragm 192 is imperforate and has its major face opposite from the valve port 196 exposed to pressure from the discharge of the condenser 14a'. Pressure from the condenser 14a' is transmitted to the diaphragm 192 via the refrigerant port 136, the chamber 182 and a passage 198 formed in the core member 154 between the chamber 182 and the diaphragm 192. This refrigerant pressure tends to close the bypass valve 190 by urging the diaphragm 192 into sealing engagement with the valve seat 196. The refrigerant pressure from the condenser 14a' is opposed by a biasing spring 200 reacting between the diaphragm 192 and the core member 156 and refrigerant pressure forces applied to the opposite face of the diaphragm 192.
  • FIGURE 4 illustrates the condition of the flow control valve 130 at the end of the a long period of system inactivity with refrigerant pressure in the system 10' equalized. The refrigerant pressure forces acting on the opposite faces of the diaphragm 192 balanced and the bypass valve is open because the spring 200 maintains the diaphragm 192 spaced from the port 196.
  • When the compressor is cycled on, gaseous refrigerant begins to flow through the system 10' via the open bypass valve 190. This condition of the flow control valve 130 is illustrated by Figure 5. The refrigerant flows from the condenser 14b' through the valve intake port 132, the passage 184, a passage between the chamber 180 and the bypass valve 190, and to the expansion device 16 and evaporator 18 through the bypass valve port 196 and flow passages 202, 204, 206 formed internally in the flow control valve 130. The flow passage 202 is formed by a slot-like channel in the core member 156 which communicates with the bypass valve seat 196 and directs refrigerant flowing through the bypass valve into the passage 204. The passage 204 is formed by an annular chamber extending about the housing 140 and formed between the core member 154 and the housing member 150. The passage 206 is constructed like the passage 202 and extends between the passage 204 and the valve refrigerant outlet port 134.
  • The flow of gaseous refrigerant through the passage 184 is effective to close the ball check valve 188 but the pressure drops created by the condenser unit 14b' and restrictor 186 in the flow of the gaseous refrigerant are insufficient to force closure of the bypass valve 190.
  • As the compressor continues operating, the refrigerant begins liquefying in the condenser 14' and eventually liquefied refrigerant flows into the valve 130 from the condenser unit 14b'. The flow of liquefied refrigerant from the condenser in the establishment of differential fluid pressure forces on the diaphragm 144 (due to the pressure drops created by the condenser unit 14b' and the flow restrictor 186) which causes the valve assembly 142 to open as described previously.
  • The differential refrigerant pressure is likewise applied to the bypass valve diaphragm 192 resulting in the diaphragm 192 seating on the valve port 196 and blocking further bypass flow. The flow control valve 130 thus returns to its operating condition illustrated by Figure 2.
  • The bypass valve 190 remains closed during subsequent normal operating of the system 10'. After the bypass valve closes the refrigerant pressure acting on the diaphragm 192 within the area of the bypass valve port 196 is reduced below the pressure in the chamber 180, primarily by virtue of the pressure drop experienced by the refrigerant flowing through the valve assembly 142. Accordingly the net closing force acting on the diaphragm 192 increases and is effective to prevent the diaphragm 192 from reopening as soon as the compressor cycles off. When the compressor is cycled off, and the valve assembly 142 closes, the refrigerant pressure acting on the diaphragm 192 within the area of the bypass valve port 196 continues to be reduced to approximately the same level as the evaporator. This assures that the net actuating force applied to the diaphragm 192 is sufficient to maintain the bypass valve closed throughout a compressor off cycle of any reasonably expectable duration.
  • While preferred embodiments of the invention have been illustrated and described in considerable detail the invention is not to be considered limited to the precise constructions disclosed. Various adaptations, modifications and uses of the invention may occur to those skilled in the art to which the invention relates and it is the intention to cover all such adaptations modification and uses coming within the scope of the appended claims.

Claims (9)

1. Refrigeration system including a compressor (12), a refrigerant condensing heat exchanger (14), a refrigerant evaporating heat exchanger (18), a refrigerant expansion device (16) for enabling condensed refrigerant to expand into said evaporating heat exchanger (18), and refrigerant flow controlling valve means (30) for controlling flow of refrigerant between the refrigerant condensing heat exchanger (14) and the refrigerant evaporating heat exchanger (18), said valve means (30) including a refrigerant pressure responsive member (34) movable to condition said valve means (30) to block refrigerant flow in response to changes in refrigerant pressure caused by the compressor (12) ceasing operation and movable to condition the valve means (30) to enable refrigerant flow in response to changes in refrigerant pressure caused by the compressor (12) starting operation, characterised by a control device (22) for cycling the compressor (12) on and off according to a sensed condition, by means (40, 42) for transmitting refrigerant pressure from the high pressure side of the compressor (12) to opposed pressure faces (34a, 34b) of said pressure responsive member (34), and by means (47) effective to retard the transmission of pressure changes to one of said pressure faces.
2. A system claimed in claim 1, characterised in that said pressure responsive member comprises a flexible diaphragm (34).
3. A system claimed in claim 1 or 2, characterised by means (40, 42) for transmitting refrigerant pressure from the refrigerant condensing heat exchanger (14) to opposed pressure faces (34a, 34b) of said pressure responsive member (34).
4. A system claimed in claim 3, characterised in that said means for transmitting refrigerant pressure comprises refrigerant flow passages (40, 42) communicating refrigerant exiting said refrigerant condensing heat exchanger (14) to said pressure faces (34a, 34b).
5. A system claimed in claim 4, characterised in that said refrigerant flow passages (40,42) receive refrigerant which has flowed substantially completely through said refrigerant condensing heat exchanger (14) and said means for retarding transmission of refrigerant pressure changes comprises a flow restriction (47) in one of said refrigerant flow passages.
6. A system claimed in claim 2, characterised in that said valve means (30) comprises vaiving structure (44) defining a port (46) adjacent said diaphragm and a valving face formed by said diaphragm (30) which seats on said port (46) to block refrigerant flow.
7. A system claimed in claim 1, characterised in that said refrigerant expansion device (16) is disposed between said valve means (30) and said refrigerant evaporating heat exchanger (18).
8. Method of conserving energy in the operation of a compressor-condenser-evaporator type refrigeration system wherein the compressor operation is initiated and terminated in response to a sensed condition, characterised by
a) sensing time rate of reduction in refrigerant pressure resulting from termination of operation of the compressor (12);
b) blocking refrigerant flow to the evaporator (18) when the sensed rate of reduction in refrigerant pressure exceeds a predetermined value so that refrigerant remains in the condenser (14) while the compressor (12) remains inactive;
c) sensing time rate of increase in refrigerant pressure resulting from initiation of compressor operation; and
d) enabling refrigerant flow to the evaporator (18) when the rate of increase in refrigerant pressure exceeds a predetermined value.
9. A method ciaimed in claim 8, characterised in that the step of blocking refrigerant flow includes transmitting changes in refrigerant pressure to oppose pressure faces (34a, 34b) of a refrigerant flow controlling valve actuating member (34) and retarding the transmission of such pressure changes to one pressure face.
EP81102013A 1981-03-18 1981-03-18 Refrigeration system with refrigerant flow controlling valve and method of conserving energy in the operation of a compressor-condensor-evaporator type refrigeration system Expired EP0060315B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE8181102013T DE3172186D1 (en) 1981-03-18 1981-03-18 Refrigeration system with refrigerant flow controlling valve and method of conserving energy in the operation of a compressor-condensor-evaporator type refrigeration system
EP81102013A EP0060315B1 (en) 1981-03-18 1981-03-18 Refrigeration system with refrigerant flow controlling valve and method of conserving energy in the operation of a compressor-condensor-evaporator type refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP81102013A EP0060315B1 (en) 1981-03-18 1981-03-18 Refrigeration system with refrigerant flow controlling valve and method of conserving energy in the operation of a compressor-condensor-evaporator type refrigeration system

Publications (2)

Publication Number Publication Date
EP0060315A1 EP0060315A1 (en) 1982-09-22
EP0060315B1 true EP0060315B1 (en) 1985-09-11

Family

ID=8187615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81102013A Expired EP0060315B1 (en) 1981-03-18 1981-03-18 Refrigeration system with refrigerant flow controlling valve and method of conserving energy in the operation of a compressor-condensor-evaporator type refrigeration system

Country Status (2)

Country Link
EP (1) EP0060315B1 (en)
DE (1) DE3172186D1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6206652B1 (en) 1998-08-25 2001-03-27 Copeland Corporation Compressor capacity modulation
US8157538B2 (en) 2007-07-23 2012-04-17 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
WO2010088271A2 (en) 2009-01-27 2010-08-05 Emerson Climate Technologies, Inc. Unloader system and method for a compressor
US10378533B2 (en) 2011-12-06 2019-08-13 Bitzer Us, Inc. Control for compressor unloading system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE358875C (en) * 1921-05-07 1922-09-16 Der Maschinenfabriken Escher A Cooling system with centrifugal compressor
CH188957A (en) * 1936-01-21 1937-01-31 Sulzer Ag Compression refrigeration machine.
US2364459A (en) * 1941-10-25 1944-12-05 Honeywell Regulator Co Control of refrigeration apparatus
US2453439A (en) * 1946-11-20 1948-11-09 Gen Electric Refrigeration control system
US2882695A (en) * 1954-12-13 1959-04-21 Refrigeration Appliances Inc Means for and method of preventing failure of refrigerator operation
US2986899A (en) * 1957-12-23 1961-06-06 Alco Valve Co System for maintaining pressure in refrigeration systems
CH406261A (en) * 1961-04-08 1966-01-31 Trane Co Compressor refrigeration plant
US3769808A (en) * 1972-01-24 1973-11-06 D Kramer Refrigeration systems with elevated receivers

Also Published As

Publication number Publication date
EP0060315A1 (en) 1982-09-22
DE3172186D1 (en) 1985-10-17

Similar Documents

Publication Publication Date Title
US4267702A (en) Refrigeration system with refrigerant flow controlling valve
US6672090B1 (en) Refrigeration control
US6663358B2 (en) Compressors for providing automatic capacity modulation and heat exchanging system including the same
KR0167632B1 (en) Cluchless variable capacity type compressor
US5070707A (en) Shockless system and hot gas valve for refrigeration and air conditioning
EP1039250B1 (en) Refrigerating cycle with a by-pass line
US3564865A (en) Automotive air-conditioning system
RU2347985C2 (en) Cooling device
US3435626A (en) Pressure control apparatus for refrigeration system
EP1335160B1 (en) Differential pressure valve
US4873838A (en) Refrigerant metering in a variable flow system
EP0060315B1 (en) Refrigeration system with refrigerant flow controlling valve and method of conserving energy in the operation of a compressor-condensor-evaporator type refrigeration system
US5531077A (en) Refrigerating system with auxiliary compressor-cooling device
EP0266301B1 (en) Refrigerant metering in a variable flow system
US4646533A (en) Refrigerant circuit with improved means to prevent refrigerant flow into evaporator when rotary compressor stops
US4129995A (en) Evaporation pressure control device
JP2624767B2 (en) Refrigeration equipment
US3204420A (en) Reversible refrigerating system and control therefor
JPH0378543B2 (en)
KR100202596B1 (en) High temperature refrigerant influx shutting device of cooling cycle
JPS6028934Y2 (en) Refrigeration equipment
JPH0345304B2 (en)
JPH0320663B2 (en)
JPS6040783B2 (en) Air conditioner refrigeration circuit
JPH0554972U (en) Expansion valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811028

AK Designated contracting states

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3172186

Country of ref document: DE

Date of ref document: 19851017

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940209

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940216

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940217

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950318

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST