JP4325455B2 - Air conditioner with defrost function - Google Patents

Air conditioner with defrost function Download PDF

Info

Publication number
JP4325455B2
JP4325455B2 JP2004089026A JP2004089026A JP4325455B2 JP 4325455 B2 JP4325455 B2 JP 4325455B2 JP 2004089026 A JP2004089026 A JP 2004089026A JP 2004089026 A JP2004089026 A JP 2004089026A JP 4325455 B2 JP4325455 B2 JP 4325455B2
Authority
JP
Japan
Prior art keywords
flow rate
valve
rate adjustment
adjustment valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004089026A
Other languages
Japanese (ja)
Other versions
JP2005274039A (en
Inventor
宏樹 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2004089026A priority Critical patent/JP4325455B2/en
Publication of JP2005274039A publication Critical patent/JP2005274039A/en
Application granted granted Critical
Publication of JP4325455B2 publication Critical patent/JP4325455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、ガスヒートポンプ式空気調和装置等の空気調和機の除霜装置に関する発明である。   The present invention relates to a defrosting device for an air conditioner such as a gas heat pump type air conditioner.

従来から、ガスエンジンにより圧縮機を駆動するガスヒートポンプ等において、暖房時に外部熱交換器に霜がつく問題があった。
例えば、特許文献1には、暖房時に外部熱交換器に付着した霜の除霜方法が開示されている。ここで、特許文献1が開示する従来技術は、圧縮機の吐出冷媒をバイパス回路(開閉弁+配管)を介して、暖房運転時の室外空気熱交換器の入口側に流して、室内機からの冷媒と合流、昇温昇圧させることで、室外空気熱交換器内温度を上昇させ除霜することである。
この問題として、特許文献1は、室外空気熱交換器入口冷媒を昇温昇圧させるため、冷媒は室外空気熱交換器で完全にガス化されずに液状態となる場合があり、多量の液冷媒を圧縮機が吸い込んで、圧縮機が破損する恐れがあることが指摘されている。
Conventionally, in a gas heat pump or the like that drives a compressor by a gas engine, there has been a problem that the external heat exchanger is frosted during heating.
For example, Patent Document 1 discloses a defrosting method for frost attached to an external heat exchanger during heating. Here, in the conventional technique disclosed in Patent Document 1, the refrigerant discharged from the compressor is caused to flow from the indoor unit through the bypass circuit (open / close valve + pipe) to the inlet side of the outdoor air heat exchanger during heating operation. This is to defrost by increasing the temperature in the outdoor air heat exchanger by joining the refrigerant and raising the temperature and pressure.
As this problem, Patent Document 1 raises the temperature and pressure of the outdoor air heat exchanger inlet refrigerant, so that the refrigerant may be in a liquid state without being completely gasified by the outdoor air heat exchanger. It has been pointed out that there is a risk that the compressor may be sucked in and the compressor may be damaged.

特許文献1では、上記問題を解決するために、2つの方法を提案している。第1の方法は、室外空気熱交換器の下流に直列にエンジン排熱回収器を配置することにより、室外空気熱交換器通過後の液冷媒を完全に蒸発させる方法である。
第2の方法は、室外空気熱交換器と並列に排熱回収器の出口配管を分岐させ、各々に逆止弁を設け、一方を室外空気熱交換器出口と合流させ、他方を四方切替弁と室内機の間の配管に接続した回路において、四方切替弁を冷房モードとし、圧縮機から吐出された高温高圧の冷媒ガスを流して室外空気熱交換器を除霜させ、室外空気熱交換器で液化された冷媒を排熱回収器でガス化させ圧縮機に戻す方法である。
特許公報第2720996号公報
Patent Document 1 proposes two methods to solve the above problem. The first method is a method of completely evaporating the liquid refrigerant after passing through the outdoor air heat exchanger by arranging an engine exhaust heat recovery device in series downstream of the outdoor air heat exchanger.
In the second method, the outlet pipe of the exhaust heat recovery unit is branched in parallel with the outdoor air heat exchanger, each of which is provided with a check valve, one of which merges with the outdoor air heat exchanger outlet, and the other is a four-way switching valve. In the circuit connected to the piping between the indoor unit and the indoor unit, the four-way switching valve is set to the cooling mode, the high-temperature and high-pressure refrigerant gas discharged from the compressor is flowed to defrost the outdoor air heat exchanger, and the outdoor air heat exchanger This is a method of gasifying the liquefied refrigerant in the exhaust heat recovery device and returning it to the compressor.
Japanese Patent Publication No. 2720996

しかしながら、従来の空気調和機の除霜装置には、次のような問題点があった。
(1) 特許文献1に記載された第1の方法の場合、室内空気熱交換器と排熱回収器を直列に配置することで、本来の暖房運転時の蒸発能力が損なわれると共に、運転効率が低下する問題がある。その理由は、室外空気熱交換器と排熱回収器を直列にすると、冷媒の流れによる圧力損失が大きくなり、上流側の室外空気熱交換器内の冷媒圧力(蒸発温度)が高まり、外気と室外空気熱交換器冷媒の温度差が小さくなるため、室外空気熱交換器の熱交換効率が低下するからである。また、下流側は、相対的に蒸発温度が下がるが、圧力も低下するため圧縮機の冷媒循環量が低下し、運転効率が低下するからである。
However, the conventional air conditioner defroster has the following problems.
(1) In the case of the first method described in Patent Document 1, by arranging the indoor air heat exchanger and the exhaust heat recovery device in series, the evaporation capacity during the original heating operation is impaired and the operation efficiency is reduced. There is a problem that decreases. The reason is that when the outdoor air heat exchanger and the exhaust heat recovery device are connected in series, the pressure loss due to the refrigerant flow increases, the refrigerant pressure (evaporation temperature) in the upstream outdoor air heat exchanger increases, This is because the temperature difference of the outdoor air heat exchanger refrigerant is reduced, so that the heat exchange efficiency of the outdoor air heat exchanger is reduced. In addition, although the evaporation temperature relatively decreases on the downstream side, the pressure also decreases, so the refrigerant circulation amount of the compressor decreases, and the operation efficiency decreases.

(2) 特許文献1に記載された第2の方法の場合、室外空気熱交換器と排熱回収器を並列に配置することで、圧力損失による熱交換効率の低下は解決されるが、除霜運転中は、室外空気熱交換器と排熱回収器室とが回路としては直列となり、内機へ冷媒が供給されないため、暖房能力がゼロとなり、空調機能が全く利かなくなる問題があった。 (2) In the case of the second method described in Patent Document 1, the reduction in heat exchange efficiency due to pressure loss is solved by arranging the outdoor air heat exchanger and the exhaust heat recovery device in parallel. During the frost operation, the outdoor air heat exchanger and the exhaust heat recovery chamber are in series as a circuit, and refrigerant is not supplied to the internal unit, so there is a problem that the heating capacity becomes zero and the air conditioning function is not used at all. .

そこで本発明は、かかる課題を解決して、暖房能力を維持しながら、運転効率の高い除霜機能付き空気調和機を提供することを目的とする。   Then, this invention solves this subject and it aims at providing the air conditioner with a defrosting function with high operating efficiency, maintaining heating capability.

本発明の空気調和機の除霜装置は、上記課題を解決するために以下のような構成を有している。
(1)室外空気熱交換器と排熱回収器とを並列に配置し、室外空気熱交換器の入口側に第1流量調整弁を、排熱回収器の入口側に第2流量調整弁を設け、圧縮機の吐出側と室外空気熱交換器の入口とをバイパス開閉弁を介して接続した冷媒回路を有する除霜機能付き空気調和機において、バイパス開閉弁がバイパス流量調整弁であると共に、除霜信号を受けて圧縮機吸入過熱度に応じて第2流量調整弁の開度を調整する除霜制御手段とを有する。
(2)(1)に記載する除霜機能付き空気調和機において、前記第2流量調整弁が所定開度以上のとき、前記除霜制御手段が、前記バイパス流量調整弁の開度を開いて圧縮機吸入過熱度を調整することを特徴とする。
(3)(2)に記載する空気調和機の除霜装置において、前記バイパス流量調整弁が所定開度以上のとき、前記除霜制御手段が、前記第1流量調整弁の開度を開いて圧縮機吸入過熱度を調整することを特徴とする。
The defroster for an air conditioner of the present invention has the following configuration in order to solve the above problems.
(1) The outdoor air heat exchanger and the exhaust heat recovery unit are arranged in parallel, and the first flow rate adjustment valve is provided on the inlet side of the outdoor air heat exchanger, and the second flow rate adjustment valve is provided on the inlet side of the exhaust heat recovery device. In the air conditioner with a defrost function having a refrigerant circuit in which the discharge side of the compressor and the inlet of the outdoor air heat exchanger are connected via a bypass on-off valve, the bypass on-off valve is a bypass flow rate adjustment valve, Defrost control means for receiving the defrost signal and adjusting the opening of the second flow rate adjustment valve according to the compressor suction superheat degree.
(2) In the air conditioner with a defrost function described in (1), when the second flow rate adjustment valve is greater than or equal to a predetermined opening, the defrost control means opens the opening of the bypass flow rate adjustment valve. It is characterized by adjusting the compressor suction superheat degree.
(3) In the defroster for an air conditioner described in (2), when the bypass flow rate adjustment valve is greater than or equal to a predetermined opening, the defrost control means opens the opening of the first flow rate adjustment valve. It is characterized by adjusting the compressor suction superheat degree.

(4)室外空気熱交換器と排熱回収器とを並列に配置し、室外空気熱交換器の入口側に第1流量調整弁を、排熱回収器の入口側に第2流量調整弁を設け、圧縮機の吐出側と室外空気熱交換器の入口とをバイパス開閉弁を介して接続した冷媒回路を有する除霜機能付き空気調和機において、室内空気熱交換器の出口に室内出口流量調整弁が設けられると共に、除霜信号を受けて圧縮機吸入過熱度に応じて第2流量調整弁の開度を調整する除霜制御手段とを有する。
(5)(4)に記載する除霜機能付き空気調和機において、前記第2流量調整弁が所定開度以上のとき、除霜制御手段が、前記室内出口流量調整弁の開度を絞って圧縮機吸入過熱度を調整することを特徴とする。
(6)(5)に記載する除霜機能付き空気調和機において、前記室内出口流量調整弁が所定の閉開度となったとき、前記除霜制御手段が、前記第1流量調整弁の開度を開いて調整することを特徴とする。
(4) The outdoor air heat exchanger and the exhaust heat recovery device are arranged in parallel, and the first flow rate adjustment valve is provided on the inlet side of the outdoor air heat exchanger, and the second flow rate adjustment valve is provided on the inlet side of the exhaust heat recovery device. In an air conditioner with a defrost function having a refrigerant circuit in which the discharge side of the compressor and the inlet of the outdoor air heat exchanger are connected via a bypass on-off valve, the flow rate of the indoor outlet is adjusted at the outlet of the indoor air heat exchanger A valve is provided, and defrost control means for receiving a defrost signal and adjusting the opening of the second flow rate adjustment valve according to the compressor suction superheat degree.
(5) In the air conditioner with a defrost function described in (4), when the second flow rate adjustment valve is greater than or equal to a predetermined opening, the defrost control means throttles the opening of the indoor outlet flow rate adjustment valve. It is characterized by adjusting the compressor suction superheat degree.
(6) In the air conditioner with a defrosting function described in (5), when the indoor outlet flow rate adjustment valve has a predetermined opening degree, the defrost control means opens the first flow rate adjustment valve. It is characterized by opening and adjusting the degree.

本発明のガスヒートポンプ式空気調和装置は、次のような作用・効果を有する。
始めに、請求項1乃至3に係る発明の作用・効果を説明する。
暖房運転しながら、室外空気熱交換器を除霜するために、バイパス回路のバイパス流量調整弁を除霜時初期開度に開いて、圧縮機の高温高圧ガスの吐出冷媒を膨張機構から室外空気熱交換器の間に導く。ここで、室内空気熱交換器から室外空気熱交換器へ流入する液冷媒により、除霜の熱源である、デフロスト回路の高温高圧ガスの熱量を低下させないため、室外空気熱交換器の入口の膨張機構である第1流量調整弁を全閉又は開度を小さく絞って、流量調整する。これにより、圧縮機を出て室外空気熱交換器に流入される高温高圧冷媒は、自身の持つ熱量を放熱することにより、室外空気熱交換器を除霜すると共に、液化され、排熱回収器の出口で冷媒と合流する。
The gas heat pump type air conditioner of the present invention has the following operations and effects.
First, the operation and effect of the invention according to claims 1 to 3 will be described.
In order to defrost the outdoor air heat exchanger during heating operation, the bypass flow rate adjustment valve of the bypass circuit is opened to the initial opening at the time of defrosting, and the refrigerant discharged from the high temperature and high pressure gas of the compressor is discharged from the expansion mechanism to the outdoor air. Lead between heat exchangers. Here, the liquid refrigerant flowing from the indoor air heat exchanger to the outdoor air heat exchanger does not reduce the amount of heat of the high temperature and high pressure gas of the defrost circuit, which is a heat source for defrosting, so the expansion of the inlet of the outdoor air heat exchanger The first flow rate adjustment valve, which is a mechanism, is fully closed or the flow rate is adjusted by narrowing the opening degree. As a result, the high-temperature and high-pressure refrigerant flowing out of the compressor and flowing into the outdoor air heat exchanger defrosts the outdoor air heat exchanger and liquefies it by dissipating the amount of heat of its own, and the exhaust heat recovery device It merges with the refrigerant at the outlet.

一方、排熱回収器の出口における冷媒が、除霜のために室外空気熱交換器内で液化した冷媒を蒸発させるための熱量(過熱度)を持つように、すなわち、圧縮機へ吸入される冷媒の過熱度に応じて、第2流量調整弁の開度を調整する。これにより、室外空気熱交換器からの液冷媒と排熱回収器からの過熱蒸気冷媒が合流、熱交換することにより、圧縮機へ吸入される冷媒が、飽和ガスに近い状態となり、圧縮機の液圧縮運転を防止することができる。
このとき、排熱回収器での排熱回収量が多い場合には、第2流量調整弁を開いて過熱度を下げている。
さらに、第2流量調整弁の開度が最大となったときには、室外空気熱交換器に流れる冷媒の流量を増加させる余地があるため、圧縮機へ吸入される冷媒の過熱度に応じてバイパス流量調整弁の開度を開いて、除霜能力を高める。
さらに、バイパス流量調整弁の開度も最大となったときには、室外空気熱交換器に流れる冷媒の流量を増加させる余地があるため、圧縮機へ吸入される冷媒の過熱度に応じて第1流量調整弁の開度を開いて、冷凍サイクル全体の冷媒流量を増加させ、除霜能力を高める。
On the other hand, the refrigerant at the outlet of the exhaust heat recovery device is sucked into the compressor so as to have a heat amount (superheat degree) for evaporating the refrigerant liquefied in the outdoor air heat exchanger for defrosting. The opening degree of the second flow rate adjustment valve is adjusted according to the degree of superheat of the refrigerant. As a result, the liquid refrigerant from the outdoor air heat exchanger and the superheated steam refrigerant from the exhaust heat recovery unit merge and exchange heat, so that the refrigerant sucked into the compressor becomes close to saturated gas, and the compressor Liquid compression operation can be prevented.
At this time, when the amount of exhaust heat recovered by the exhaust heat recovery device is large, the second flow rate adjustment valve is opened to lower the degree of superheat.
Furthermore, there is room for increasing the flow rate of the refrigerant flowing through the outdoor air heat exchanger when the opening of the second flow rate adjustment valve reaches the maximum, so that the bypass flow rate depends on the degree of superheat of the refrigerant sucked into the compressor. Increase the defrosting capacity by opening the adjustment valve.
Furthermore, when the opening degree of the bypass flow rate adjustment valve reaches the maximum, there is room for increasing the flow rate of the refrigerant flowing through the outdoor air heat exchanger, so the first flow rate is determined according to the degree of superheat of the refrigerant sucked into the compressor. Open the opening of the regulating valve to increase the refrigerant flow rate of the entire refrigeration cycle and increase the defrosting capacity.

次に、請求項4乃至6に係る発明の作用・効果を説明する。
暖房運転しながら、室外空気熱交換器を除霜するために、バイパス回路のバイパス流量調整弁を除霜時初期開度に開いて、圧縮機の高温高圧ガスの吐出冷媒を膨張機構から室外空気熱交換器の間に導く。ここで、室内空気熱交換器から室外空気熱交換器へ流入する液冷媒により、除霜の熱源である、デフロスト回路の高温高圧ガスの熱量を低下させないため、室外空気熱交換器の入口の膨張機構である第1流量調整弁を全閉又は開度を小さく絞って、流量調整する。これにより、圧縮機を出て室外空気熱交換器に流入される高温高圧冷媒は、自身の持つ熱量を放熱することにより、室外空気熱交換器を除霜すると共に、液化され、排熱回収器の出口で冷媒と合流する。
Next, functions and effects of the invention according to claims 4 to 6 will be described.
In order to defrost the outdoor air heat exchanger during heating operation, the bypass flow rate adjustment valve of the bypass circuit is opened to the initial opening at the time of defrosting, and the refrigerant discharged from the high temperature and high pressure gas of the compressor is discharged from the expansion mechanism to the outdoor air. Lead between heat exchangers. Here, the liquid refrigerant flowing from the indoor air heat exchanger to the outdoor air heat exchanger does not reduce the amount of heat of the high temperature and high pressure gas of the defrost circuit, which is a heat source for defrosting, so the expansion of the inlet of the outdoor air heat exchanger The first flow rate adjustment valve, which is a mechanism, is fully closed or the flow rate is adjusted by narrowing the opening degree. As a result, the high-temperature and high-pressure refrigerant flowing out of the compressor and flowing into the outdoor air heat exchanger defrosts the outdoor air heat exchanger and liquefies it by dissipating the amount of heat of its own, and the exhaust heat recovery device It merges with the refrigerant at the outlet.

一方、排熱回収器の出口における冷媒が、除霜のために室外空気熱交換器内で液化した冷媒を蒸発させるための熱量(過熱度)を持つように、すなわち、圧縮機へ吸入される冷媒の過熱度に応じて、第2流量調整弁の開度を調整する。これにより、室外空気熱交換器からの液冷媒と排熱回収器からの過熱蒸気冷媒が合流、熱交換することにより、圧縮機へ吸入される冷媒が、飽和ガスに近い状態となり、圧縮機の液圧縮運転を防止することができる。
このとき、排熱回収器での排熱回収量が多い場合には、第2流量調整弁を開いて過熱度を下げている。
さらに、第2流量調整弁の開度が最大となったときには、室外空気熱交換器に流れる冷媒の流量を増加させる余地があるため、圧縮機へ吸入される冷媒の過熱度に応じて室内出口流量調整弁の開度を絞ることにより、バイパス流量調整弁の流量を増加させ、除霜能力を高める。
さらに、室内出口流量調整弁の開度が最低開度となったときには、室外空気熱交換器に流れる冷媒の流量を増加させる余地があるため、圧縮機へ吸入される冷媒の過熱度に応じて第1流量調整弁の開度を開いて、冷凍サイクル全体の冷媒流量を増加させ、除霜能力を高める。
On the other hand, the refrigerant at the outlet of the exhaust heat recovery device is sucked into the compressor so as to have a heat amount (superheat degree) for evaporating the refrigerant liquefied in the outdoor air heat exchanger for defrosting. The opening degree of the second flow rate adjustment valve is adjusted according to the degree of superheat of the refrigerant. As a result, the liquid refrigerant from the outdoor air heat exchanger and the superheated steam refrigerant from the exhaust heat recovery unit merge and exchange heat, so that the refrigerant sucked into the compressor becomes close to saturated gas, and the compressor Liquid compression operation can be prevented.
At this time, when the amount of exhaust heat recovered by the exhaust heat recovery device is large, the second flow rate adjustment valve is opened to lower the degree of superheat.
Furthermore, there is room for increasing the flow rate of the refrigerant flowing in the outdoor air heat exchanger when the opening degree of the second flow rate adjustment valve becomes maximum, so that the indoor outlet according to the degree of superheat of the refrigerant sucked into the compressor By reducing the opening degree of the flow rate adjustment valve, the flow rate of the bypass flow rate adjustment valve is increased and the defrosting capability is enhanced.
Furthermore, when the opening degree of the indoor outlet flow rate adjustment valve becomes the minimum opening degree, there is room for increasing the flow rate of the refrigerant flowing in the outdoor air heat exchanger, so depending on the degree of superheat of the refrigerant sucked into the compressor The opening degree of the first flow rate adjustment valve is opened, the refrigerant flow rate of the entire refrigeration cycle is increased, and the defrosting capability is enhanced.

次に、本発明に係る除霜機能付き空気調和機の第1の実施例について、図面を参照しながら以下に説明する。図1は、本実施例の除霜機能付き空気調和機の構成図である。
空気調和機は、室外空気熱交換器である室外機10、室内空気熱交換器である室内機30、及び室外機10と室内機30とを循環する冷媒循環通路1より構成される。
室外機10は、圧縮機13A、Bを駆動するためのガスエンジン11と、ガス状の冷媒と液状の冷媒とを分離した状態で冷媒を収納するアキュムレータ12と、空調のために冷媒の熱交換を行う室外熱交換器14とを有している。ガスエンジン11には、発電機である同期モータ52が接続されている。室外機10には、排熱回収器24が並列に配置されている。室外機10の入口には、第1流量調整弁である室外機弁25が設けられている。排熱回収器24の入口には、第2流量調整弁である排熱回収器弁26が設けられている。
室内機30は、室内空気と冷媒とで熱交換を行う室内熱交換器31と、冷媒を膨張させる膨張弁32とを有している。
圧縮機13は、ガス状の冷媒を吸い込み、高圧のガス状の冷媒を吐出する。室外機10と室外機弁25との間の配管に、圧縮機13の出口からのバイパス配管28が接続している。バイパス配管28の途中には、バイパス流量調整弁29が設けられている。
Next, the 1st Example of the air conditioner with a defrost function which concerns on this invention is described below, referring drawings. FIG. 1 is a configuration diagram of an air conditioner with a defrosting function of the present embodiment.
The air conditioner includes an outdoor unit 10 that is an outdoor air heat exchanger, an indoor unit 30 that is an indoor air heat exchanger, and a refrigerant circulation passage 1 that circulates between the outdoor unit 10 and the indoor unit 30.
The outdoor unit 10 includes a gas engine 11 for driving the compressors 13A and 13B, an accumulator 12 that stores the refrigerant in a state where the gaseous refrigerant and the liquid refrigerant are separated, and heat exchange of the refrigerant for air conditioning. It has the outdoor heat exchanger 14 which performs. A synchronous motor 52 that is a generator is connected to the gas engine 11. In the outdoor unit 10, an exhaust heat recovery device 24 is arranged in parallel. An outdoor unit valve 25 that is a first flow rate adjusting valve is provided at the inlet of the outdoor unit 10. An exhaust heat recovery valve 26 that is a second flow rate adjustment valve is provided at the inlet of the exhaust heat recovery device 24.
The indoor unit 30 includes an indoor heat exchanger 31 that performs heat exchange between indoor air and a refrigerant, and an expansion valve 32 that expands the refrigerant.
The compressor 13 sucks gaseous refrigerant and discharges high-pressure gaseous refrigerant. A bypass pipe 28 from the outlet of the compressor 13 is connected to the pipe between the outdoor unit 10 and the outdoor unit valve 25. A bypass flow rate adjustment valve 29 is provided in the middle of the bypass pipe 28.

次に、室内を冷房するときの作用を説明する。燃料ガスによりガスエンジン11を駆動し、圧縮機13A、13Bを駆動する。圧縮機13A、13Bは、アキュムレータ12のガス状の冷媒を吸引し圧縮し、高温高圧状態のガスとして吐出する。吐出されたガス状の冷媒は、オイルセパレータ19において、冷媒からオイルが分離される。オイルが分離された冷媒は、四方弁17により室外熱交換器14に流入する。
高温高圧のガス状冷媒は、室外熱交換器14で冷却され液化する。液化された冷媒は、フィルタドライヤ22、ボール弁23、ストレーナ31nを経由して、膨張弁32において膨張され低温となる。
低温となった冷媒は、ストレーナ31mを経て室内熱交換器31に至り、室内空気を冷却した後、アキュムレータ12に戻される。冷媒は、アキュムレータ12において、液状の冷媒とガス状の冷媒とに分離された状態で収納される。
Next, the operation when the room is cooled will be described. The gas engine 11 is driven by the fuel gas, and the compressors 13A and 13B are driven. The compressors 13A and 13B suck and compress the gaseous refrigerant of the accumulator 12 and discharge it as a high-temperature and high-pressure gas. The discharged gaseous refrigerant is separated from the refrigerant in the oil separator 19. The refrigerant from which the oil has been separated flows into the outdoor heat exchanger 14 through the four-way valve 17.
The high-temperature and high-pressure gaseous refrigerant is cooled and liquefied by the outdoor heat exchanger 14. The liquefied refrigerant is expanded in the expansion valve 32 via the filter dryer 22, the ball valve 23, and the strainer 31n, and becomes a low temperature.
The low-temperature refrigerant reaches the indoor heat exchanger 31 through the strainer 31m, cools the indoor air, and then returns to the accumulator 12. The refrigerant is stored in the accumulator 12 in a state of being separated into a liquid refrigerant and a gaseous refrigerant.

次に、室内を暖房するときの作用を説明する。燃料ガスによりガスエンジン11を駆動し、圧縮機13A、13Bを駆動する。圧縮機13A、13Bは、アキュムレータ12のガス状の冷媒を吸引し圧縮し、高温高圧状態のガスとして吐出する。吐出されたガス状の冷媒は、オイルセパレータ19において、冷媒からオイルが分離される。オイルが分離された冷媒は、四方弁17により室内熱交換器31に流入する。高温高圧の冷媒は、室内熱交換器17で室内空気を加熱する。
次に冷媒は、ストレーナ31mを経て膨張弁32で膨張され、ボール弁23,フィルタドライヤ22を経て、室外熱交換器14に至る。そして、四方弁17を経てアキュムレータ12に戻る。
Next, the operation when the room is heated will be described. The gas engine 11 is driven by the fuel gas, and the compressors 13A and 13B are driven. The compressors 13A and 13B suck and compress the gaseous refrigerant of the accumulator 12 and discharge it as a high-temperature and high-pressure gas. The discharged gaseous refrigerant is separated from the refrigerant in the oil separator 19. The refrigerant from which the oil has been separated flows into the indoor heat exchanger 31 through the four-way valve 17. The high-temperature and high-pressure refrigerant heats indoor air in the indoor heat exchanger 17.
Next, the refrigerant is expanded by the expansion valve 32 through the strainer 31m, and reaches the outdoor heat exchanger 14 through the ball valve 23 and the filter dryer 22. Then, it returns to the accumulator 12 through the four-way valve 17.

本発明の特徴である除霜機能について説明する。除霜機能に関係する機器を図2及び図3に示す。一部繰り返しになるが、各機器の作用を説明する。室内暖房時において、圧縮機13から吐出される高温高圧ガス冷媒は、四方切替弁17によって、室内機31に導かれ、室内機31内で室内の空気と熱交換により放熱し、高圧中温の液冷媒となる。液冷媒は、室内機31の膨張弁32で減圧され、中圧中温となり、その後、分流され、並列に配置された室外機14の流量調整弁である室外機弁25、及び排熱回収器24の流量調整弁である排熱回収器弁26でさらに減圧され、低圧低温の気液二相状態となる。室外熱交換器14と排熱交換器24とで、熱交換により吸熱し、低圧低温のガス状態となる。次に、圧縮機13に吸い込まれてサイクルを繰り返す。
一方、圧縮機13の高圧高温ガス冷媒は、バイパス流量調整弁29とバイパス配管28とを介して室外機14と室外機弁25との間に接続されている。
The defrosting function that is a feature of the present invention will be described. Devices related to the defrosting function are shown in FIGS. Although it repeats in part, the operation of each device will be explained. During indoor heating, the high-temperature and high-pressure gas refrigerant discharged from the compressor 13 is guided to the indoor unit 31 by the four-way switching valve 17, and dissipates heat by exchanging heat with indoor air in the indoor unit 31. Becomes a refrigerant. The liquid refrigerant is depressurized by the expansion valve 32 of the indoor unit 31 to become an intermediate pressure and intermediate temperature, and then is divided and the outdoor unit valve 25 that is a flow rate adjusting valve of the outdoor unit 14 arranged in parallel, and the exhaust heat recovery unit 24. The exhaust heat recovery valve 26, which is a flow rate adjustment valve, is further depressurized to enter a low-pressure low-temperature gas-liquid two-phase state. The outdoor heat exchanger 14 and the exhaust heat exchanger 24 absorb heat by heat exchange and become a low-pressure and low-temperature gas state. Next, it is sucked into the compressor 13 and the cycle is repeated.
On the other hand, the high-pressure high-temperature gas refrigerant of the compressor 13 is connected between the outdoor unit 14 and the outdoor unit valve 25 via a bypass flow rate adjustment valve 29 and a bypass pipe 28.

次に、除霜作用について説明する。図3に除霜作用を行っているときのシステムの状態を示す。図4に除霜作用を行うためのシステムの構成を示す。
制御装置40は、CPU41,RAM42,ROM43を有している。ROM43には、除霜運転プログラム431、圧縮機入口過熱度算出プログラム432が記憶されている。
制御装置40には、室外機14を出た冷媒の温度を測定するための出口冷媒温度センサ44,外気温度を測定するための外気温度センサ45,室内温度を測定するための室内温度センサ46が接続している。また、制御装置40には、室外機弁25の開度調整を行う流量制御手段25A、排熱交換器弁26の開度調整を行う流量制御手段26A、バイパス流量調整弁29の開度調整を行う流量制御手段29A、室内膨張弁32が接続されている。
Next, the defrosting action will be described. FIG. 3 shows the state of the system when performing the defrosting action. FIG. 4 shows the configuration of a system for performing the defrosting action.
The control device 40 has a CPU 41, a RAM 42, and a ROM 43. The ROM 43 stores a defrosting operation program 431 and a compressor inlet superheat degree calculation program 432.
The control device 40 includes an outlet refrigerant temperature sensor 44 for measuring the temperature of the refrigerant that has exited the outdoor unit 14, an outdoor temperature sensor 45 for measuring the outdoor temperature, and an indoor temperature sensor 46 for measuring the indoor temperature. Connected. Further, the control device 40 adjusts the opening degree of the flow rate control means 25A for adjusting the opening degree of the outdoor unit valve 25, the flow rate control means 26A for adjusting the opening degree of the exhaust heat exchanger valve 26, and the opening degree of the bypass flow rate adjusting valve 29. The flow control means 29A to perform and the indoor expansion valve 32 are connected.

次に、除霜運転プログラム431について説明する。図5乃至7に除霜運転プログラム431の第1の実施例を示す。除霜信号がオンした場合の制御を以下に示す。以下、各所定温度の関係を T1<T2<T3<T4<T5<T6 とする。また、除霜運転プログラムは、室外機14の出口冷媒温度が摂氏−3度〜−2度以下で、外気温度−蒸発温度=温度差が、7〜8度以上あるときに、除霜信号を出すプログラムも備えている。
除霜信号がオンすると、排熱回収器弁26を除霜時初期開度(通常時よりも大きい開度)とし(S12)、バイパス流路調整弁29を除霜時初期開度(標準的な除霜能力が得られる開度)とし(S21)、室外機弁25を除霜時初期開度(閉じた状態)とする(S31)。
除霜信号がオンの場合(S13;YES)、圧縮機吸入過熱度Tを圧縮機入口過熱度算出プログラム432により求める。圧縮機入口過熱度算出プログラム432の詳細な説明は割愛するが、過熱度Tは、測定した圧縮機入口温度と圧力から、蒸気圧線図を用いて過熱度を求めたものである。
過熱度Tが所定値T1より小さい場合(S14;YES)、排熱回収器弁26の開度を減少させる(S17)。過熱度Tが所定値T1以上になるまで、排熱回収器弁26の開度を減少させる(S18)。
過熱度Tが所定値T1より小さくない場合(S14;NO)、かつ過熱度Tが所定値T2以上の場合(S15;YES)、排熱回収器弁26の開度を増加させる(S19)。過熱度Tが所定値T2未満になるまで、排熱回収器弁26の開度を増加させる(S20)。
Next, the defrosting operation program 431 will be described. 5 to 7 show a first embodiment of the defrosting operation program 431. FIG. Control when the defrost signal is turned on is shown below. Hereinafter, the relationship between the predetermined temperatures is T1 <T2 <T3 <T4 <T5 <T6. Further, the defrosting operation program outputs a defrost signal when the outlet refrigerant temperature of the outdoor unit 14 is −3 to −2 degrees Celsius and the outside air temperature−evaporation temperature = temperature difference is 7 to 8 degrees or more. There is also a program to issue.
When the defrost signal is turned on, the exhaust heat recovery valve 26 is set to the initial opening during defrosting (a larger opening than normal) (S12), and the bypass flow regulating valve 29 is set to the initial opening during defrosting (standard). The degree of opening of the outdoor unit valve 25 is set to the initial opening degree (closed state) during defrosting (S31).
When the defrost signal is ON (S13; YES), the compressor intake superheat degree T is obtained by the compressor inlet superheat degree calculation program 432. Although a detailed description of the compressor inlet superheat degree calculation program 432 is omitted, the superheat degree T is obtained from the measured compressor inlet temperature and pressure using a vapor pressure diagram.
When the superheat degree T is smaller than the predetermined value T1 (S14; YES), the opening degree of the exhaust heat recovery valve 26 is decreased (S17). The opening degree of the exhaust heat recovery valve 26 is decreased until the degree of superheat T becomes equal to or greater than the predetermined value T1 (S18).
When the superheat degree T is not smaller than the predetermined value T1 (S14; NO) and when the superheat degree T is equal to or greater than the predetermined value T2 (S15; YES), the opening degree of the exhaust heat recovery valve 26 is increased (S19). The degree of opening of the exhaust heat recovery valve 26 is increased until the degree of superheat T is less than the predetermined value T2 (S20).

また、排熱回収器弁26が最大開度となり、かつ過熱度Tが所定温度T4以上の場合、(S23;YES)、バイパス流量調整弁29の開度を増加させる(S26)。過熱度Tが所定値T4未満になるまで、バイパス流量調整弁29の開度を増加させる(S27)。
過熱度Tが所定値T4より大きくない場合(S23;NO)、かつ過熱度Tが所定値T3未満の場合(S24;YES)、バイパス流量調整弁29の開度を減少させる(S28)。過熱度Tが所定値T3以上になるまで、バイパス流量調整弁29の開度を減少させる(S29)。
また、排熱回収器弁26及びバイパス流量調整弁29が最大開度となり、かつ過熱度Tが所定温度T6以上の場合、(S33;YES)、室外機弁25の開度を増加させる(S36)。過熱度Tが所定値T6未満になるまで、室外機弁25の開度を増加させる(S37)。
過熱度Tが所定値T6より小さい場合(S33;NO)、かつ過熱度Tが所定値T5未満の場合(S34;YES)、室外機弁25の開度を減少させる(S38)。過熱度Tが所定値T5以上になるまで、室外機弁25の開度を減少させる(S39)。
また、除霜信号がオフになると(S13;NO,S22;NO,S32;NO)、通常運転制御に戻る(S16,S25,S35)。
Further, when the exhaust heat recovery valve 26 has the maximum opening and the superheat degree T is equal to or higher than the predetermined temperature T4 (S23; YES), the opening of the bypass flow rate adjustment valve 29 is increased (S26). The opening degree of the bypass flow rate adjustment valve 29 is increased until the degree of superheat T is less than the predetermined value T4 (S27).
When the superheat degree T is not larger than the predetermined value T4 (S23; NO) and when the superheat degree T is less than the predetermined value T3 (S24; YES), the opening degree of the bypass flow rate adjustment valve 29 is decreased (S28). The opening degree of the bypass flow rate adjustment valve 29 is decreased until the degree of superheat T becomes equal to or greater than the predetermined value T3 (S29).
When the exhaust heat recovery valve 26 and the bypass flow rate adjustment valve 29 are at the maximum opening and the superheat degree T is equal to or higher than the predetermined temperature T6 (S33; YES), the opening of the outdoor unit valve 25 is increased (S36). ). The opening degree of the outdoor unit valve 25 is increased until the degree of superheat T is less than the predetermined value T6 (S37).
When the superheat degree T is smaller than the predetermined value T6 (S33; NO) and when the superheat degree T is less than the predetermined value T5 (S34; YES), the opening degree of the outdoor unit valve 25 is decreased (S38). The degree of opening of the outdoor unit valve 25 is decreased until the degree of superheat T becomes equal to or greater than the predetermined value T5 (S39).
When the defrost signal is turned off (S13; NO, S22; NO, S32; NO), the operation returns to the normal operation control (S16, S25, S35).

上記除霜運転プログラムの作用・効果を説明する。
暖房運転しながら、室外空気熱交換器を除霜するために、バイパス回路のバイパス流量調整弁29を除霜時初期開度に開いて、圧縮機13の高温高圧ガスの吐出冷媒を室外機弁25から室外機14の間の配管に導く。ここで、室内機31から室外機14へ流入する液冷媒により、除霜の熱源である、デフロスト回路の高温高圧ガスの熱量を低下させないため、室外機14の入口の膨張弁である室外機弁25を全閉又は開度を小さく絞って、流量調整する。これにより、圧縮機13を出て室外機14に流入される高温高圧冷媒は、自身の持つ熱量を放熱することにより、室外機14を除霜すると共に、液化され、排熱回収器24の出口で冷媒と合流する。
The operation and effect of the defrosting operation program will be described.
In order to defrost the outdoor air heat exchanger during heating operation, the bypass flow rate adjustment valve 29 of the bypass circuit is opened to the initial opening during defrosting, and the refrigerant discharged from the high-temperature and high-pressure gas of the compressor 13 is discharged to the outdoor unit valve. 25 to the pipe between the outdoor unit 14. Here, the liquid refrigerant flowing from the indoor unit 31 to the outdoor unit 14 does not reduce the amount of heat of the high-temperature and high-pressure gas in the defrost circuit, which is a heat source for defrosting, so the outdoor unit valve that is an expansion valve at the inlet of the outdoor unit 14 Adjust the flow rate by fully closing 25 or narrowing the opening degree small. As a result, the high-temperature and high-pressure refrigerant that flows out of the compressor 13 and flows into the outdoor unit 14 defrosts the outdoor unit 14 by dissipating the amount of heat of its own, and is liquefied, and the outlet of the exhaust heat recovery unit 24 It merges with the refrigerant.

一方、排熱回収器24の出口における冷媒が、除霜のために室外機14内で液化した冷媒を蒸発させるための熱量(過熱度)を持つように、すなわち、圧縮機13へ吸入される冷媒の過熱度に応じて、排熱回収器弁26の開度を調整する。これにより、室外機14からの液冷媒と排熱回収器24からの過熱蒸気冷媒が合流、熱交換することにより、圧縮機13へ吸入される冷媒が、飽和ガスに近い状態となり、圧縮機13の液圧縮運転を防止することができる。
このとき、排熱回収器24での排熱回収量が多い場合には、排熱回収器弁26を開いて過熱度を下げている。
さらに、排熱回収器弁26の開度が最大となったときには、室外機14に流れる冷媒の流量を増加させる余地があるため、圧縮機13へ吸入される冷媒の過熱度に応じてバイパス流量調整弁29の開度を開いて、除霜能力を高める。
さらに、バイパス流量調整弁29の開度も最大となったときには、室外機14に流れる冷媒の流量を増加させる余地があるため、圧縮機13へ吸入される冷媒の過熱度に応じて室外機弁25の開度を開いて、冷凍サイクル全体の冷媒流量を増加させ、除霜能力を高める。
On the other hand, the refrigerant at the outlet of the exhaust heat recovery unit 24 is sucked into the compressor 13 so as to have a heat amount (superheat degree) for evaporating the refrigerant liquefied in the outdoor unit 14 for defrosting. The opening degree of the exhaust heat recovery valve 26 is adjusted according to the degree of superheat of the refrigerant. Thereby, the liquid refrigerant from the outdoor unit 14 and the superheated vapor refrigerant from the exhaust heat recovery unit 24 merge and exchange heat, whereby the refrigerant sucked into the compressor 13 becomes close to saturated gas, and the compressor 13 The liquid compression operation can be prevented.
At this time, if the amount of exhaust heat recovered by the exhaust heat recovery unit 24 is large, the exhaust heat recovery unit valve 26 is opened to lower the degree of superheat.
Furthermore, when the opening degree of the exhaust heat recovery valve 26 becomes the maximum, there is room for increasing the flow rate of the refrigerant flowing through the outdoor unit 14, and therefore, the bypass flow rate according to the degree of superheat of the refrigerant sucked into the compressor 13. The opening degree of the regulating valve 29 is opened to increase the defrosting capacity.
Further, when the opening degree of the bypass flow rate adjustment valve 29 is also maximized, there is room for increasing the flow rate of the refrigerant flowing through the outdoor unit 14, and therefore the outdoor unit valve according to the degree of superheat of the refrigerant sucked into the compressor 13. The opening of 25 is opened, the refrigerant | coolant flow rate of the whole refrigerating cycle is increased, and defrosting capability is improved.

以上詳細に説明したように、本実施例の除霜機能付き空気調和機によれば、室外機14と排熱回収器24とを並列に配置し、室外機14の入口側に室外機弁25を、排熱回収器の入口側に排熱回収器弁26を設け、圧縮機13の吐出側と室外機14の入口とをバイパス開閉弁を介して接続した冷媒回路を有する除霜機能付き空気調和機において、バイパス開閉弁がバイパス流量調整弁29であると共に、除霜信号を受けて圧縮機吸入過熱度に応じて排熱回収器弁26の開度を調整する除霜運転プログラム431とを有するので、室外機14からの液冷媒と排熱回収器24からの過熱蒸気冷媒が合流、熱交換することにより、圧縮機13へ吸入される冷媒が、飽和ガスに近い状態となり、圧縮機13の液圧縮運転を防止することができる。   As described in detail above, according to the air conditioner with a defrosting function of the present embodiment, the outdoor unit 14 and the exhaust heat recovery unit 24 are arranged in parallel, and the outdoor unit valve 25 is provided on the inlet side of the outdoor unit 14. Is provided with a waste heat recovery valve 26 on the inlet side of the exhaust heat recovery device, and has a defrosting function air having a refrigerant circuit in which the discharge side of the compressor 13 and the inlet of the outdoor unit 14 are connected via a bypass opening / closing valve. In the conditioner, the bypass opening / closing valve is the bypass flow rate adjustment valve 29, and a defrosting operation program 431 that receives the defrosting signal and adjusts the opening degree of the exhaust heat recovery valve 26 according to the compressor suction superheat degree. Therefore, when the liquid refrigerant from the outdoor unit 14 and the superheated vapor refrigerant from the exhaust heat recovery unit 24 merge and exchange heat, the refrigerant sucked into the compressor 13 becomes close to saturated gas, and the compressor 13 The liquid compression operation can be prevented.

また、排熱回収器弁26が全開のとき、除霜運転プログラム431が、バイパス流量調整弁29の開度を開いて調整するので、圧縮機13へ吸入される冷媒の過熱度に応じてバイパス流量調整弁29の開度を開いて、除霜能力を高める。
さらに、バイパス流量調整弁29が全開のとき、除霜運転プログラム431が、室外機弁25の開度を開いて調整するので、圧縮機へ吸入される冷媒の過熱度に応じて室外機弁25の開度を開いて、冷凍サイクル全体の冷媒流量を増加させ、除霜能力を高める。
Further, when the exhaust heat recovery valve 26 is fully open, the defrosting operation program 431 opens and adjusts the opening of the bypass flow rate adjustment valve 29, so that the bypass is made according to the degree of superheat of the refrigerant sucked into the compressor 13. The opening degree of the flow control valve 29 is opened to increase the defrosting capacity.
Further, when the bypass flow rate adjustment valve 29 is fully open, the defrosting operation program 431 opens and adjusts the opening degree of the outdoor unit valve 25, so that the outdoor unit valve 25 corresponds to the degree of superheat of the refrigerant sucked into the compressor. To increase the refrigerant flow rate of the entire refrigeration cycle and increase the defrosting capacity.

次に、除霜運転プログラムの第2の実施例を図8乃至10に示す。第2実施例では、バイパス流量調整弁29を単純な開閉弁とし、室内膨張弁に室内出口流量調整弁である室内膨張弁32を用いている。
排熱回収器弁26を除霜時初期開度(通常時よりも大きい開度)とし(S42)、バイパス流路調整弁29を開とし(S51)、室外機弁25を除霜時初期開度(閉じた状態)とする(S61)。
除霜信号がオンの場合(S43;YES)、圧縮機吸入過熱度Tを圧縮機入口過熱度算出プログラム432により求める。
過熱度Tが所定値T1より小さい場合(S44;YES)、排熱回収器弁26の開度を減少させる(S47)。過熱度Tが所定値T1以上になるまで、排熱回収器弁26の開度を減少させる(S48)。
過熱度Tが所定値T1より小さくない場合(S44;NO)、かつ過熱度Tが所定値T2以上の場合(S45;YES)、排熱回収器弁26の開度を増加させる(S49)。過熱度Tが所定値T2未満になるまで、排熱回収器弁26の開度を増加させる(S50)。
Next, a second embodiment of the defrosting operation program is shown in FIGS. In the second embodiment, the bypass flow rate adjustment valve 29 is a simple on-off valve, and the indoor expansion valve 32 that is the indoor outlet flow rate adjustment valve is used as the indoor expansion valve.
The exhaust heat recovery valve 26 is set to an initial opening during defrosting (a larger opening than normal) (S42), the bypass flow path adjustment valve 29 is opened (S51), and the outdoor unit valve 25 is initially opened during defrosting. Degree (closed state) (S61).
When the defrost signal is ON (S43; YES), the compressor intake superheat degree T is obtained by the compressor inlet superheat degree calculation program 432.
When the superheat degree T is smaller than the predetermined value T1 (S44; YES), the opening degree of the exhaust heat recovery valve 26 is decreased (S47). The degree of opening of the exhaust heat recovery valve 26 is decreased until the degree of superheat T becomes equal to or greater than the predetermined value T1 (S48).
When the superheat degree T is not smaller than the predetermined value T1 (S44; NO), and when the superheat degree T is equal to or greater than the predetermined value T2 (S45; YES), the opening degree of the exhaust heat recovery valve 26 is increased (S49). The degree of opening of the exhaust heat recovery valve 26 is increased until the degree of superheat T is less than the predetermined value T2 (S50).

また、排熱回収器弁26が最大開度となり、かつ過熱度Tが所定温度T4より小さい場合、(S53;YES)、室内膨張弁32の開度を減少させる(S56)。過熱度Tが所定値T4未満になるまで、室内膨張弁32の開度を減少させる(S57)。
過熱度Tが所定値T4より大きくない場合(S53;NO)、かつ過熱度Tが所定値T3未満の場合(S54;YES)、室内膨張弁32の開度を増加させる(S58)。過熱度Tが所定値T3以上になるまで、室内膨張弁32の開度を増加させる(S59)。
また、排熱回収器弁26が最大開度で室内膨張弁32が最低開度となり、かつ過熱度Tが所定温度T6以上の場合、(S63;YES)、室外機弁25の開度を増加させる(S66)。過熱度Tが所定値T6未満になるまで、室外機弁25の開度を増加させる(S67)。
過熱度Tが所定値T6より小さい場合(S63;NO)、かつ過熱度Tが所定値T5未満の場合(S64;YES)、室外機弁25の開度を減少させる(S68)。過熱度Tが所定値T5以上になるまで、室外機弁25の開度を減少させる(S69)。
また、除霜信号がオフになると(S43;NO,S52;NO,S62;NO)、通常運転制御に戻る(S46,S55,S65)。
If the exhaust heat recovery valve 26 has the maximum opening and the superheat degree T is smaller than the predetermined temperature T4 (S53; YES), the opening of the indoor expansion valve 32 is decreased (S56). The opening degree of the indoor expansion valve 32 is decreased until the degree of superheat T becomes less than the predetermined value T4 (S57).
When the superheat degree T is not larger than the predetermined value T4 (S53; NO) and when the superheat degree T is less than the predetermined value T3 (S54; YES), the opening degree of the indoor expansion valve 32 is increased (S58). The opening degree of the indoor expansion valve 32 is increased until the degree of superheat T becomes equal to or greater than the predetermined value T3 (S59).
Further, when the exhaust heat recovery valve 26 is at the maximum opening, the indoor expansion valve 32 is at the minimum opening, and the superheat T is equal to or higher than the predetermined temperature T6 (S63; YES), the opening of the outdoor unit valve 25 is increased. (S66). The degree of opening of the outdoor unit valve 25 is increased until the degree of superheat T is less than the predetermined value T6 (S67).
When the superheat degree T is smaller than the predetermined value T6 (S63; NO) and when the superheat degree T is less than the predetermined value T5 (S64; YES), the opening degree of the outdoor unit valve 25 is decreased (S68). The opening degree of the outdoor unit valve 25 is decreased until the degree of superheat T becomes equal to or greater than the predetermined value T5 (S69).
When the defrost signal is turned off (S43; NO, S52; NO, S62; NO), the operation returns to the normal operation control (S46, S55, S65).

暖房運転しながら、室外機14を除霜するために、バイパス回路のバイパス開閉弁29を開いて、圧縮機13の高温高圧ガスの吐出冷媒を室外機弁25から室外機14の間の配管に導く。ここで、、室内機31から室外機14へ流入する液冷媒により、除霜の熱源である、デフロスト回路の高温高圧ガスの熱量を低下させないため、室外機14の入口の膨張機構である室外機弁25を全閉又は開度を小さく絞って、流量調整する。これにより、圧縮機13を出て室外機14に流入される高温高圧冷媒は、自身の持つ熱量を放熱することにより、室外機14を除霜すると共に、液化され、排熱回収器24の出口で冷媒と合流する。   In order to defrost the outdoor unit 14 during the heating operation, the bypass on-off valve 29 of the bypass circuit is opened, and the refrigerant discharged from the high-temperature and high-pressure gas of the compressor 13 is connected to the pipe between the outdoor unit valve 25 and the outdoor unit 14. Lead. Here, the liquid refrigerant flowing from the indoor unit 31 to the outdoor unit 14 does not reduce the amount of heat of the high-temperature and high-pressure gas in the defrost circuit, which is a heat source for defrosting. The valve 25 is fully closed or the flow amount is adjusted by reducing the opening degree. As a result, the high-temperature and high-pressure refrigerant that flows out of the compressor 13 and flows into the outdoor unit 14 defrosts the outdoor unit 14 by dissipating the amount of heat of its own, and is liquefied, and the outlet of the exhaust heat recovery unit 24 It merges with the refrigerant.

一方、排熱回収器14の出口における冷媒が、除霜のために室外機14内で液化した冷媒を蒸発させるための熱量(過熱度)を持つように、すなわち、圧縮機13へ吸入される冷媒の過熱度に応じて、排熱回収器弁26の開度を調整する。これにより、室外機14からの液冷媒と排熱回収器24からの過熱蒸気冷媒が合流、熱交換することにより、圧縮機13へ吸入される冷媒が、飽和ガスに近い状態となり、圧縮機13の液圧縮運転を防止することができる。
このとき、排熱回収器24での排熱回収量が多い場合には、排熱回収器弁26を開いて過熱度を下げている。
さらに、排熱回収器弁26の開度が最大となったときには、室外空気熱交換器に流れる冷媒の流量を増加させる余地があるため、圧縮機13へ吸入される冷媒の過熱度に応じて室内膨張弁32の開度を絞ることにより、バイパス開閉弁29の流量を増加させ、除霜能力を高める。
さらに、室内膨張弁32の開度が最低開度となったときには、室外機14に流れる冷媒の流量を増加させる余地があるため、圧縮機13へ吸入される冷媒の過熱度に応じて室外機弁25の開度を開いて、冷凍サイクル全体の冷媒流量を増加させ、除霜能力を高める。
On the other hand, the refrigerant at the outlet of the exhaust heat recovery device 14 is sucked into the compressor 13 so as to have a heat quantity (superheat degree) for evaporating the refrigerant liquefied in the outdoor unit 14 for defrosting. The opening degree of the exhaust heat recovery valve 26 is adjusted according to the degree of superheat of the refrigerant. Thereby, the liquid refrigerant from the outdoor unit 14 and the superheated vapor refrigerant from the exhaust heat recovery unit 24 merge and exchange heat, whereby the refrigerant sucked into the compressor 13 becomes close to saturated gas, and the compressor 13 The liquid compression operation can be prevented.
At this time, if the amount of exhaust heat recovered by the exhaust heat recovery unit 24 is large, the exhaust heat recovery unit valve 26 is opened to lower the degree of superheat.
Furthermore, when the opening degree of the exhaust heat recovery valve 26 reaches the maximum, there is room for increasing the flow rate of the refrigerant flowing through the outdoor air heat exchanger, so that it depends on the degree of superheat of the refrigerant sucked into the compressor 13. By restricting the opening degree of the indoor expansion valve 32, the flow rate of the bypass opening / closing valve 29 is increased and the defrosting capability is enhanced.
Furthermore, when the opening degree of the indoor expansion valve 32 reaches the minimum opening degree, there is room for increasing the flow rate of the refrigerant flowing through the outdoor unit 14, so that the outdoor unit depends on the degree of superheat of the refrigerant sucked into the compressor 13. The opening degree of the valve 25 is opened to increase the refrigerant flow rate of the entire refrigeration cycle, thereby increasing the defrosting capacity.

以上詳細に説明したように、第2の実施例の除霜機能付き空気調和機によれば、室外機14と排熱回収器24とを並列に配置し、室外機14の入口側に室外機弁25を、排熱回収器の入口側に排熱回収器弁26を設け、圧縮機13の吐出側と室外機14の入口とをバイパス開閉弁を介して接続した冷媒回路を有する除霜機能付き空気調和機において、室内機31の出口に室内膨張弁32が設けられると共に、除霜信号を受けて圧縮機吸入過熱度に応じて排熱回収器弁26の開度を調整する除霜運転プログラムを有するので、室外空気熱交換器からの液冷媒と排熱回収器からの過熱蒸気冷媒が合流、熱交換することにより、圧縮機13へ吸入される冷媒が、飽和ガスに近い状態となり、圧縮機13の液圧縮運転を防止することができる。   As described above in detail, according to the air conditioner with a defrosting function of the second embodiment, the outdoor unit 14 and the exhaust heat recovery unit 24 are arranged in parallel, and the outdoor unit is disposed on the inlet side of the outdoor unit 14. A defrosting function having a refrigerant circuit in which an exhaust heat recovery valve 26 is provided on the inlet side of the exhaust heat recovery device and the discharge side of the compressor 13 and the inlet of the outdoor unit 14 are connected via a bypass opening / closing valve. In the attached air conditioner, an indoor expansion valve 32 is provided at the outlet of the indoor unit 31, and a defrosting operation is performed in which the defrost signal is received and the opening degree of the exhaust heat recovery valve 26 is adjusted according to the compressor suction superheat degree. Since the program has the liquid refrigerant from the outdoor air heat exchanger and the superheated steam refrigerant from the exhaust heat recovery unit merge and exchange heat, the refrigerant sucked into the compressor 13 becomes close to saturated gas, The liquid compression operation of the compressor 13 can be prevented.

また、排熱回収器弁26が全開のとき、除霜運転プログラム431が、室内膨張弁32の開度を絞って調整するので、圧縮機13へ吸入される冷媒の過熱度に応じて室内膨張弁32の開度を絞ることにより、バイパス流量調整弁の流量を増加させ、除霜能力を高める。
さらに、室内膨張弁32の開度が最低開度となったときには、室外機14に流れる冷媒の流量を増加させる余地があるため、圧縮機13へ吸入される冷媒の過熱度に応じて室外機弁25の開度を開いて、冷凍サイクル全体の冷媒流量を増加させ、除霜能力を高める。
Further, when the exhaust heat recovery valve 26 is fully opened, the defrosting operation program 431 adjusts by narrowing the opening of the indoor expansion valve 32, so that the indoor expansion is performed according to the degree of superheat of the refrigerant sucked into the compressor 13. By restricting the opening degree of the valve 32, the flow rate of the bypass flow rate adjustment valve is increased and the defrosting capability is enhanced.
Furthermore, when the opening degree of the indoor expansion valve 32 reaches the minimum opening degree, there is room for increasing the flow rate of the refrigerant flowing through the outdoor unit 14, so that the outdoor unit depends on the degree of superheat of the refrigerant sucked into the compressor 13. The opening degree of the valve 25 is opened to increase the refrigerant flow rate of the entire refrigeration cycle, thereby increasing the defrosting capacity.

以上、本発明に係るガスハートポンプ式空気調和装置の一実施例について説明したが、本発明はこれに限定されることなくその趣旨を逸脱しない範囲で様々な変更が可能である。
例えば、第1実施例では、室内膨張弁32を開閉弁とし、バイパス流量調整弁29を流量調整弁としており、第2実施例では、室内膨張弁32を流量調整弁とし、バイパス流量調整弁29を開閉弁としているが、室内膨張弁32とパイパス流量調整弁29の両方を共に流量調整弁としても良い。
また、本実施例では、ガスヒートポンプ式の空気調和機について説明したが、EHPについても、外部熱源を用いれば、本発明を実施できる。
As mentioned above, although one Example of the gas heart pump type air conditioning apparatus concerning this invention was described, this invention is not limited to this, A various change is possible in the range which does not deviate from the meaning.
For example, in the first embodiment, the indoor expansion valve 32 is an on-off valve and the bypass flow rate adjustment valve 29 is a flow rate adjustment valve. In the second embodiment, the indoor expansion valve 32 is a flow rate adjustment valve and the bypass flow rate adjustment valve 29 is used. However, both the indoor expansion valve 32 and the bypass flow rate adjustment valve 29 may be used as flow rate adjustment valves.
Moreover, although the present Example demonstrated the gas heat pump type air conditioner, if EHP is used, this invention can be implemented if an external heat source is used.

除霜機能付き空気調和機の構成図である。It is a block diagram of the air conditioner with a defrost function. 暖房運転時のシステムの状態を示す図である。It is a figure which shows the state of the system at the time of heating operation. 除霜運転時のシステムの状態を示す図である。It is a figure which shows the state of the system at the time of a defrost operation. 制御の構成を示すブロック図である。It is a block diagram which shows the structure of control. 第1実施例の除霜運転プログラムを示す第1フローチャートである。It is a 1st flowchart which shows the defrost operation program of 1st Example. 第1実施例の除霜運転プログラムを示す第2フローチャートである。It is a 2nd flowchart which shows the defrost operation program of 1st Example. 第1実施例の除霜運転プログラムを示す第3フローチャートである。It is a 3rd flowchart which shows the defrost operation program of 1st Example. 第2実施例の除霜運転プログラムを示す第4フローチャートである。It is a 4th flowchart which shows the defrost operation program of 2nd Example. 第2実施例の除霜運転プログラムを示す第5フローチャートである。It is a 5th flowchart which shows the defrost operation program of 2nd Example. 第2実施例の除霜運転プログラムを示す第6フローチャートである。It is a 6th flowchart which shows the defrost operation program of 2nd Example.

符号の説明Explanation of symbols

11 ガスエンジン
13 圧縮機
14 室外機
24 排熱回収器
25 室外機弁
26 排熱回収器弁
28 バイパス配管
29 バイパス流量調整弁
31 室内機
32 室内膨張弁
431 除霜運転プログラム
DESCRIPTION OF SYMBOLS 11 Gas engine 13 Compressor 14 Outdoor unit 24 Exhaust heat recovery device 25 Outdoor unit valve 26 Exhaust heat recovery device valve 28 Bypass piping 29 Bypass flow control valve 31 Indoor unit 32 Indoor expansion valve 431 Defrosting operation program

Claims (2)

室外空気熱交換器と排熱回収器とを並列に配置し、前記室外空気熱交換器の入口側に第1流量調整弁を、前記排熱回収器の入口側に第2流量調整弁を設け、圧縮機の吐出側と前記室外空気熱交換器の入口とをバイパス開閉弁を介して接続した冷媒回路を有する除霜機能付き空気調和機において、
前記バイパス開閉弁がバイパス流量調整弁であると共に、
除霜信号を受けて、圧縮機吸入過熱度に応じて前記第2流量調整弁の開度を調整する除霜制御手段とを有すること
前記第2流量調整弁が所定開度以上のとき、前記除霜制御手段が、前記バイパス流量調整弁の開度を開いて圧縮機吸入過熱度を調整すること、
前記バイパス開閉弁が所定開度以上のとき、前記除霜制御手段が、前記第1流量調整弁の開度を開いて圧縮機吸入過熱度を調整すること、
を特徴とする除霜機能付き空気調和機。
An outdoor air heat exchanger and an exhaust heat recovery device are arranged in parallel, and a first flow rate adjustment valve is provided on the inlet side of the outdoor air heat exchanger, and a second flow rate adjustment valve is provided on the inlet side of the exhaust heat recovery device. In the air conditioner with a defrost function having a refrigerant circuit in which the discharge side of the compressor and the inlet of the outdoor air heat exchanger are connected via a bypass on-off valve,
The bypass on-off valve is a bypass flow rate adjustment valve,
Receiving a defrost signal, and having a defrost control means for adjusting the opening of the second flow rate adjustment valve according to the compressor suction superheat degree ,
When the second flow rate adjustment valve is greater than or equal to a predetermined opening, the defrosting control means opens the opening of the bypass flow rate adjustment valve to adjust the compressor suction superheat degree;
When the bypass opening and closing valve is greater than or equal to a predetermined opening, the defrosting control means opens the opening of the first flow rate adjustment valve to adjust the compressor intake superheat degree;
An air conditioner with a defrosting function.
室外空気熱交換器と排熱回収器とを並列に配置し、前記室外空気熱交換器の入口側に第1流量調整弁を、前記排熱回収器の入口側に第2流量調整弁を設け、圧縮機の吐出側と前記室外空気熱交換器の入口とをバイパス開閉弁を介して接続した冷媒回路を有する除霜機能付き空気調和機において、
室内空気熱交換器の出口に室内出口流量調整弁が設けられると共に、
除霜信号を受けて、圧縮機吸入過熱度に応じて前記第2流量調整弁の開度を調整する除霜制御手段とを有すること
前記第2流量調整弁が所定開度以上のとき、前記除霜制御手段が、前記室内出口流量調整弁の開度を絞って圧縮機吸入過熱度を調整すること、
前記室内出口流量調整弁が所定の閉開度となったとき、前記除霜制御手段が、前記第1流量調整弁の開度を開いて調整すること、
を特徴とする除霜機能付き空気調和機。
An outdoor air heat exchanger and an exhaust heat recovery device are arranged in parallel, and a first flow rate adjustment valve is provided on the inlet side of the outdoor air heat exchanger, and a second flow rate adjustment valve is provided on the inlet side of the exhaust heat recovery device. In the air conditioner with a defrost function having a refrigerant circuit in which the discharge side of the compressor and the inlet of the outdoor air heat exchanger are connected via a bypass on-off valve,
An indoor outlet flow rate adjustment valve is provided at the outlet of the indoor air heat exchanger,
Receiving a defrost signal, and having a defrost control means for adjusting the opening of the second flow rate adjustment valve according to the compressor suction superheat degree ,
When the second flow rate adjustment valve is greater than or equal to a predetermined opening, the defrosting control means adjusts the compressor intake superheat degree by reducing the opening of the indoor outlet flow rate adjustment valve;
When the indoor outlet flow rate adjustment valve reaches a predetermined opening degree, the defrosting control means opens and adjusts the opening degree of the first flow rate adjustment valve;
An air conditioner with a defrosting function.
JP2004089026A 2004-03-25 2004-03-25 Air conditioner with defrost function Expired - Fee Related JP4325455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004089026A JP4325455B2 (en) 2004-03-25 2004-03-25 Air conditioner with defrost function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004089026A JP4325455B2 (en) 2004-03-25 2004-03-25 Air conditioner with defrost function

Publications (2)

Publication Number Publication Date
JP2005274039A JP2005274039A (en) 2005-10-06
JP4325455B2 true JP4325455B2 (en) 2009-09-02

Family

ID=35173909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089026A Expired - Fee Related JP4325455B2 (en) 2004-03-25 2004-03-25 Air conditioner with defrost function

Country Status (1)

Country Link
JP (1) JP4325455B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134235A (en) * 2011-12-05 2013-06-05 约克广州空调冷冻设备有限公司 Coil pipe step-by-step defrosting hot pump system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747967B2 (en) * 2006-06-29 2011-08-17 株式会社デンソー Vapor compression cycle
JP2008224189A (en) * 2007-03-15 2008-09-25 Aisin Seiki Co Ltd Refrigerating cycle device
JP4924436B2 (en) * 2008-01-08 2012-04-25 株式会社デンソー Vapor compression cycle
JP5634682B2 (en) * 2009-04-24 2014-12-03 日立アプライアンス株式会社 Air conditioner
JP6678333B2 (en) 2016-03-09 2020-04-08 パナソニックIpマネジメント株式会社 Outdoor unit of air conditioner
JP6653443B2 (en) 2016-03-09 2020-02-26 パナソニックIpマネジメント株式会社 Outdoor unit of air conditioner
CN105841378B (en) * 2016-03-25 2018-09-25 海信(山东)空调有限公司 Dehumidifier, dehumidifying machine controller and dehumidifier control method
CN114459167B (en) * 2021-12-24 2023-09-26 青岛海尔空调电子有限公司 Method and device for controlling air source heat pump and air source heat pump
CN115289549A (en) * 2022-07-12 2022-11-04 珠海格力电器股份有限公司 Heat energy recycling system and method for air conditioner external unit and air conditioner
CN115371305B (en) * 2022-07-26 2024-07-05 浙江中广电器集团股份有限公司 Electronic expansion valve opening control method in defrosting process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140572A (en) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd Heat pump type refrigerating plant
JP2720996B2 (en) * 1988-12-13 1998-03-04 ヤンマーディーゼル株式会社 Engine heat pump defroster
JP3348465B2 (en) * 1993-06-25 2002-11-20 ダイキン工業株式会社 Binary refrigeration equipment
JPH08110129A (en) * 1994-10-11 1996-04-30 Kobe Steel Ltd Separate type heat pump
JPH11230646A (en) * 1998-02-17 1999-08-27 Denso Corp Engine driven heat pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134235A (en) * 2011-12-05 2013-06-05 约克广州空调冷冻设备有限公司 Coil pipe step-by-step defrosting hot pump system
CN103134235B (en) * 2011-12-05 2016-11-23 约克广州空调冷冻设备有限公司 Coil pipe substep defrosting heat pump system

Also Published As

Publication number Publication date
JP2005274039A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4974714B2 (en) Water heater
EP1467158B1 (en) Refrigeration cycle apparatus
JP5855129B2 (en) Outdoor unit and air conditioner
JP5264874B2 (en) Refrigeration equipment
JP4375171B2 (en) Refrigeration equipment
JP4978777B2 (en) Refrigeration cycle equipment
JP2007503565A (en) Defrosting method for heat pump hot water system
CN111288676B (en) Water chilling unit
JP4325455B2 (en) Air conditioner with defrost function
JP4363997B2 (en) Refrigeration equipment
JP2007225141A (en) Gas heat pump type air conditioner and its starting method
JP2007107859A (en) Gas heat pump type air conditioner
JP2023509017A (en) air conditioner
JP7224480B2 (en) Outdoor unit and refrigeration cycle equipment
KR101161381B1 (en) Refrigerant cycle apparatus
KR100845847B1 (en) Control Metheod for Airconditioner
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
KR100821729B1 (en) Air conditioning system
JP7375167B2 (en) heat pump
CN109539614B (en) Air conditioning system and energy adjusting method thereof
KR100575693B1 (en) Air conditioner with sub compression loop
JP2015152270A (en) Refrigeration cycle device
JP7466645B2 (en) Refrigeration Cycle Equipment
JP2013217602A (en) Heat source device, refrigeration air conditioner, and control device
JP4111241B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4325455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees