JP4978777B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4978777B2
JP4978777B2 JP2007066892A JP2007066892A JP4978777B2 JP 4978777 B2 JP4978777 B2 JP 4978777B2 JP 2007066892 A JP2007066892 A JP 2007066892A JP 2007066892 A JP2007066892 A JP 2007066892A JP 4978777 B2 JP4978777 B2 JP 4978777B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
air
expansion valve
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007066892A
Other languages
Japanese (ja)
Other versions
JP2008224190A (en
Inventor
道彦 山本
慎弥 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2007066892A priority Critical patent/JP4978777B2/en
Priority to CN2008100857387A priority patent/CN101266083B/en
Priority to KR1020080023915A priority patent/KR100944312B1/en
Publication of JP2008224190A publication Critical patent/JP2008224190A/en
Application granted granted Critical
Publication of JP4978777B2 publication Critical patent/JP4978777B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary

Description

本発明は冷凍サイクル装置に関する。冷凍サイクル装置は、冷媒の圧縮工程、凝縮工程、膨張工程、蒸発工程を行う装置を意味する。   The present invention relates to a refrigeration cycle apparatus. The refrigeration cycle apparatus means an apparatus that performs a refrigerant compression process, a condensation process, an expansion process, and an evaporation process.

冷凍サイクル装置として、図16に示すように、冷媒を圧縮させる圧縮工程を行う圧縮機1Yと、圧縮機1Yを経た冷媒を凝縮させる凝縮工程を行う熱交換器2Yと、凝縮工程を経た冷媒を膨張させる膨張弁3Yと、膨張弁3Yを経た冷媒を蒸発させる蒸発工程を行う空気熱交換器41Yとをもつものが知られている。このような冷凍サイクル装置としては特許文献1〜4が挙げられる。   As a refrigeration cycle apparatus, as shown in FIG. 16, a compressor 1Y that performs a compression process for compressing a refrigerant, a heat exchanger 2Y that performs a condensation process for condensing the refrigerant that has passed through the compressor 1Y, and a refrigerant that has undergone a condensation process One having an expansion valve 3Y to be expanded and an air heat exchanger 41Y for performing an evaporation process for evaporating the refrigerant that has passed through the expansion valve 3Y is known. Examples of such a refrigeration cycle apparatus include Patent Documents 1 to 4.

このものによれば、圧縮機1Yを経た高温高圧の冷媒は凝縮用熱交換器2Yにおいて凝縮工程を行い、凝縮熱を放出させ、暖房を行う。凝縮工程を経た冷媒は膨張弁3Yで膨張されて低圧化する。膨張弁3Yにより低圧化された冷媒は、蒸発器としての空気熱交換器41Yに至り、蒸発工程を行い、冷媒の気体化が進行する。その後、冷媒は圧縮機1Yに戻り、再び圧縮される。ここで、上記した運転が継続していくと、空気熱交換器41Y付近の空気が空気熱交換器41Yにより冷却され、条件によっては、空気の湿分が空気熱交換器41Yの表面に霜を生成することがある。上記したように空気熱交換器41Yの表面における着霜が成長すると、空気熱交換器41Yの熱交換能力が低下するため、冷凍サイクル装置の運転に影響を与える。   According to this, the high-temperature and high-pressure refrigerant that has passed through the compressor 1Y performs a condensation step in the condensation heat exchanger 2Y, releases condensation heat, and performs heating. The refrigerant that has undergone the condensing step is expanded by the expansion valve 3Y to reduce the pressure. The refrigerant whose pressure has been reduced by the expansion valve 3Y reaches the air heat exchanger 41Y as an evaporator, performs an evaporation step, and gasification of the refrigerant proceeds. Thereafter, the refrigerant returns to the compressor 1Y and is compressed again. Here, as the above operation continues, the air near the air heat exchanger 41Y is cooled by the air heat exchanger 41Y, and depending on the conditions, moisture of the air causes frost on the surface of the air heat exchanger 41Y. May be generated. As described above, when frost formation on the surface of the air heat exchanger 41Y grows, the heat exchange capacity of the air heat exchanger 41Y decreases, which affects the operation of the refrigeration cycle apparatus.

上記したように空気熱交換器41Yの表面に着霜が発生すると、空気熱交換器41Yの熱交換効率が低下し、暖房運転能力が低下する。この場合、空気熱交換器41Yにおける蒸発温度が次第に低下する。従って空気熱交換器41Yにおける蒸発温度T2と空気温度T1との温度差ΔT(ΔT=T1−T2)が増加する。特許文献1は、空気熱交換器41Yの表面において着霜が発生していことをΔTに基づいて検知する技術を開示している。
実開昭61−58433号公報 特開2002−89992号公報 特開平8−291950号公報 特開平5−319077号公報
As described above, when frost is generated on the surface of the air heat exchanger 41Y, the heat exchange efficiency of the air heat exchanger 41Y is lowered, and the heating operation capacity is lowered. In this case, the evaporation temperature in the air heat exchanger 41Y gradually decreases. Therefore, the temperature difference ΔT (ΔT = T1−T2) between the evaporation temperature T2 and the air temperature T1 in the air heat exchanger 41Y increases. Patent Document 1 is that the frost on the surface of the air heat exchanger and 41Y that have occurred discloses a technique for detecting, based on [Delta] T.
Japanese Utility Model Publication No. 61-58433 JP 2002-89992 A JP-A-8-291950 JP-A-5-319077

上記した冷凍サイクル装置においては、図17に示すように、外部の熱源(加熱水)からの熱と熱交換する熱源熱交換器42Yを空気熱交換器41Yに対して付設したものが提供されている。この装置によれば、蒸発工程を行う熱交換器は、図17に示すように、空気と熱交換する空気熱交換器41Yと、エンジンを冷却した加熱水の熱と熱交換する熱源熱交換器42Yとを備えている。この場合には、冷媒の蒸発工程は、空気熱交換器41Yと熱源熱交換器42Yとの双方において行われる。   In the refrigeration cycle apparatus described above, as shown in FIG. 17, a heat source heat exchanger 42Y that exchanges heat with heat from an external heat source (heated water) is attached to the air heat exchanger 41Y. Yes. According to this apparatus, as shown in FIG. 17, the heat exchanger that performs the evaporation step includes an air heat exchanger 41Y that exchanges heat with air, and a heat source heat exchanger that exchanges heat with the heat of heated water that has cooled the engine. 42Y. In this case, the refrigerant evaporation process is performed in both the air heat exchanger 41Y and the heat source heat exchanger 42Y.

この場合、運転が継続すると、熱源熱交換器42Yからの熱の伝達により、空気熱交換器41Yの冷媒の温度が上昇してしまうおそれがある。この場合、空気熱交換器41Yにおいて着霜が発生しているにもかかわらず、空気熱交換器41Yにおける蒸発温度T2と空気温度T1との温度差ΔT(ΔT=T1−T2)が減少して小さくなる傾向があるため、ΔTに基づいて着霜が良好に検知されないおそれがある。   In this case, if the operation is continued, there is a possibility that the temperature of the refrigerant in the air heat exchanger 41Y will rise due to the transfer of heat from the heat source heat exchanger 42Y. In this case, despite the occurrence of frost formation in the air heat exchanger 41Y, the temperature difference ΔT (ΔT = T1-T2) between the evaporation temperature T2 and the air temperature T1 in the air heat exchanger 41Y decreases. Since it tends to be small, frost formation may not be detected well based on ΔT.

本発明は上記した実情に鑑みてなされたものであり、蒸発工程を行う蒸発用熱交換器が、空気と熱交換する空気熱交換器と、熱源の熱と熱交換する熱源熱交換器とを備えているときであっても、空気熱交換器における着霜を良好に検知することができる冷凍サイクル装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and an evaporation heat exchanger that performs an evaporation step includes an air heat exchanger that exchanges heat with air, and a heat source heat exchanger that exchanges heat with the heat of the heat source. It is an object of the present invention to provide a refrigeration cycle apparatus that can detect frost formation in an air heat exchanger even when it is provided.

(1)様相1に係る冷凍サイクル装置は、冷媒を圧縮させる圧縮工程を行う圧縮機と、圧縮機を経た冷媒を凝縮させる凝縮工程を行う凝縮用熱交換器と、凝縮工程を経た冷媒を膨張させる膨張弁と、膨張弁を経た冷媒を蒸発させる蒸発工程を行う蒸発用熱交換器と、膨張弁を制御する制御部とを具備する冷凍サイクル装置において、
(i)蒸発工程を行う蒸発用熱交換器は、空気と熱交換する空気熱交換器と、熱源からの熱と熱交換する熱源熱交換器とを備えており、
(ii)制御部は、(a)膨張弁を経た冷媒を空気熱交換器および熱源熱交換器に流すことにより空気熱交換器および熱源熱交換器において熱交換を行う通常運転モードと、(b)膨張弁を経た冷媒を空気熱交換器に流して空気熱交換器において熱交換を行うと共に、熱源熱交換器から冷媒への単位時間当たりの伝熱量を通常運転モードの場合よりも減少させる操作を行う着霜判定モードとを実施し、
(iii)膨張弁は、凝縮用熱交換器と空気熱交換器との間に設けられた第1膨張弁と、凝縮用熱交換器と熱源熱交換器との間に設けられた第2膨張弁とを備えており、
制御部は、着霜判定モードにおいて、前記熱源熱交換器に繋がる第2膨張弁の開度を0にするか、第2膨張弁の開度を前記通常運転モードの場合よりも減少させ、熱源熱交換器に向けて流れる単位時間当たりの冷媒流量を0または通常運転モードの場合よりも減少させることを特徴とする。
(1) The refrigeration cycle apparatus according to aspect 1 expands a compressor that performs a compression process that compresses the refrigerant, a heat exchanger for condensation that performs a condensation process that condenses the refrigerant that has passed through the compressor, and a refrigerant that has undergone the condensation process. An refrigeration cycle apparatus comprising: an expansion valve to be evaporated; an evaporation heat exchanger that performs an evaporation process for evaporating the refrigerant that has passed through the expansion valve; and a control unit that controls the expansion valve.
(I) The evaporation heat exchanger that performs the evaporation step includes an air heat exchanger that exchanges heat with air, and a heat source heat exchanger that exchanges heat with the heat from the heat source.
(Ii) The control unit (a) normal operation mode in which heat exchange is performed in the air heat exchanger and the heat source heat exchanger by flowing the refrigerant that has passed through the expansion valve to the air heat exchanger and the heat source heat exchanger; ) Operation to reduce the amount of heat transfer per unit time from the heat source heat exchanger to the refrigerant as compared with that in the normal operation mode while flowing the refrigerant through the expansion valve to the air heat exchanger and exchanging heat in the air heat exchanger performed and frost formation determination mode for,
(Iii) The expansion valve is a first expansion valve provided between the heat exchanger for condensation and the air heat exchanger, and a second expansion provided between the heat exchanger for condensation and the heat source heat exchanger. With a valve,
In the frost determination mode, the control unit sets the opening of the second expansion valve connected to the heat source heat exchanger to 0 or reduces the opening of the second expansion valve as compared with the normal operation mode, The refrigerant flow rate per unit time flowing toward the heat exchanger is reduced to 0 or less than in the normal operation mode .

本様相によれば、通常運転モードにおいては、制御部は、膨張弁を経た冷媒を空気熱交換器および熱源熱交換器の双方に流すことにより、空気熱交換器および熱源熱交換器において熱交換を行う。これにより冷媒の蒸発工程が実施される。 According to this aspect, in the normal operation mode, the control unit exchanges heat in the air heat exchanger and the heat source heat exchanger by flowing the refrigerant that has passed through the expansion valve to both the air heat exchanger and the heat source heat exchanger. I do. Thereby, the refrigerant | coolant evaporation process is implemented.

制御部は着霜判定モードを定期的または不定期的に実行する。着霜判定モードにおいては、制御部は、膨張弁を経た冷媒を空気熱交換器に流して空気熱交換器において熱交換を行うと共に、熱源熱交換器から冷媒への単位時間当たりの伝熱量を通常運転モードの場合よりも減少させる。この場合、熱源熱交換器の熱が空気熱交換器に伝達されることが抑制される。   A control part performs frosting determination mode regularly or irregularly. In the frosting determination mode, the control unit flows the refrigerant that has passed through the expansion valve to the air heat exchanger and performs heat exchange in the air heat exchanger, and also calculates the heat transfer amount per unit time from the heat source heat exchanger to the refrigerant. Decrease than in normal operation mode. In this case, the heat of the heat source heat exchanger is suppressed from being transmitted to the air heat exchanger.

ここで、空気熱交換器の表面に着霜が発生した場合には、空気熱交換器における熱交換効率が低下し、空気熱交換器における蒸発能力が低下する。故に、空気熱交換器における冷媒の蒸発工程が損なわれ、空気熱交換器における冷媒の圧力が次第に低下する。この場合、空気熱交換器における蒸発温度が次第に低下し、空気熱交換器における蒸発温度T2が次第に低下する。従って空気温度T1と空気熱交換器における蒸発温度T2との温度差ΔT(ΔT=T1−T2)が増加する。このように温度差ΔTが増加するため、空気熱交換器において着霜が発生していることがΔTに基づいて効果的に検知される。   Here, when frost is generated on the surface of the air heat exchanger, the heat exchange efficiency in the air heat exchanger is lowered, and the evaporation capability in the air heat exchanger is lowered. Therefore, the evaporation process of the refrigerant in the air heat exchanger is impaired, and the pressure of the refrigerant in the air heat exchanger gradually decreases. In this case, the evaporation temperature in the air heat exchanger gradually decreases, and the evaporation temperature T2 in the air heat exchanger gradually decreases. Therefore, the temperature difference ΔT (ΔT = T1−T2) between the air temperature T1 and the evaporation temperature T2 in the air heat exchanger increases. Since the temperature difference ΔT increases in this way, it is effectively detected based on ΔT that frost formation has occurred in the air heat exchanger.

本様相によれば、着霜判定モードを実施するにあたり、熱源熱交換器から冷媒への単位時間当たりの伝熱量を通常運転モードの場合よりも減少させる操作を行う。このため着霜判定モードにおいて、熱源熱交換器から空気熱交換器側への伝熱量が抑制される。この結果、空気熱交換器における蒸発温度T2が低下する。従って、空気温度T1と空気熱交換器における蒸発温度T2との温度差ΔT(ΔT=T1−T2)を増加させることができる。このように温度差ΔTが増加するため、空気熱交換器において着霜が発生していことがΔTに基づいて良好に検知される。 According to this aspect , in performing the frost determination mode, an operation is performed to reduce the amount of heat transfer per unit time from the heat source heat exchanger to the refrigerant as compared to the normal operation mode. For this reason, in the frost determination mode, the amount of heat transfer from the heat source heat exchanger to the air heat exchanger is suppressed. As a result, the evaporation temperature T2 in the air heat exchanger decreases. Therefore, the temperature difference ΔT (ΔT = T1−T2) between the air temperature T1 and the evaporation temperature T2 in the air heat exchanger can be increased. Therefore the temperature difference [Delta] T is increased so, that the frost in the air heat exchanger that has occurred can be well detected on the basis of the [Delta] T.

この場合、制御部は、着霜判定モードにおいて、(i)熱源熱交換器から冷媒への単位時間当たりの伝熱量を通常運転モードの場合よりも減少させる伝熱量減少手段と、(ii)空気熱交換器における蒸発温度と空気温度との温度差を測定する温度差手段と、温度差に基づいて着霜状態の判定を行う着霜判定手段とを備えている形態が例示される。着霜判定手段により、空気熱交換器における着霜状態の判定を上記した温度差ΔTに基づいて良好に行うことができる。 In this case, the control unit, in the frost determination mode, (i) a heat transfer amount reducing means for reducing the heat transfer amount per unit time from the heat source heat exchanger to the refrigerant than in the normal operation mode, and (ii) air The form provided with the temperature difference means which measures the temperature difference of the evaporation temperature in a heat exchanger and air temperature, and the frost determination means which determines a frost state based on a temperature difference is illustrated. The frost determining means, Ru can be satisfactorily performed on the basis of the determination of the frosting condition in the air heat exchanger to the temperature difference ΔT as described above.

本様相に係る冷凍サイクル装置によれば、膨張弁は、凝縮用熱交換器と空気熱交換器との間に設けられた第1膨張弁と、凝縮用熱交換器と熱源熱交換器との間に設けられた第2膨張弁とを備えており、制御部は、着霜判定モードにおいて、第2膨張弁の開度を0にするか、第2膨張弁の開度を通常運転モードの場合よりも減少させることを特徴とする。これにより、熱源熱交換器に流れる単位時間当たりの冷媒流量は通常運転モードの場合よりも停止または減少される。この結果、着霜判定モードにおいて、熱源熱交換器から冷媒への単位時間当たりの伝熱量を、通常運転モードの場合よりも減少させることができる。従って、上記した温度差ΔTが確保される。このため温度差ΔTに基づいて着霜が良好に検知される。 According to the refrigeration cycle apparatus according to this aspect , the expansion valve includes the first expansion valve provided between the condensation heat exchanger and the air heat exchanger, the condensation heat exchanger, and the heat source heat exchanger. And the control unit sets the opening of the second expansion valve to 0 or sets the opening of the second expansion valve to the normal operation mode in the frosting determination mode. It is characterized by being reduced more than the case. Thereby, the refrigerant | coolant flow volume per unit time which flows into a heat-source heat exchanger is stopped or reduced rather than the case of normal operation mode. As a result, in the frosting determination mode, the heat transfer amount per unit time from the heat source heat exchanger to the refrigerant can be reduced as compared with the normal operation mode. Therefore, the temperature difference ΔT described above is ensured. For this reason, frost formation is satisfactorily detected based on the temperature difference ΔT.

(2)様相2に係る冷凍サイクル装置は、冷媒を圧縮させる圧縮工程を行う圧縮機と、圧縮機を経た冷媒を凝縮させる凝縮工程を行う凝縮用熱交換器と、凝縮工程を経た冷媒を膨張させる膨張弁と、前記膨張弁を経た冷媒を蒸発させる蒸発工程を行う蒸発用熱交換器と、膨張弁を制御する制御部とを具備する冷凍サイクル装置において、(2) The refrigeration cycle apparatus according to aspect 2 expands the compressor that performs the compression process for compressing the refrigerant, the heat exchanger for condensation that performs the condensation process for condensing the refrigerant that has passed through the compressor, and the refrigerant that has undergone the condensation process. An refrigeration cycle apparatus comprising: an expansion valve to be evaporated; an evaporation heat exchanger that performs an evaporation step for evaporating the refrigerant that has passed through the expansion valve; and a control unit that controls the expansion valve.
(i)蒸発工程を行う蒸発用熱交換器は、空気と熱交換する空気熱交換器と、熱源からの熱と熱交換する熱源熱交換器とを備えており、  (I) The evaporation heat exchanger that performs the evaporation step includes an air heat exchanger that exchanges heat with air, and a heat source heat exchanger that exchanges heat with the heat from the heat source.
(ii)制御部は、  (Ii) The control unit
(a)膨張弁を経た冷媒を空気熱交換器および熱源熱交換器に流すことにより空気熱交換器および熱源熱交換器において熱交換を行う通常運転モードと、  (A) a normal operation mode in which heat exchange is performed in the air heat exchanger and the heat source heat exchanger by flowing the refrigerant that has passed through the expansion valve to the air heat exchanger and the heat source heat exchanger;
(b)膨張弁を経た冷媒を空気熱交換器に流して空気熱交換器において熱交換を行うと共に、前記熱源熱交換器から冷媒への単位時間当たりの伝熱量を前記通常運転モードの場合よりも減少させる操作を行う着霜判定モードとを実施し、  (B) The refrigerant that has passed through the expansion valve is passed through the air heat exchanger to perform heat exchange in the air heat exchanger, and the amount of heat transferred from the heat source heat exchanger to the refrigerant per unit time is greater than that in the normal operation mode. And the frosting determination mode to perform the operation to reduce the
(iii)膨張弁は、凝縮用熱交換器に繋がるポートと空気熱交換器に繋がるポートと熱源熱交換器に繋がるポートとを備える三方弁で形成された共通膨張弁であり、  (Iii) The expansion valve is a common expansion valve formed by a three-way valve having a port connected to the heat exchanger for condensation, a port connected to the air heat exchanger, and a port connected to the heat source heat exchanger,
制御部は、着霜判定モードにおいて、共通膨張弁のうち熱源熱交換器に繋がるポートの開度を0にするか前記通常運転モードの場合よりも減少させることにより、熱源熱交換器に向けて流れる単位時間当たりの冷媒流量を0または通常運転モードの場合よりも減少させることを特徴とする。  In the frost determination mode, the control unit sets the opening degree of the port connected to the heat source heat exchanger in the common expansion valve to 0 or decreases it compared to the case of the normal operation mode, thereby toward the heat source heat exchanger. The flow rate of the refrigerant per unit time is reduced to 0 or less than in the normal operation mode.

本様相によれば、制御部は、着霜判定モードにおいて、共通膨張弁のうち熱源熱交換器に繋がるポートの開度を0にするか前記通常運転モードの場合よりも減少させることにより、熱源熱交換器に向けて流れる単位時間当たりの冷媒流量を通常運転モードの場合よりも減少させることを特徴とする。  According to this aspect, in the frost determination mode, the control unit sets the opening degree of the port connected to the heat source heat exchanger in the common expansion valve to 0 or decreases it compared to the normal operation mode. The refrigerant flow rate per unit time flowing toward the heat exchanger is reduced as compared with the normal operation mode.

(3)様相3に係る冷凍サイクル装置は、冷媒を圧縮させる圧縮工程を行う圧縮機と、圧縮機を経た冷媒を凝縮させる凝縮工程を行う凝縮用熱交換器と、凝縮工程を経た冷媒を膨張させる膨張弁と、膨張弁を経た冷媒を蒸発させる蒸発工程を行う蒸発用熱交換器と、膨張弁を制御する制御部とを具備する冷凍サイクル装置において、  (3) The refrigeration cycle apparatus according to aspect 3 expands the refrigerant that has undergone the compression process, the heat exchanger for condensation that performs the condensation process that condenses the refrigerant that has passed through the compressor, and the refrigerant that has undergone the condensation process. An refrigeration cycle apparatus comprising: an expansion valve to be evaporated; an evaporation heat exchanger that performs an evaporation process for evaporating the refrigerant that has passed through the expansion valve; and a control unit that controls the expansion valve.
(i)蒸発工程を行う蒸発用熱交換器は、空気と熱交換する空気熱交換器と、熱源からの熱と熱交換する熱源熱交換器とを備えており、  (I) The evaporation heat exchanger that performs the evaporation step includes an air heat exchanger that exchanges heat with air, and a heat source heat exchanger that exchanges heat with the heat from the heat source.
(ii)制御部は、  (Ii) The control unit
(a)膨張弁を経た冷媒を空気熱交換器および熱源熱交換器に流すことにより空気熱交換器および熱源熱交換器において熱交換を行う通常運転モードと、  (A) a normal operation mode in which heat exchange is performed in the air heat exchanger and the heat source heat exchanger by flowing the refrigerant that has passed through the expansion valve to the air heat exchanger and the heat source heat exchanger;
(b)膨張弁を経た冷媒を空気熱交換器に流して空気熱交換器において熱交換を行うと共に、熱源熱交換器から冷媒への単位時間当たりの伝熱量を通常運転モードの場合よりも減少させる操作を行う着霜判定モードとを実施し、  (B) The refrigerant that has passed through the expansion valve is passed through the air heat exchanger to perform heat exchange in the air heat exchanger, and the amount of heat transferred from the heat source heat exchanger to the refrigerant per unit time is smaller than that in the normal operation mode. And the frosting determination mode for performing the operation
(iii)膨張弁は、凝縮用熱交換器と空気熱交換器,熱源熱交換器との間に設けられており、  (Iii) The expansion valve is provided between the heat exchanger for condensation, the air heat exchanger, and the heat source heat exchanger,
制御部は、着霜判定モードにおいて、熱源熱交換器に繋がる膨張弁の開度を調整することにより、熱源熱交換器に向けて流れる単位時間当たりの冷媒流量を0または通常運転モードの場合よりも減少させることを特徴とする。  In the frosting determination mode, the control unit adjusts the opening degree of the expansion valve connected to the heat source heat exchanger so that the refrigerant flow rate per unit time flowing toward the heat source heat exchanger is 0 or in the normal operation mode. Is also reduced.

制御部は、着霜判定モードにおいて、熱源熱交換器に繋がる膨張弁の開度を調整することにより、熱源熱交換器に向けて流れる単位時間当たりの冷媒流量を0または通常運転モードの場合よりも減少させる。  In the frosting determination mode, the control unit adjusts the opening degree of the expansion valve connected to the heat source heat exchanger so that the refrigerant flow rate per unit time flowing toward the heat source heat exchanger is 0 or in the normal operation mode. Also reduce.

本発明によれば、着霜判定モードを実施するにあたり、熱源熱交換器から冷媒への単位時間当たりの伝熱量を通常運転モードの場合よりも減少させる。このため着霜判定モードを実施するにあたり、着霜判定の目安となる上記した温度差ΔTを大きくすることができる。従って、着霜判定の精度を向上させることができる。故に、蒸発工程を行う蒸発用熱交換器が、空気と熱交換する空気熱交換器と、熱源の熱と熱交換する熱源熱交換器とを備えているときであっても、熱源熱交換器から空気熱交換器に伝達される熱量が制限される。よって着霜判定モードにおける着霜を良好に判定することができる。   According to the present invention, in carrying out the frosting determination mode, the amount of heat transfer per unit time from the heat source heat exchanger to the refrigerant is reduced as compared with the normal operation mode. For this reason, in carrying out the frost determination mode, it is possible to increase the above-described temperature difference ΔT that serves as a standard for frost determination. Therefore, the accuracy of frost determination can be improved. Therefore, even when the evaporation heat exchanger performing the evaporation process includes an air heat exchanger that exchanges heat with air and a heat source heat exchanger that exchanges heat with the heat of the heat source, the heat source heat exchanger The amount of heat transferred from the air to the air heat exchanger is limited. Therefore, frost formation in the frost determination mode can be determined satisfactorily.

・冷凍サイクル装置は、冷媒の圧縮工程、冷媒の凝縮工程、冷媒の膨張工程、冷媒の蒸発工程の冷凍サイクルを実施する装置であり、加熱機能および/または冷却機能をもつ。加熱機能としては暖房機能が挙げられる。冷却機能としては冷房機能が挙げられる。   The refrigeration cycle apparatus is an apparatus that performs a refrigeration cycle of a refrigerant compression process, a refrigerant condensation process, a refrigerant expansion process, and a refrigerant evaporation process, and has a heating function and / or a cooling function. An example of the heating function is a heating function. The cooling function includes a cooling function.

・通常運転モードを実施しているときに、必要に応じて運転モードを着霜判定モードに切り替えても良い。着霜判定モードへの切り替えは、通常運転モードの開始から設定時間経過して行っても良く、設定時間毎に繰り返して行っても良く、後述する除霜モード終了時から設定時間経過後に行っても良い。   -When performing the normal operation mode, the operation mode may be switched to the frost determination mode as necessary. Switching to the frosting determination mode may be performed after the set time has elapsed from the start of the normal operation mode, may be repeated every set time, or after the set time has elapsed since the end of the defrost mode described later. Also good.

・着霜判定モードにおいて、熱源熱交換器に流れる単位時間当たりの冷媒流量を通常運転モードの場合よりも停止または減少させることがある。この場合には、冷凍サイクル装置における冷媒循環量が低下する。故に、蒸発用熱交換器を流れる冷媒の単位時間当たりの流量が低下し、蒸発工程を行う蒸発用熱交換器における蒸発量が低下するおそれがある。この場合、凝縮工程を行う凝縮用熱交換器からの凝縮熱の単位時間当たりの放出量が低下し、冷凍サイクル装置の能力が低下するおそれがある。   -In the frosting determination mode, the refrigerant flow rate per unit time flowing through the heat source heat exchanger may be stopped or decreased as compared with the normal operation mode. In this case, the refrigerant circulation amount in the refrigeration cycle apparatus is reduced. Therefore, the flow rate per unit time of the refrigerant flowing through the evaporating heat exchanger decreases, and the evaporation amount in the evaporating heat exchanger that performs the evaporating process may decrease. In this case, the amount of condensation heat released from the condensation heat exchanger that performs the condensation process per unit time may be reduced, and the capacity of the refrigeration cycle apparatus may be reduced.

そこでこのような場合には、制御部が第1制御形態、第2制御形態を実施することが例示される。第1制御形態によれば、着霜判定モードにおいて、空気熱交換器に繋がる第1膨張弁の開度を通常運転モードの場合よりも増加させる。これにより空気熱交換器を流れる単位時間当たりの冷媒流量が、通常運転モードの場合よりも増加する。ひいては、蒸発工程を行う蒸発用熱交換器を流れる冷媒の単位時間当たりの流量が確保される。よって蒸発工程を行う蒸発用熱交換器における蒸発量が確保される。この場合、凝縮工程を行う凝縮用熱交換器からの凝縮熱の放出量が低下することが抑制される。よって、冷凍サイクル装置の能力低下が抑制される。   Then, in such a case, it is illustrated that a control part implements a 1st control form and a 2nd control form. According to the 1st control form, in the frost determination mode, the opening degree of the 1st expansion valve connected with an air heat exchanger is increased rather than the case of normal operation mode. Thereby, the refrigerant | coolant flow rate per unit time which flows through an air heat exchanger increases compared with the case of normal operation mode. As a result, the flow rate per unit time of the refrigerant flowing through the evaporation heat exchanger performing the evaporation step is ensured. Therefore, the evaporation amount in the evaporation heat exchanger that performs the evaporation process is secured. In this case, a decrease in the amount of condensation heat released from the heat exchanger for condensation that performs the condensation step is suppressed. Therefore, the capability fall of a refrigerating cycle device is controlled.

・上記したように着霜判定モードにおいて、冷凍サイクル装置における冷媒循環量が低下することがある。そこで第2制御形態によれば、制御部は、着霜判定モードにおいて、圧縮機の単位時間当たりの回転数(駆動量)を通常運転モードの場合よりも増加させる。この場合、冷凍サイクル装置における冷媒循環量が確保されるため、冷凍サイクル装置の能力低下が抑制される。   -As mentioned above, in the frost determination mode, the refrigerant circulation amount in the refrigeration cycle apparatus may decrease. Therefore, according to the second control mode, the control unit increases the rotation speed (drive amount) of the compressor per unit time in the frost determination mode than in the normal operation mode. In this case, since the refrigerant circulation amount in the refrigeration cycle apparatus is ensured, a decrease in the capacity of the refrigeration cycle apparatus is suppressed.

・前記した温度差が小さいほど、空気熱交換器における着霜度が小さいことになる。前記した温度差が大きいほど、空気熱交換器における着霜度が大きいことになる。そこで制御部は、着霜判定モードにおいて、前記温度差を時間的にずらして検知し、前記温度差が時間的に増加していることを検知すると、着霜が成長していると判定する着霜成長判定手段をもつ形態が例示される。着霜が成長していると判定されるときには、制御部は、除霜処理における除霜時間および/または除霜能力を増加させる除霜能力を高めることが好ましい。   -The smaller the temperature difference described above, the smaller the degree of frost formation in the air heat exchanger. The greater the temperature difference described above, the greater the degree of frost formation in the air heat exchanger. Therefore, in the frosting determination mode, the control unit detects the temperature difference while shifting the time, and detects that the temperature difference is increasing with time, and determines that the frost is growing. The form which has a frost growth determination means is illustrated. When it is determined that the frost is growing, the control unit preferably increases the defrosting capability for increasing the defrosting time and / or the defrosting capability in the defrosting process.

以下、本発明の実施例1について図1を参照して説明する。図1は冷凍サイクル装置(冷却サイクル装置)のシステム図を示す。冷凍サイクルの蒸発温度は凍結点以下を意味するものではなく、凍結点以上となる形態も含む。図1に示すように、冷凍サイクル装置は、冷媒を圧縮させて高温高圧とする圧縮工程を行う圧縮機1と、圧縮機1を経た高温高圧の冷媒を凝縮させる凝縮工程を行う凝縮用熱交換器2と、凝縮工程を経た冷媒を膨張させて低圧化させる膨張弁3と、膨張弁3を経た冷媒を蒸発させる蒸発工程を行う蒸発用熱交換器4と、膨張弁3の開度を制御する制御部6とを備えている。制御部6はメモリ60とCPU61とをもつ。   Embodiment 1 of the present invention will be described below with reference to FIG. FIG. 1 shows a system diagram of a refrigeration cycle apparatus (cooling cycle apparatus). The evaporation temperature of the refrigeration cycle does not mean the freezing point or lower, but includes a form in which the evaporation temperature is higher than the freezing point. As shown in FIG. 1, the refrigeration cycle apparatus includes a compressor 1 that performs a compression step of compressing a refrigerant to obtain a high temperature and high pressure, and a heat exchange for condensation that performs a condensation step of condensing the high temperature and high pressure refrigerant that has passed through the compressor 1. 2, expansion valve 3 that expands the pressure of the refrigerant that has undergone the condensing process to lower the pressure, heat exchanger 4 for evaporation that performs the evaporating process of evaporating the refrigerant that has passed through expansion valve 3, and the degree of opening of expansion valve 3 is controlled And a control unit 6 for performing the above operation. The control unit 6 has a memory 60 and a CPU 61.

凝縮用熱交換器2は室内に配置されており、室内熱交換器として機能する。凝縮用熱交換器2はファン2fをもち、室内の空気(媒体)との熱交換性を高めている。蒸発工程を行う蒸発用熱交換器4は、空気と熱交換する空気熱交換器41と、熱源からの熱と熱交換する熱源熱交換器42とを備えている。空気熱交換器41は室外に配置されているため、第1室外熱交換器として機能する。熱源熱交換器42は室外に配置されているため、第2室外熱交換器として機能する。空気熱交換器41はファン41fをもち、室内の空気(媒体)との熱交換性を高めている。   The condensation heat exchanger 2 is disposed indoors and functions as an indoor heat exchanger. The heat exchanger 2 for condensing has a fan 2f and enhances heat exchange with the indoor air (medium). The evaporation heat exchanger 4 that performs the evaporation step includes an air heat exchanger 41 that exchanges heat with air, and a heat source heat exchanger 42 that exchanges heat with heat from the heat source. Since the air heat exchanger 41 is disposed outdoors, it functions as a first outdoor heat exchanger. Since the heat source heat exchanger 42 is disposed outside, it functions as a second outdoor heat exchanger. The air heat exchanger 41 has a fan 41f and enhances heat exchange with indoor air (medium).

熱源熱交換器42は、温水状態の加熱水(加熱液)が流れると共に熱発生源45に繋がる加熱水通路43(加熱液通路)をもつ。熱発生源45はエンジンでも良いし、電気ヒータでも良いし、燃料電池システム、ガスエンジンコージェネ(発電と熱利用)でも良い。加熱水は、熱発生源45から受熱して温水状態とされているため、熱源熱交換器42において冷媒の蒸発を促進させる熱源として機能する。加熱水通路43には供給弁44v(加熱液供給要素)およびポンプ44p(加熱液搬送源)設けられている。供給弁44vの開度およびポンプ44pの駆動力は、熱源熱交換器42に伝達される伝熱量に影響を与える。従って、供給弁44vおよびポンプ44pは、熱源熱交換器42に伝達される伝熱量を調整する熱量調整手段として機能する。   The heat source heat exchanger 42 has a heated water passage 43 (heated fluid passage) that is connected to the heat generation source 45 while flowing heated water (heated liquid) in a hot water state. The heat generation source 45 may be an engine, an electric heater, a fuel cell system, or a gas engine cogeneration (power generation and heat utilization). Since the heated water receives heat from the heat generation source 45 and is in a warm water state, it functions as a heat source that promotes evaporation of the refrigerant in the heat source heat exchanger 42. The heating water passage 43 is provided with a supply valve 44v (heating liquid supply element) and a pump 44p (heating liquid conveyance source). The opening degree of the supply valve 44v and the driving force of the pump 44p affect the amount of heat transferred to the heat source heat exchanger 42. Accordingly, the supply valve 44v and the pump 44p function as a heat amount adjusting unit that adjusts the amount of heat transferred to the heat source heat exchanger 42.

更に図1に示すように、空気熱交換器41が配置されている空気(外気)の温度T1を検知する空気温度センサ51が設けられている。空気熱交換器41における蒸発温度T2を検知する熱交温度センサ52が設けられている。熱交温度センサ52は、空気熱交換器41における冷媒の蒸発を考慮し、空気熱交換器41の出口41o側に設けられている。但しこれに限らず、空気熱交換器41における熱交換通路長さが100として相対表示されるとき、空気熱交換器41の出口41oから入口41iに向けて70以内または50以内の位置に、熱交温度センサ52を配置することもできる。空気温度センサ51および熱交温度センサ52の温度信号は制御部6に入力される。制御部6は第1膨張弁31、第2膨張弁32、圧縮機1、供給弁44v、ポンプ44pを制御する。   Further, as shown in FIG. 1, an air temperature sensor 51 is provided for detecting the temperature T1 of the air (outside air) where the air heat exchanger 41 is arranged. A heat exchange temperature sensor 52 that detects the evaporation temperature T2 in the air heat exchanger 41 is provided. The heat exchanger temperature sensor 52 is provided on the outlet 41o side of the air heat exchanger 41 in consideration of the evaporation of the refrigerant in the air heat exchanger 41. However, the present invention is not limited thereto, and when the heat exchange passage length in the air heat exchanger 41 is relatively displayed as 100, the heat is placed at a position within 70 or 50 from the outlet 41o of the air heat exchanger 41 toward the inlet 41i. An alternating temperature sensor 52 can also be arranged. Temperature signals from the air temperature sensor 51 and the heat exchanger temperature sensor 52 are input to the control unit 6. The control unit 6 controls the first expansion valve 31, the second expansion valve 32, the compressor 1, the supply valve 44v, and the pump 44p.

図1に示すように、空気熱交換器41および熱源熱交換器42は、互いに並列とされているものの、凝縮用熱交換器2に対しては直列とされている。凝縮用熱交換器2と空気熱交換器41との間には第1膨張弁31が設けられている。凝縮用熱交換器2と熱源熱交換器42との間には第2膨張弁32が設けられている。第1膨張弁31および第2膨張弁32は開度が連続的にまたは多段階的に可変な可変弁とすることができるが、開度が100%および0%に切り替えられるオンオフ弁でも良い。   As shown in FIG. 1, the air heat exchanger 41 and the heat source heat exchanger 42 are in parallel with each other, but are in series with the heat exchanger 2 for condensation. A first expansion valve 31 is provided between the condensation heat exchanger 2 and the air heat exchanger 41. A second expansion valve 32 is provided between the condensation heat exchanger 2 and the heat source heat exchanger 42. The first expansion valve 31 and the second expansion valve 32 can be variable valves whose opening degree is variable continuously or in multiple stages, but may be on / off valves whose opening degree can be switched between 100% and 0%.

通常運転モードによれば、圧縮機1が駆動して高温高圧の気体状の冷媒を生成する。圧縮機1で圧縮された気体状の高温高圧の冷媒は、圧縮機1の吐出ポート1oから吐出され、凝縮用熱交換器2において凝縮工程を行い、凝縮熱を放出させる。このように暖房運転が実施される。ファン2fの回転により凝縮熱の放出が確保される。凝縮工程を経た冷媒は、分岐点9aで分岐される。分岐された冷媒は、第1膨張弁31で膨張されて低圧化された後(気液混合状態)に空気熱交換器41に流されて空気熱交換器41において熱交換を行う。また、分岐された冷媒は、第2膨張弁32で膨張されて低圧化された後(気液混合状態)に熱源熱交換器42に流され熱源熱交換器42において熱交換を行う。   According to the normal operation mode, the compressor 1 is driven to generate a high-temperature and high-pressure gaseous refrigerant. The gaseous high-temperature and high-pressure refrigerant compressed by the compressor 1 is discharged from the discharge port 1o of the compressor 1 and performs a condensation step in the condensation heat exchanger 2 to release the condensation heat. Thus, the heating operation is performed. The rotation of the fan 2f ensures the release of condensation heat. The refrigerant that has undergone the condensing step is branched at the branch point 9a. The branched refrigerant is expanded by the first expansion valve 31 and reduced in pressure (gas-liquid mixed state), and then flows into the air heat exchanger 41 to perform heat exchange in the air heat exchanger 41. Further, the branched refrigerant is expanded by the second expansion valve 32 and reduced in pressure (gas-liquid mixed state), and then flows into the heat source heat exchanger 42 to perform heat exchange in the heat source heat exchanger 42.

これにより冷媒の蒸発工程が空気熱交換器41および熱源熱交換器42の双方において実施される。即ち、第1膨張弁31により低圧化された冷媒は、蒸発器としての空気熱交換器41に至り蒸発工程を行い、冷媒の気体化が進行する。第2膨張弁32により低圧化された冷媒は、蒸発器としての熱源熱交換器42に至り蒸発工程を行い、冷媒の気体化が進行する。その後、蒸発が進行した冷媒は圧縮機1の吸込ポート1sに戻り、再び圧縮され、吐出ポート1oから凝縮用熱交換器2に向けて吐出される。このように通常運転モードの暖房運転が行われる。   Thereby, the evaporation process of the refrigerant is performed in both the air heat exchanger 41 and the heat source heat exchanger 42. That is, the refrigerant whose pressure has been reduced by the first expansion valve 31 reaches the air heat exchanger 41 as an evaporator, performs an evaporation process, and gasification of the refrigerant proceeds. The refrigerant whose pressure has been reduced by the second expansion valve 32 reaches the heat source heat exchanger 42 as an evaporator, performs an evaporation process, and the gasification of the refrigerant proceeds. Thereafter, the evaporated refrigerant returns to the suction port 1s of the compressor 1, is compressed again, and is discharged from the discharge port 1o toward the condensation heat exchanger 2. Thus, the heating operation in the normal operation mode is performed.

ここで、上記した通常運転モードの暖房運転が継続していくと、空気熱交換器41付近の空気が空気熱交換器41により冷却される。条件によっては、空気の湿分が空気熱交換器41の表面に霜を生成することがある。このように空気熱交換器41の表面に着霜が発生すると、空気熱交換器41の熱交換効率が減少するため、空気熱交換器41における熱交換効率が低下する。故に、空気熱交換器41における冷媒の蒸発工程が損なわれ、冷媒の蒸発量が抑制され、空気熱交換器41における冷媒の圧力が次第に低下する。この場合、空気熱交換器41における蒸発温度T2(熱交温度センサ52の検知温度)が次第に低下する。従って空気温度T1と空気熱交換器41における蒸発温度T2との間の温度差ΔTが増加する。このため、空気熱交換器41において着霜が発生していことがΔTに基づいて制御部6により検知される。 Here, when the heating operation in the normal operation mode described above continues, the air near the air heat exchanger 41 is cooled by the air heat exchanger 41. Depending on conditions, moisture in the air may generate frost on the surface of the air heat exchanger 41. When frosting occurs on the surface of the air heat exchanger 41 in this manner, the heat exchange efficiency of the air heat exchanger 41 is reduced, so that the heat exchange efficiency in the air heat exchanger 41 is lowered. Therefore, the refrigerant evaporation process in the air heat exchanger 41 is impaired, the refrigerant evaporation amount is suppressed, and the refrigerant pressure in the air heat exchanger 41 gradually decreases. In this case, the evaporation temperature T2 (the temperature detected by the heat exchanger temperature sensor 52) in the air heat exchanger 41 gradually decreases. Therefore, the temperature difference ΔT between the air temperature T1 and the evaporation temperature T2 in the air heat exchanger 41 increases. Therefore, the frost in the air heat exchanger 41 that has occurred is detected by the control unit 6 on the basis of the [Delta] T.

しかしながら本実施例によれば、図1に示すように、熱源(温水状態の加熱水)の熱と冷媒の熱とを熱交換する熱源熱交換器42が設けられている。この場合、冷媒の蒸発工程は、空気と熱交換する空気熱交換器41と、熱源からの熱と熱交換する熱源熱交換器42との双方において行われる。この場合、運転が継続すると、熱源熱交換器42の熱源(温水状態の加熱水)からの熱の伝達により空気熱交換器41の冷媒圧力が増加し、空気熱交換器41の冷媒の温度が上昇してしまうことがある。この場合、空気熱交換器41の表面において着霜が発生していたにもかかわらず、空気温度T1と空気熱交換器41における蒸発温度T2との温度差ΔT(ΔT=T1−T2)が減少する。このため、空気熱交換器41において着霜が発生しているにもかかわらず、当該着霜が良好に検知されないおそれがある。そこで、本実施例によれば、制御部6は暖房運転を実施しつつも、着霜判定モードを定期的または不定期的に行う。この場合、暖房運転中において、制御部6は、第1膨張弁31を経た冷媒を空気熱交換器41に流して空気熱交換器41において熱交換を行うと共に、第2膨張弁32を閉鎖して熱源熱交換器42に冷媒を流さない。あるいは、第2膨張弁32の開度を通常運転モードの暖房運転の場合よりも小さくして、熱源熱交換器42に流れる冷媒量を減少させる。この場合、熱源熱交換器42の熱源(温水状態の加熱水の熱)の熱が空気熱交換器41に積極的に伝播されない。このため、熱源熱交換器42から空気熱交換器41への単位時間当たりの伝熱量は、通常運転モードの暖房運転の場合よりもかなり減少させることができる。   However, according to the present embodiment, as shown in FIG. 1, the heat source heat exchanger 42 for exchanging heat between the heat of the heat source (heated water in the hot water state) and the heat of the refrigerant is provided. In this case, the refrigerant evaporation process is performed in both the air heat exchanger 41 that exchanges heat with air and the heat source heat exchanger 42 that exchanges heat with heat from the heat source. In this case, if the operation is continued, the refrigerant pressure of the air heat exchanger 41 increases due to the transfer of heat from the heat source (heated water in the hot water state) of the heat source heat exchanger 42, and the temperature of the refrigerant of the air heat exchanger 41 increases. May rise. In this case, the temperature difference ΔT (ΔT = T1−T2) between the air temperature T1 and the evaporation temperature T2 in the air heat exchanger 41 is decreased despite the occurrence of frost formation on the surface of the air heat exchanger 41. To do. For this reason, although frost formation has occurred in the air heat exchanger 41, the frost formation may not be detected well. Therefore, according to the present embodiment, the controller 6 performs the frost determination mode regularly or irregularly while performing the heating operation. In this case, during the heating operation, the control unit 6 flows the refrigerant that has passed through the first expansion valve 31 to the air heat exchanger 41 to perform heat exchange in the air heat exchanger 41 and closes the second expansion valve 32. Thus, the refrigerant does not flow through the heat source heat exchanger 42. Or the opening degree of the 2nd expansion valve 32 is made smaller than the case of the heating operation of normal operation mode, and the refrigerant | coolant amount which flows into the heat-source heat exchanger 42 is decreased. In this case, the heat of the heat source (heated water in the hot water state) of the heat source heat exchanger 42 is not actively transmitted to the air heat exchanger 41. For this reason, the heat transfer amount per unit time from the heat source heat exchanger 42 to the air heat exchanger 41 can be considerably reduced as compared with the heating operation in the normal operation mode.

この場合、蒸発工程における熱源は、基本的には空気熱交換器41に依存することになる。このため、仮に、空気熱交換器41の表面に着霜が発生した場合には、空気熱交換器41における熱交換効率が低下する。故に、空気熱交換器41における冷媒の蒸発工程が損なわれ、冷媒蒸発量が低下し、空気熱交換器41における冷媒の圧力が次第に低下する。この場合、空気熱交換器41における蒸発温度、つまり熱交温度センサ52で検知される温度T2が次第に低下する。ここで、空気温度T1は基本的に変動しないと推定されるため、空気温度T1と熱交温度センサ52の温度T2(空気熱交換器41における蒸発温度)との温度差ΔTが増加する。   In this case, the heat source in the evaporation process basically depends on the air heat exchanger 41. For this reason, if frosting occurs on the surface of the air heat exchanger 41, the heat exchange efficiency in the air heat exchanger 41 is lowered. Therefore, the refrigerant evaporation process in the air heat exchanger 41 is impaired, the refrigerant evaporation amount is reduced, and the refrigerant pressure in the air heat exchanger 41 is gradually reduced. In this case, the evaporation temperature in the air heat exchanger 41, that is, the temperature T2 detected by the heat exchange temperature sensor 52 gradually decreases. Here, since it is estimated that the air temperature T1 basically does not fluctuate, the temperature difference ΔT between the air temperature T1 and the temperature T2 of the heat exchange temperature sensor 52 (evaporation temperature in the air heat exchanger 41) increases.

このように空気熱交換器41の表面に着霜が発生すると、第2膨張弁32の閉弁方向への動作により、上記した温度差ΔTが増加する。このため、空気熱交換器41の表面において着霜が発生していることが、ΔTに基づいて、制御部6により良好に検知される。このように通常運転モードの暖房運転を実施しつつも、着霜判定モードを定期的または不定期的に行い、温度差ΔTを求めれば、ΔTの大きさに基づいて空気熱交換器41の表面における着霜の有無は検知される。ここで、ΔTの大きさが所定値以上であれば、空気熱交換器41の表面において着霜していると判定される。ΔTの大きさが所定値未満であれば、空気熱交換器41の表面において着霜していないと判定される。空気熱交換器41の着霜が検知されると、空気熱交換器41の表面における霜を低減または解消させる除霜(デフロスト)処理を適宜行うことが好ましい。   When frost forms on the surface of the air heat exchanger 41 as described above, the temperature difference ΔT described above increases due to the operation of the second expansion valve 32 in the valve closing direction. For this reason, it is well detected by the control unit 6 based on ΔT that frost formation has occurred on the surface of the air heat exchanger 41. In this way, while performing the heating operation in the normal operation mode, if the frosting determination mode is performed periodically or irregularly and the temperature difference ΔT is obtained, the surface of the air heat exchanger 41 is based on the magnitude of ΔT. The presence or absence of frost formation in is detected. Here, if the magnitude of ΔT is equal to or greater than a predetermined value, it is determined that frost is formed on the surface of the air heat exchanger 41. If the magnitude of ΔT is less than the predetermined value, it is determined that frost is not formed on the surface of the air heat exchanger 41. When frost formation on the air heat exchanger 41 is detected, it is preferable to appropriately perform a defrosting (defrost) process for reducing or eliminating frost on the surface of the air heat exchanger 41.

なお、圧縮機1の回転数が低下し、冷凍サイクル装置における冷媒循環量が相対的に少ないときには、ΔTが小さくなる傾向がある。このため空気熱交換器41の表面に着霜していたとしても、着霜が検知されにくくなる傾向がある。そこで本実施例によれば、冷凍サイクル装置における単位時間当たりの冷媒循環量と、着霜の有無を判定するΔTの大きさとの関係を、制御部6に搭載されているメモリ60の所定のエリアに格納しておくことができる。そして、着霜判定モードにおいては、冷凍サイクル装置における単位時間当たりの冷媒循環量を求め、求めた冷媒循環量の大きさに応じて、着霜の有無を判定するΔTに関する所定値の大きさを、制御部6は設定することができる。   In addition, when the rotation speed of the compressor 1 decreases and the refrigerant circulation amount in the refrigeration cycle apparatus is relatively small, ΔT tends to be small. For this reason, even if frost is formed on the surface of the air heat exchanger 41, frost formation tends to be difficult to detect. Therefore, according to the present embodiment, the relationship between the refrigerant circulation amount per unit time in the refrigeration cycle apparatus and the magnitude of ΔT for determining the presence or absence of frost formation is determined in a predetermined area of the memory 60 mounted in the control unit 6. Can be stored. In the frosting determination mode, the refrigerant circulation amount per unit time in the refrigeration cycle apparatus is obtained, and the magnitude of a predetermined value related to ΔT that determines the presence or absence of frosting is determined according to the obtained refrigerant circulation amount. The control unit 6 can be set.

図2および図3は実機で行った試験例のデータを示す。図2の横軸は時間(相対表示)を示し、縦軸は温度(相対表示)を示す。空気温度T1の変化は特性線T10として示される。空気熱交換器41の蒸発温度T2は特性線T20として示される。時刻t0〜時刻t1では第1膨張弁31および第2膨張弁32が開放され、凝縮用熱交換器2で凝縮熱を放出する通常運転モードの暖房運転が実施されている。この場合には、熱源熱交換器42を流れる加熱水通路43の温水状態の加熱水の熱の影響を受けるため、時刻t0〜時刻t1においては空気熱交換器41の温度T2が相対的に高温となる。時刻t1〜時刻t2において着霜判定モードAが実施されている。着霜判定モードAでは、時刻t1において第1膨張弁31が開放されるものの、第2膨張弁32が開放状態から閉鎖状態に切り替えられる。着霜判定モードAでは、第2膨張弁32が閉鎖されているため、基本的には熱源熱交換器42に冷媒が流れなくなる。このため、熱源熱交換器42を流れる温水状態の加熱水(熱源)の熱の影響を、空気熱交換器41の冷媒は受けにくい。故に、時刻t1〜時刻t2間において空気熱交換器41の温度T2が相対的に低温化する。しかしまだ空気熱交換器41の表面に着霜されていないため、図2に示す温度差ΔTa(ΔTa=T1−T2)は小さいといえる。   FIG. 2 and FIG. 3 show data of test examples performed on actual machines. The horizontal axis of FIG. 2 indicates time (relative display), and the vertical axis indicates temperature (relative display). The change in the air temperature T1 is shown as a characteristic line T10. The evaporation temperature T2 of the air heat exchanger 41 is shown as a characteristic line T20. From time t0 to time t1, the first expansion valve 31 and the second expansion valve 32 are opened, and the heating operation in the normal operation mode in which the condensation heat exchanger 2 releases the heat of condensation is performed. In this case, the temperature T2 of the air heat exchanger 41 is relatively high from time t0 to time t1 because it is affected by the heat of the heated water in the heated water passage 43 flowing through the heat source heat exchanger 42. It becomes. The frost determination mode A is performed from time t1 to time t2. In the frosting determination mode A, the first expansion valve 31 is opened at time t1, but the second expansion valve 32 is switched from the open state to the closed state. In the frosting determination mode A, since the second expansion valve 32 is closed, the refrigerant basically does not flow to the heat source heat exchanger 42. For this reason, the refrigerant of the air heat exchanger 41 is not easily affected by the heat of the heated water (heat source) in the hot water state flowing through the heat source heat exchanger 42. Therefore, the temperature T2 of the air heat exchanger 41 is relatively lowered between time t1 and time t2. However, since the surface of the air heat exchanger 41 is not yet frosted, it can be said that the temperature difference ΔTa (ΔTa = T1−T2) shown in FIG. 2 is small.

時刻t2〜時刻t3では着霜判定モードAが終了しており、通常運転モードの暖房運転が実施されている。従って第1膨張弁31および第2膨張弁32が開放され、凝縮用熱交換器2で凝縮熱を放出する暖房運転が実施されている。時刻t2〜時刻t3の間に、空気熱交換器41の表面に着霜させた。時刻t3では第1膨張弁31が開放されているものの、第2膨張弁32が閉鎖される。即ち、時刻t3〜時刻t4において着霜判定モードBが実施されている。着霜判定モードBでは、前記したように第2膨張弁32が閉鎖され、基本的には熱源熱交換器42に冷媒が流れなくなる。このため、熱源熱交換器42を流れる温水状態の加熱水(熱源)の熱の影響を、空気熱交換器41は受けにくい。このため、時刻t3〜時刻t4間において特性線T20として示すように、空気熱交換器41の温度T2が相対的に低温化される。この場合、着霜判定モードBにおけるΔTb(ΔTb=T1−T2)は、着霜判定モードAにおけるΔTaよりも増加する(ΔTb>ΔTa)。このように本試験例によれば、空気熱交換器41の表面に着霜されていない場合には、ΔT(ΔT=T1−T2)は小さいものとして制御部6に検知される。これにより着霜が検知される。これに対して空気熱交換器41の表面に着霜されている場合には、ΔTb、即ち、ΔT(ΔT=T1−T2)は大きいものとして制御部6に検知される。   From time t2 to time t3, the frost determination mode A is completed, and the heating operation in the normal operation mode is performed. Therefore, the 1st expansion valve 31 and the 2nd expansion valve 32 are opened, and the heating operation which discharge | releases condensation heat with the heat exchanger 2 for condensation is implemented. The surface of the air heat exchanger 41 was frosted between time t2 and time t3. At time t3, the first expansion valve 31 is opened, but the second expansion valve 32 is closed. That is, the frosting determination mode B is performed from time t3 to time t4. In the frosting determination mode B, the second expansion valve 32 is closed as described above, and basically the refrigerant does not flow to the heat source heat exchanger 42. For this reason, the air heat exchanger 41 is not easily affected by the heat of the heated water (heat source) in the hot water state flowing through the heat source heat exchanger 42. For this reason, between the time t3 and the time t4, as shown as the characteristic line T20, the temperature T2 of the air heat exchanger 41 is relatively lowered. In this case, ΔTb (ΔTb = T1−T2) in the frost determination mode B is larger than ΔTa in the frost determination mode A (ΔTb> ΔTa). Thus, according to this test example, when the surface of the air heat exchanger 41 is not frosted, ΔT (ΔT = T1−T2) is detected by the control unit 6 as being small. Thereby, frost formation is detected. On the other hand, when the surface of the air heat exchanger 41 is frosted, ΔTb, that is, ΔT (ΔT = T1-T2) is detected by the control unit 6 as being large.

図3の横軸は時間(相対表示)を示し、縦軸は温度(相対表示)および冷媒の圧力(相対表示)を示す。図3において、特性線P1は圧縮機1の吐出ポート1o側の高圧冷媒の圧力を示す。特性線P2は圧縮機1の吸込ポート1s側の低圧冷媒の圧力を示す。特性線T40は凝縮用熱交換器2からの空気の温度(吹出温度)T4を示す。図3から理解できるように、暖房運転中において着霜判定モードA,Bを実施したとしても、凝縮用熱交換器2からの空気の温度は特性線T40として示されているように、あまり変化がない。つまり暖房運転中において着霜判定モードA,Bを実施したとしても、暖房運転能力の低下を抑制させることができることを意味する。   The horizontal axis of FIG. 3 indicates time (relative display), and the vertical axis indicates temperature (relative display) and refrigerant pressure (relative display). In FIG. 3, the characteristic line P <b> 1 indicates the pressure of the high-pressure refrigerant on the discharge port 1 o side of the compressor 1. A characteristic line P2 indicates the pressure of the low-pressure refrigerant on the suction port 1s side of the compressor 1. A characteristic line T40 indicates the temperature (blowing temperature) T4 of the air from the heat exchanger 2 for condensation. As can be understood from FIG. 3, even if the frosting determination modes A and B are performed during the heating operation, the temperature of the air from the heat exchanger 2 for condensation changes so much as shown by the characteristic line T40. There is no. That is, even if the frost determination modes A and B are performed during the heating operation, it means that the decrease in the heating operation capability can be suppressed.

本実施例では次の形態を採用しても良い。   In the present embodiment, the following form may be adopted.

(i)上記した温度差ΔTの判定は、着霜判定モードを開始してから設定時間経過後に行う。設定時間としては例えば3分、5分、7分が例示される。設定時間としては1〜10分が望ましく、より望ましくは2〜7分、3〜5分が良い。設定時間が短すぎると、温度差が小さすぎて判定精度が落ちるので好ましくない。設定時間が長すぎると、通常運転モードの停止時間が長くなり、暖房運転上好ましくない。 (I) The above-described determination of the temperature difference ΔT is made after a set time has elapsed since the start of the frost determination mode. Examples of the set time include 3 minutes, 5 minutes, and 7 minutes. The set time is preferably 1 to 10 minutes, more preferably 2 to 7 minutes and 3 to 5 minutes. If the set time is too short, the temperature difference is too small and the determination accuracy is lowered. If the set time is too long, the stop time in the normal operation mode becomes long, which is not preferable for heating operation.

(ii)上記した温度差ΔTの測定は、空気熱交換器41の蒸発温度が安定したときに行うこともできる。蒸発温度が安定したときとは、例えば、設定時間(例えば10秒間)ごとに温度変化量を計測し、1分間あたりの温度変化量がプラスマイナス1℃以内となったときをいう。なお、両温度の計測時間間隔は設定時間よりもはるかに短い時間(例えば0.1秒)で行う。 (Ii) The above-described measurement of the temperature difference ΔT can also be performed when the evaporation temperature of the air heat exchanger 41 is stabilized. When the evaporation temperature is stabilized, for example, the temperature change amount is measured every set time (for example, 10 seconds), and the temperature change amount per minute is within ± 1 ° C. The measurement time interval for both temperatures is much shorter than the set time (for example, 0.1 second).

(iii)空気温度と空気熱交換器41の蒸発温度との温度差ΔTで判定する代わりに、着霜判定モード開始の空気熱交換器41の蒸発温度と、着霜判定モード開始から設定時間経過後における空気熱交換器41の蒸発温度との温度差で判定しても良い。この場合も上記した(i)(ii)は同様に当てはまる。 (Iii) Instead of determining by the temperature difference ΔT between the air temperature and the evaporation temperature of the air heat exchanger 41, the evaporating temperature of the air heat exchanger 41 at the start of the frost determination mode and the set time elapse from the start of the frost determination mode. You may determine by the temperature difference with the evaporation temperature of the air heat exchanger 41 after. In this case, the above (i) and (ii) are similarly applied.

(iv)空気温度と空気熱交換器41の蒸発温度との温度差ΔTで判定する代わりに、着霜判定モード開始における空気温度と空気熱交換器41の蒸発温度との温度差ΔToを求め、着霜判定モード開始から設定時間経過後における空気温度と空気熱交換器の蒸発温度との温度差ΔTを求め、両者の比(ΔT/ΔTo)が設定値よりも大きいか否かで判定しても良い。例えば、当該比が2より大きいと、制御部6は着霜していると判定する。この場合も上記した(i)(ii)は同様に当てはまる。 (Iv) Instead of determining by the temperature difference ΔT between the air temperature and the evaporation temperature of the air heat exchanger 41, the temperature difference ΔTo between the air temperature at the start of the frosting determination mode and the evaporation temperature of the air heat exchanger 41 is obtained, The temperature difference ΔT between the air temperature and the evaporation temperature of the air heat exchanger after the set time has elapsed from the start of the frosting determination mode is determined, and it is determined whether or not the ratio (ΔT / ΔTo) between the two is greater than the set value. Also good. For example, if the ratio is greater than 2, the control unit 6 determines that frost formation has occurred. In this case, the above (i) and (ii) are similarly applied.

(v)空気温度と空気熱交換器41の蒸発温度との温度差ΔTで判定する代わりに、着霜判定モード開始時における空気熱交換器41の蒸発温度の変化率で着霜の有無を判定しても良い。例えば変化率が2℃/分よりも大きいと、着霜していると判定する。この変化率は、着霜判定モード開始してから設定時間経過後までの変化率とすることができる。設定時間としては温度差による判定の時よりも短い時間(例えば1分間)で行うことができる。 (V) Instead of determining by the temperature difference ΔT between the air temperature and the evaporation temperature of the air heat exchanger 41, the presence or absence of frost is determined by the rate of change of the evaporation temperature of the air heat exchanger 41 at the start of the frost determination mode. You may do it. For example, if the rate of change is greater than 2 ° C./min, it is determined that frost formation has occurred. This rate of change can be the rate of change from the start of the frost determination mode until the set time has elapsed. As the set time, it can be performed in a shorter time (for example, 1 minute) than the determination by the temperature difference.

図4は実施例3を示す。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。図4に示すように、圧縮機1の吐出ポート1oと空気熱交換器41の入口側とを繋ぐバイパス通路71が凝縮用熱交換器2を迂回するように設けられている。バイパス通路71にはバイパス弁72が設けられている。バイパス弁72は、開度が連続的または段階的に可変とされる可変弁でも良いし、あるいは、開度が100%または0%に切り替えるオンオフ弁でも良い。通常運転モードの暖房運転を実施するときには、バイパス弁72を閉鎖している。故に圧縮機1で圧縮された高温高圧の冷媒はバイパス通路71を介して空気熱交換器41には供給されない。これに対して、着霜判定モードにおいて着霜有りと判定された後には、制御部6は除霜モードを設定時間実施する。除霜モードを実施するときには、制御部6はバイパス弁72の開度を開放させる。開度は100%でも良いし、僅かの開度でも良い。故に、圧縮機1で圧縮された高温高圧の気体状の冷媒はバイパス通路71およびバイパス弁72を介して空気熱交換器41の入口41i側に向けて供給される。この結果、圧縮機1で圧縮されバイパス通路7を通過した高温高圧の気体状の冷媒は、凝縮用熱交換器2において凝縮工程を終えた冷媒と合流点9eで合流する。この結果、凝縮工程を終えた冷媒は昇温された状態で、空気熱交換器41の入口41iに供給される。これにより空気熱交換器41の表面に着霜している霜が低減または除去される。除霜が終了すれば、バイパス弁72を閉鎖させる。   FIG. 4 shows a third embodiment. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. As shown in FIG. 4, a bypass passage 71 that connects the discharge port 1 o of the compressor 1 and the inlet side of the air heat exchanger 41 is provided so as to bypass the condensation heat exchanger 2. A bypass valve 72 is provided in the bypass passage 71. The bypass valve 72 may be a variable valve whose opening is variable continuously or stepwise, or may be an on / off valve whose opening is switched to 100% or 0%. When performing the heating operation in the normal operation mode, the bypass valve 72 is closed. Therefore, the high-temperature and high-pressure refrigerant compressed by the compressor 1 is not supplied to the air heat exchanger 41 through the bypass passage 71. In contrast, after it is determined that frost is present in the frost determination mode, the control unit 6 performs the defrost mode for a set time. When carrying out the defrosting mode, the controller 6 opens the opening of the bypass valve 72. The opening degree may be 100% or a slight opening degree. Therefore, the high-temperature and high-pressure gaseous refrigerant compressed by the compressor 1 is supplied toward the inlet 41 i side of the air heat exchanger 41 through the bypass passage 71 and the bypass valve 72. As a result, the high-temperature and high-pressure gaseous refrigerant that has been compressed by the compressor 1 and passed through the bypass passage 7 is merged with the refrigerant that has completed the condensation process in the condensation heat exchanger 2 at the junction 9e. As a result, the refrigerant that has finished the condensing step is supplied to the inlet 41i of the air heat exchanger 41 in a heated state. Thereby, the frost frosting on the surface of the air heat exchanger 41 is reduced or removed. When the defrosting is completed, the bypass valve 72 is closed.

図5は実施例4の制御形態Aを示す。図5は制御部6のCPU61が実行する制御形態Aのフローチャートを示す。YはYESに相当する。NはNOに相当する。図6に示すように、先ず、制御部6は電源投入と共に通常運転モードの暖房運転を実施する(ステップS2)。制御部6は、暖房運転の開始から設定時間β1(例えば30分)以上経過したか否か、または、除霜モードの終了から設定時間β1経過したか否か、または、着霜判定モード(着霜無し)の終了から設定時間β1(例えば30分)以上経過したか否か、判定する(ステップS4)。設定時間β1経過していれば(ステップS4のYES)、制御部6は着霜判定モードを実施する(ステップS6)。着霜判定モードでは、制御部6は、第1膨張弁31を開放させつつ、第2膨張弁32を閉鎖するか、開度を暖房通常モードにおける開度よりもかなり小さくするとともに、空気温度センサ51で検知された空気温度T1と、熱交温度センサ52により検知された温度T2とを読み込む。T1−T2の温度差ΔTを求める。次に、ΔTがしきい値温度α1(例えば7℃)よりも大きいか否か判定する(ステップS8)。温度差ΔTがしきい値温度α1(例えば7℃)よりも大きければ、制御部6は、空気熱交換器41の表面に着霜されていると推定し、制御部6は除霜モードを実行する(ステップS10)。除霜モードが終了すれば、ステップS4に戻る。ΔT(ΔT=T1−T2)がしきい値温度α1(例えば7℃)以下であれば、空気熱交換器41の表面に着霜されていないと推定し、制御部6は除霜モードを実行せず、ステップS4に戻る。ステップS8は着霜判定手段として機能する。 FIG. 5 shows a control mode A of the fourth embodiment. FIG. 5 shows a flowchart of a control form A executed by the CPU 61 of the control unit 6. Y corresponds to YES. N corresponds to NO. As shown in FIG. 6, first, the controller 6 performs heating operation in the normal operation mode when the power is turned on (step S2). The controller 6 determines whether or not a set time β1 (for example, 30 minutes) has elapsed since the start of the heating operation, whether or not the set time β1 has elapsed since the end of the defrosting mode, It is determined whether or not a set time β1 (for example, 30 minutes) has elapsed since the end of (no frost) (step S4). If the set time β1 has elapsed (YES in step S4), the control unit 6 performs a frost determination mode (step S6). The frost determination mode, the control unit 6, while opening the first expansion valve 31, or closing the second expansion valve 32, as well as much smaller than the opening degree of the opening degree of heating the normal mode, the air temperature sensor The air temperature T1 detected at 51 and the temperature T2 detected by the heat exchanger temperature sensor 52 are read. A temperature difference ΔT between T1 and T2 is obtained. Next, it is determined whether or not ΔT is higher than a threshold temperature α1 (for example, 7 ° C.) (step S8). If the temperature difference ΔT is larger than the threshold temperature α1 (for example, 7 ° C.), the control unit 6 estimates that the surface of the air heat exchanger 41 is frosted, and the control unit 6 executes the defrosting mode. (Step S10). When the defrosting mode ends, the process returns to step S4. If ΔT (ΔT = T1−T2) is equal to or lower than a threshold temperature α1 (for example, 7 ° C.), it is estimated that the surface of the air heat exchanger 41 is not frosted, and the control unit 6 executes the defrosting mode. Without returning to step S4. Step S8 functions as frost formation determination means.

図6は実施例4の制御形態Bを示す。図6は制御部6のCPU61が実行する制御形態Bのフローチャートを示す。図6に示すように、先ず、制御部6は電源投入と共に通常運転モードの暖房運転を実施する(ステップSB2)。制御部6は、暖房運転の開始から設定時間β1(例えば30分)以上経過したか否か、または、除霜モードの終了から設定時間β1経過したか否か、または、着霜判定モード(着霜無し)の終了から設定時間β1(例えば30分)以上経過したか否か、判定する(ステップSB4)。設定時間β1経過していれば、制御部6は着霜判定モードを実施する(ステップSB6)。着霜判定モードでは、制御部6は、第1膨張弁31を開放させつつ、第2膨張弁32を閉鎖するか、あるいは、開度を暖房通常モードの暖房運転における開度よりもかなり小さくする。着霜判定モードを実行する回数をカウントしており、着霜判定モードの連続実行回数がしきい値回数η1未満であれば(ステップSB8のNO)、空気熱交換器41の表面において着霜していないと推定されるため、制御部6は除霜モードを実行せず、ステップSB4に戻る。しかし着霜判定モードが連続実行回数がしきい値回数η1以上であれば(ステップSB8のYES)、空気熱交換器41の表面において着霜している可能性が高いと推定されるため、制御部6は除霜モードを実行する(ステップSB10)。除霜モードが終了すれば、制御部6はステップSB4に戻る。ここで、除霜モードが実行されると、着霜判定モードの連続実行回数のカウント数はリセットされる(着霜判定モードにより着霜判定されて除霜モードを実行してもリセットされる)。この制御を行う理由は、着霜判定モードで万一着霜が見逃されても(例えば、冷媒不足などの場合は着霜判定ミスが生じるおそれがある)除霜を確実に行うためである。   FIG. 6 shows a control mode B of the fourth embodiment. FIG. 6 shows a flowchart of a control mode B executed by the CPU 61 of the control unit 6. As shown in FIG. 6, first, the controller 6 performs heating operation in the normal operation mode when the power is turned on (step SB2). The controller 6 determines whether or not a set time β1 (for example, 30 minutes) has elapsed since the start of the heating operation, whether or not the set time β1 has elapsed since the end of the defrosting mode, It is determined whether or not a set time β1 (for example, 30 minutes) has elapsed since the end of (no frost) (step SB4). If setting time (beta) 1 has passed, the control part 6 will implement frosting determination mode (step SB6). In the frosting determination mode, the controller 6 closes the second expansion valve 32 while opening the first expansion valve 31, or makes the opening degree considerably smaller than the opening degree in the heating operation in the heating normal mode. . If the number of times that the frosting determination mode is executed is counted and the number of continuous executions of the frosting determination mode is less than the threshold number η1 (NO in step SB8), the surface of the air heat exchanger 41 is frosted. Since it is estimated that it is not, the control part 6 does not perform defrost mode, but returns to step SB4. However, if the number of continuous executions in the frosting determination mode is equal to or greater than the threshold number η1 (YES in step SB8), it is estimated that there is a high possibility of frosting on the surface of the air heat exchanger 41. Unit 6 executes the defrosting mode (step SB10). If defrost mode is complete | finished, the control part 6 will return to step SB4. Here, when the defrost mode is executed, the count number of the continuous execution times of the frost determination mode is reset (reset even if the frost determination is performed in the frost determination mode and the defrost mode is executed). . The reason for performing this control is to reliably perform defrosting even if frost formation is missed in the frost determination mode (for example, there is a possibility that a frost determination error may occur in the case of insufficient refrigerant).

図7は実施例4の制御形態Cを示す。図7は制御部6のCPU61が実行する制御形態Cのフローチャートを示す。図7に示すように、先ず、制御部6は電源投入と共に通常運転モードの暖房運転を実施する(ステップSC2)。制御部6は、暖房運転の開始から設定時間β1(例えば30分)以上経過したか否か、または、除霜モードの終了から設定時間β1経過したか否か、または、着霜判定モード(着霜無し)の終了から設定時間β1(例えば30分)以上経過したか否か、判定する(ステップS4B)。設定時間β1経過していれば、制御部6は着霜判定モードを実施する(ステップSC6)。着霜判定モードでは、制御部6は、第1膨張弁31を開放させつつ、第2膨張弁32を閉鎖するか開度を暖房通常モードにおける開度よりもかなり小さくする。更に加熱水回路43の供給弁44vを閉鎖する(ステップSC7)。場合によっては、供給弁44vの開度を通常運転モードの暖房運転の場合よりも小さくさせる。これによりエンジン等の熱発生源45の加熱水(熱源)の熱が空気熱交換器41に伝達されることが更に抑制される。   FIG. 7 shows a control mode C of the fourth embodiment. FIG. 7 shows a flowchart of a control mode C executed by the CPU 61 of the control unit 6. As shown in FIG. 7, first, the controller 6 performs heating operation in the normal operation mode when the power is turned on (step SC2). The controller 6 determines whether or not a set time β1 (for example, 30 minutes) has elapsed since the start of the heating operation, whether or not the set time β1 has elapsed since the end of the defrosting mode, It is determined whether or not a set time β1 (for example, 30 minutes) has elapsed since the end of (no frost) (step S4B). If setting time (beta) 1 has passed, the control part 6 will implement frost formation determination mode (step SC6). In the frosting determination mode, the control unit 6 opens the first expansion valve 31 and closes the second expansion valve 32 or makes the opening degree considerably smaller than the opening degree in the heating normal mode. Further, the supply valve 44v of the heating water circuit 43 is closed (step SC7). In some cases, the opening of the supply valve 44v is made smaller than in the heating operation in the normal operation mode. This further suppresses the heat of the heating water (heat source) of the heat generation source 45 such as the engine from being transmitted to the air heat exchanger 41.

更に、上記した着霜判定モードでは、空気温度T1と熱交温度センサ52の温度T2を読み込む。T1−T2であるΔTがしきい値温度α1(例えば7℃)以下であれば(ステップSC8のNO)、除霜モードを実行せずに、通常運転モードの暖房運転を継続させるため、供給弁44vの開度が通常運転モードの暖房運転の開度に戻るように、供給弁44vを開放させ(ステップSC12)、ステップSC4に戻る。これに対して、ΔTがしきい値温度α1(例えば7℃)よりも大きければ(ステップSC8のYES)、空気熱交換器41の表面に着霜されていると推定し、制御部6は除霜モードを実行する(ステップSC10)。なお、制御形態Cによれば、ステップSC7において供給弁44vを閉鎖しステップSC12において供給弁44vを開放しているが、これに限らず、供給弁44vの開度を維持したまま、ステップSC7において加熱水通路43のポンプ44pの通水量を0または低減させても良い。ステップSC12においてポンプ44pの通水量を通常運転モードの暖房運転の通水量に戻す。   Furthermore, in the frosting determination mode described above, the air temperature T1 and the temperature T2 of the heat exchange temperature sensor 52 are read. If ΔT, which is T1-T2, is equal to or lower than a threshold temperature α1 (eg, 7 ° C.) (NO in step SC8), the supply valve is used to continue the heating operation in the normal operation mode without executing the defrost mode. The supply valve 44v is opened so that the opening degree of 44v returns to the opening degree of the heating operation in the normal operation mode (step SC12), and the process returns to step SC4. On the other hand, if ΔT is larger than the threshold temperature α1 (for example, 7 ° C.) (YES in step SC8), it is estimated that the surface of the air heat exchanger 41 is frosted, and the control unit 6 removes it. The frost mode is executed (step SC10). According to the control mode C, the supply valve 44v is closed in step SC7 and the supply valve 44v is opened in step SC12. However, the present invention is not limited to this. In step SC7, the opening degree of the supply valve 44v is maintained. The water flow rate of the pump 44p in the heating water passage 43 may be zero or reduced. In step SC12, the water flow rate of the pump 44p is returned to the water flow rate of the heating operation in the normal operation mode.

図8は実施例5を示す。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。熱源熱交換器42は、燃料電池システム46の貯湯槽で生成される温水が流れる加熱水流路46aをもつ。加熱水流路46aを流れる温水の熱は、熱源熱交換器42において冷媒の蒸発を促進させる熱源として機能する。加熱水流路46aには温水供給弁47vおよびポンプ47pが設けられている。通常運転モードの暖房運転によれば、温水供給弁47vを開放させると共にポンプ47pを駆動させ、熱源熱交換器42に温水を供給し、熱源熱交換器42における冷媒の気化を促進させる。着霜判定モードによれば、温水供給弁47vを閉鎖させると共にポンプ47pをオフとする。あるいは、温水供給弁47vの開度およびポンプ47pの単位時間当たりの回転数を、通常運転モードの暖房運転の場合よりも低減させる。これにより着霜判定モードにおいて熱源熱交換器42から空気熱交換器41への伝熱が抑制される。前述したように空気熱交換器41への伝熱が抑制されると、ΔTが増加し、着霜の検知精度が高まる。   FIG. 8 shows a fifth embodiment. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. The heat source heat exchanger 42 has a heated water passage 46 a through which hot water generated in the hot water storage tank of the fuel cell system 46 flows. The heat of the hot water flowing through the heating water passage 46a functions as a heat source that promotes evaporation of the refrigerant in the heat source heat exchanger 42. The heated water passage 46a is provided with a hot water supply valve 47v and a pump 47p. According to the heating operation in the normal operation mode, the hot water supply valve 47v is opened and the pump 47p is driven to supply hot water to the heat source heat exchanger 42, thereby promoting the vaporization of the refrigerant in the heat source heat exchanger 42. According to the frosting determination mode, the hot water supply valve 47v is closed and the pump 47p is turned off. Alternatively, the opening degree of the hot water supply valve 47v and the rotational speed per unit time of the pump 47p are reduced as compared with the heating operation in the normal operation mode. Thereby, heat transfer from the heat source heat exchanger 42 to the air heat exchanger 41 is suppressed in the frost determination mode. As described above, when the heat transfer to the air heat exchanger 41 is suppressed, ΔT increases and the detection accuracy of frost increases.

図9は実施例6を示す。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。熱源熱交換器42はヒータ48をもつ。ヒータ48の熱は、熱源熱交換器42において冷媒の蒸発を促進させる熱源として機能する。通常運転モードの暖房運転によれば、ヒータ48を発熱させて、熱源熱交換器42における冷媒の気化を促進させる。着霜判定モードによれば、ヒータ48をオフとするか、あるいは、ヒータ48の発熱量を通常運転モードの暖房運転の場合よりも低減させる。これにより着霜判定モードにおいて熱源熱交換器42から空気熱交換器41への伝熱が抑制される。   FIG. 9 shows a sixth embodiment. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. The heat source heat exchanger 42 has a heater 48. The heat of the heater 48 functions as a heat source that promotes evaporation of the refrigerant in the heat source heat exchanger 42. According to the heating operation in the normal operation mode, the heater 48 generates heat, and the vaporization of the refrigerant in the heat source heat exchanger 42 is promoted. According to the frosting determination mode, the heater 48 is turned off or the amount of heat generated by the heater 48 is reduced as compared with the heating operation in the normal operation mode. Thereby, heat transfer from the heat source heat exchanger 42 to the air heat exchanger 41 is suppressed in the frost determination mode.

実施例7について図1を準用して説明する。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。上記した空気熱交換器41の表面に着霜しているか否かを判定する着霜判定モードを実施するにあたり、図1に示す第1膨張弁31を開放させつつ、第2膨張弁32の開度を閉じるか低下させる。この場合、熱源熱交換器42に流れる単位時間当たりの冷媒流量は、通常運転モード(通常暖房運転)の場合よりも停止または減少する。この場合、冷凍サイクル装置における冷媒循環量が低下するおそれがある。結果として、蒸発用熱交換器4を流れる冷媒の単位時間当たりの流量が低下し、蒸発工程を行う蒸発用熱交換器4における蒸発量が大きく低下するおそれがある。この場合、着霜判定モードを実施するとき、冷凍サイクル装置による暖房能力が低下するおそれがある。   Example 7 will be described with reference to FIG. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. In carrying out the frosting determination mode for determining whether or not the surface of the air heat exchanger 41 is frosted, the second expansion valve 32 is opened while the first expansion valve 31 shown in FIG. 1 is opened. Close or lower the degree. In this case, the refrigerant flow rate per unit time flowing through the heat source heat exchanger 42 is stopped or reduced as compared with the normal operation mode (normal heating operation). In this case, the refrigerant circulation amount in the refrigeration cycle apparatus may be reduced. As a result, the flow rate per unit time of the refrigerant flowing through the evaporating heat exchanger 4 is decreased, and the evaporation amount in the evaporating heat exchanger 4 performing the evaporating process may be greatly decreased. In this case, when carrying out the frost determination mode, the heating capacity of the refrigeration cycle apparatus may be reduced.

そこで、本実施例によれば、制御部6が第1制御形態を実施する。第1制御形態によれば、着霜判定モードにおいて、圧縮機1の回転数を基本的には維持しつつ、第2膨張弁32の開度を閉鎖するか低減させると共に、空気熱交換器41に繋がる第1膨張弁31の開度を通常運転モードの暖房運転の場合よりも増加させる。これにより着霜判定モードにおいて空気熱交換器41を流れる単位時間当たりの冷媒流量が、通常運転モードの暖房運転の場合よりも増加する。ここで、空気熱交換器41を流れる単位時間当たりの冷媒流量としては、通常運転モードの暖房運転の場合よりも、例えば、3〜60%程度、5〜30%程度増加させることができる。この結果、蒸発工程を行う蒸発用熱交換器4の空気熱交換器41を流れる冷媒の単位時間当たりの流量が確保される。よって蒸発工程を行う蒸発用熱交換器4における蒸発量が確保される。この場合、凝縮工程を行う凝縮用熱交換器2からの凝縮熱の放出量が低下することが抑制される。よって、着霜判定モードを実施しつつも、冷凍サイクル装置の暖房能力低下が抑制される。   Therefore, according to the present embodiment, the control unit 6 implements the first control mode. According to the first control mode, in the frost determination mode, the opening degree of the second expansion valve 32 is closed or reduced while basically maintaining the rotational speed of the compressor 1, and the air heat exchanger 41. The opening degree of the first expansion valve 31 connected to is increased as compared with the heating operation in the normal operation mode. Thereby, the refrigerant | coolant flow rate per unit time which flows through the air heat exchanger 41 in frost formation determination mode increases from the case of the heating operation in normal operation mode. Here, the refrigerant flow rate per unit time flowing through the air heat exchanger 41 can be increased by, for example, about 3 to 60% or about 5 to 30%, compared to the heating operation in the normal operation mode. As a result, the flow rate per unit time of the refrigerant flowing through the air heat exchanger 41 of the evaporation heat exchanger 4 that performs the evaporation step is ensured. Therefore, the evaporation amount in the evaporation heat exchanger 4 that performs the evaporation process is secured. In this case, a decrease in the amount of condensation heat released from the condensation heat exchanger 2 that performs the condensation step is suppressed. Therefore, a decrease in the heating capacity of the refrigeration cycle apparatus is suppressed while the frost determination mode is performed.

実施例8について図1を準用して説明する。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。上記した空気熱交換器41の表面に着霜しているか否かを判定する着霜判定モードを実施するにあたり、第2膨張弁32の開度を閉じるか低下させる。この場合、熱源熱交換器42に流れる単位時間当たりの冷媒流量は、通常運転モード(通常暖房運転)の場合よりも停止または減少する。この場合、冷凍サイクル装置における冷媒循環量が低下するおそれがある。結果として、凝縮用熱交換器2を流れる冷媒の単位時間当たりの流量が低下するおそれがある。この場合、凝縮工程を行う凝縮用熱交換器2からの凝縮熱の単位時間当たりの熱放出量が低下し、冷凍サイクル装置による暖房能力が低下するおそれがある。   Example 8 will be described with reference to FIG. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. In carrying out the frosting determination mode for determining whether or not the surface of the air heat exchanger 41 is frosted, the opening degree of the second expansion valve 32 is closed or reduced. In this case, the refrigerant flow rate per unit time flowing through the heat source heat exchanger 42 is stopped or reduced as compared with the normal operation mode (normal heating operation). In this case, the refrigerant circulation amount in the refrigeration cycle apparatus may be reduced. As a result, the flow rate per unit time of the refrigerant flowing through the heat exchanger for condensation 2 may be reduced. In this case, the amount of heat released per unit time of the heat of condensation from the heat exchanger 2 for condensing that performs the condensing step may be reduced, and the heating capacity of the refrigeration cycle apparatus may be reduced.

上記したように着霜判定モードにおいて、冷凍サイクル装置における冷媒循環量が低下することがある。そこで本実施例によれば、制御部6は第2制御形態を実施する。第2制御形態によれば、制御部6は、着霜判定モードにおいて、圧縮機1の余力がある場合には、圧縮機1の単位時間当たりの回転数を通常運転モードの暖房運転の場合よりも増加させる。圧縮機1の単位時間当たりの回転数としては、通常運転モードの暖房運転の場合よりも、例えば、3〜60%程度、5〜30%程度増加させることができる。この場合、冷凍サイクル装置における冷媒循環量が確保され、冷凍サイクル装置の暖房能力の低下が抑制される。圧縮機1がエンジンで駆動される場合には、エンジンへの単位時間当たりの燃料供給量および吸気量を増加させる。   As described above, in the frost determination mode, the refrigerant circulation amount in the refrigeration cycle apparatus may decrease. Therefore, according to the present embodiment, the control unit 6 implements the second control mode. According to the second control mode, in the frost determination mode, the control unit 6 determines the number of revolutions per unit time of the compressor 1 in the case of the heating operation in the normal operation mode when there is remaining capacity of the compressor 1. Also increase. The number of rotations per unit time of the compressor 1 can be increased by, for example, about 3 to 60% and about 5 to 30%, compared to the heating operation in the normal operation mode. In this case, the refrigerant circulation amount in the refrigeration cycle apparatus is ensured, and a decrease in the heating capacity of the refrigeration cycle apparatus is suppressed. When the compressor 1 is driven by an engine, the fuel supply amount and intake air amount per unit time to the engine are increased.

図10は実施例9を示す。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。上記した第1膨張弁および第2膨張弁の機能を兼ねる三方弁としての共通膨張弁49が設けられている。共通膨張弁49において、ポート49fは凝縮用熱交換器2に繋がり、ポート49sは空気熱交換器41に繋がり、ポート49tは熱源熱交換器42に繋がる。着霜判定モードにおいて、共通膨張弁49の開度を調整することにより、熱源熱交換器42に繋がる開度を通常運転モード(通常暖房運転)の場合よりも減少させ、且つ、空気熱交換器41に繋がる開度を通常運転モード(通常暖房運転)の場合よりも増加させる。これにより熱源熱交換器42を流れる単位時間当たりの冷媒流量が減少し、且つ、空気熱交換器41を流れる単位時間当たりの冷媒流量が増加する。この結果、蒸発工程を行う空気熱交換器41を流れる冷媒の単位時間当たりの流量が確保される。この場合、凝縮工程を行う凝縮用熱交換器2からの凝縮熱の放出量が低下することが抑制される。よって、着霜判定モードを実施しつつも、冷凍サイクル装置の暖房能力低下が抑制される。   FIG. 10 shows a ninth embodiment. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. A common expansion valve 49 is provided as a three-way valve that also functions as the first expansion valve and the second expansion valve. In the common expansion valve 49, the port 49 f is connected to the condensation heat exchanger 2, the port 49 s is connected to the air heat exchanger 41, and the port 49 t is connected to the heat source heat exchanger 42. In the frosting determination mode, by adjusting the opening degree of the common expansion valve 49, the opening degree connected to the heat source heat exchanger 42 is reduced as compared with the normal operation mode (normal heating operation), and the air heat exchanger The opening degree connected to 41 is increased as compared with the case of the normal operation mode (normal heating operation). As a result, the refrigerant flow rate per unit time flowing through the heat source heat exchanger 42 decreases, and the refrigerant flow rate per unit time flowing through the air heat exchanger 41 increases. As a result, the flow rate per unit time of the refrigerant flowing through the air heat exchanger 41 that performs the evaporation step is ensured. In this case, a decrease in the amount of condensation heat released from the condensation heat exchanger 2 that performs the condensation step is suppressed. Therefore, a decrease in the heating capacity of the refrigeration cycle apparatus is suppressed while the frost determination mode is performed.

図11は実施例10を示す。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。着霜判定モードのときには、第2膨張弁32の開度を小さくしたり0とすれば、熱源熱交換器42に流れる冷媒の単位時間当たりの流量を、通常運転モードの場合よりも減少させることができる。同様に、空気熱交換器41に流れる冷媒の単位時間当たりの流量を通常運転モードの場合よりも増加させることができる。従って着霜判定モードにおいては、熱源熱交換器42において熱源(加熱水通路43を流れる温水状態の加熱水)から冷媒への単位時間当たりの伝熱量を、通常運転モードの場合よりも減少させることができる。この結果、空気温度T1と熱交温度センサ52の温度T2(空気熱交換器41における蒸発温度)との温度差ΔTが増加する。この結果、空気熱交換器41の表面において着霜が発生していることがΔTに基づいて、制御部6により検知される。上記したように通常運転モードの暖房運転を実施しつつも、着霜判定モードを定期的または不定期的に行い、温度差ΔTを求めれば、温度差ΔTに基づいて空気熱交換器41の表面における着霜の有無は、良好に検知される。着霜が検知されると、空気熱交換器41の表面における霜を低減または解消させる除霜処理を適宜行うことが好ましい。   FIG. 11 shows a tenth embodiment. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. In the frosting determination mode, if the opening degree of the second expansion valve 32 is reduced or set to 0, the flow rate of the refrigerant flowing through the heat source heat exchanger 42 per unit time is reduced as compared with that in the normal operation mode. Can do. Similarly, the flow rate per unit time of the refrigerant flowing through the air heat exchanger 41 can be increased as compared with the normal operation mode. Therefore, in the frosting determination mode, the amount of heat transferred per unit time from the heat source (hot water in the hot water flowing through the heating water passage 43) to the refrigerant in the heat source heat exchanger 42 should be reduced as compared with that in the normal operation mode. Can do. As a result, the temperature difference ΔT between the air temperature T1 and the temperature T2 of the heat exchanger temperature sensor 52 (evaporation temperature in the air heat exchanger 41) increases. As a result, the control unit 6 detects that frost formation has occurred on the surface of the air heat exchanger 41 based on ΔT. While performing the heating operation in the normal operation mode as described above, if the frosting determination mode is performed periodically or irregularly and the temperature difference ΔT is obtained, the surface of the air heat exchanger 41 is based on the temperature difference ΔT. The presence or absence of frost formation in is well detected. When frost formation is detected, it is preferable to appropriately perform a defrosting process for reducing or eliminating frost on the surface of the air heat exchanger 41.

図12は実施例11を示す。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。図2に示す本試験例に係るデータよれば、空気熱交換器41の表面に着霜されていない場合には、ΔTは小さい。これに対して空気熱交換器41の表面に着霜されている場合には、ΔTは大きい。このため前記した温度差ΔTは小さいほど、空気熱交換器41の着霜度が小さいことになる。温度差ΔTが大きいほど、着霜度が大きいことになる。そこで、本実施例によれば、制御部6は、時間間隔を隔ててΔTを求め、ΔTが時間的に増加していることを検知すると、着霜が成長していると判定し、除霜モードを実施する時間を長くする。また着霜が成長していなければ、除霜モードを実施する時間を短縮させる。   FIG. 12 shows Example 11. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. According to the data relating to this test example shown in FIG. 2, ΔT is small when the surface of the air heat exchanger 41 is not frosted. On the other hand, when the surface of the air heat exchanger 41 is frosted, ΔT is large. For this reason, the smaller the temperature difference ΔT, the smaller the degree of frost formation of the air heat exchanger 41. The greater the temperature difference ΔT, the greater the degree of frost formation. Therefore, according to the present embodiment, the control unit 6 obtains ΔT at intervals of time, and when detecting that ΔT is increasing in time, determines that frost is growing, and defrosts. Increase the time to execute the mode. Moreover, if frost formation has not grown, the time which implements defrost mode is shortened.

図12は制御部6のCPU61が実施するフローチャートの一例を示す。先ず、今回の着霜判定モードにおけるΔTを求める(ステップSF2)。このΔTを制御部6のメモリ60の所定のエリアに格納する(ステップSF4)。先回の着霜判定モードにおけるΔTをメモリ60から読み込む(ステップSF6)。先回の着霜判定モードにおけるΔTと、今回の着霜判定モードにおけるΔTとを比較し、ΔTの変化率を求める(ステップSF8)。ΔTの変化率がしきい値ωよりも高いか否か判定する。つまり、ΔTが増加しているか否か判定する(ステップSF10)。ΔTの変化率がしきい値ω以上であれば、空気熱交換器41の表面において着霜が成長している旨の指令を出力する(ステップSF12)。除霜モードを実施する時間を通常時間よりも増加させる指令を出力し(ステップSF14)、メインルーチンにリターンする。   FIG. 12 shows an example of a flowchart executed by the CPU 61 of the control unit 6. First, ΔT in the current frost determination mode is obtained (step SF2). This ΔT is stored in a predetermined area of the memory 60 of the control unit 6 (step SF4). ΔT in the previous frost determination mode is read from the memory 60 (step SF6). ΔT in the previous frost determination mode is compared with ΔT in the current frost determination mode, and the rate of change of ΔT is obtained (step SF8). It is determined whether the change rate of ΔT is higher than the threshold value ω. That is, it is determined whether or not ΔT is increased (step SF10). If the change rate of ΔT is equal to or greater than the threshold value ω, a command to the effect that frost has grown on the surface of the air heat exchanger 41 is output (step SF12). A command for increasing the time for performing the defrosting mode to be longer than the normal time is output (step SF14), and the process returns to the main routine.

これに対してΔTの変化率がしきい値ω未満であれば、空気熱交換器41の表面において着霜があまり成長していない旨の指令を出力し(ステップSF22)する。そして除霜モードを実施する時間を通常時間(着霜が成長している場合よりも、除霜モード実施時間を短縮させる)とする指令を出力し(ステップSF24)、メインルーチンにリターンする。なお、除霜モードを実施する時間を増加させる操作に代えて、除霜能力を増加させる指令を出力しても良い。除霜能力を増加させるには、例えば図4に示す場合には、バイパス弁72の開度を増加させ、高温高圧の気体状の冷媒をバイパス弁72を介して空気熱交換器41に供給すればよい。   On the other hand, if the change rate of ΔT is less than the threshold value ω, a command indicating that frost has not grown so much on the surface of the air heat exchanger 41 is output (step SF22). And the command which makes time to implement defrost mode normal time (it shortens defrost mode implementation time rather than the case where frosting is growing) is outputted (Step SF24), and it returns to a main routine. In addition, it may replace with operation which increases the time which implements defrost mode, and may output the instruction | command which increases defrost capability. In order to increase the defrosting capacity, for example, in the case shown in FIG. 4, the opening degree of the bypass valve 72 is increased, and high-temperature and high-pressure gaseous refrigerant is supplied to the air heat exchanger 41 via the bypass valve 72. That's fine.

図13は実施例12を示す。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。蒸発用熱交換器4を構成する熱源熱交換器42および空気熱交換器41は直列に配置されている。熱源熱交換器42は空気熱交換器41よりも上流側(凝縮用熱交換器2側)に配置されている。熱源熱交換器42を迂回するバイパス路として機能する熱源熱交換器42に並列で並列流路42xが設けられており、並列流路42xに第1膨張弁31が設けられている。場合によっては第1膨張弁31を廃止し、キャピラリにしても良い。着霜判定モードでは、第2膨張弁32を閉じるか、絞って良い。   FIG. 13 shows a twelfth embodiment. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. The heat source heat exchanger 42 and the air heat exchanger 41 constituting the evaporation heat exchanger 4 are arranged in series. The heat source heat exchanger 42 is disposed upstream of the air heat exchanger 41 (on the condensation heat exchanger 2 side). A parallel flow path 42x is provided in parallel to the heat source heat exchanger 42 that functions as a bypass path that bypasses the heat source heat exchanger 42, and the first expansion valve 31 is provided in the parallel flow path 42x. In some cases, the first expansion valve 31 may be eliminated and replaced with a capillary. In the frost formation determination mode, the second expansion valve 32 may be closed or throttled.

図14は実施例13を示す。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。蒸発用熱交換器4を構成する熱源熱交換器42および空気熱交換器41は直列に配置されている。熱源熱交換器42は空気熱交換器41よりも圧縮機1側に配置されている。熱源熱交換器42に並列な並列流路42yが設けられている。並列流路42yは熱源熱交換器42および第2膨張弁32を迂回するバイパス通路である。第1膨張弁31は空気熱交換器41と凝縮用熱交換器2との間に配置されている。第2膨張弁32は熱源熱交換器42の上流(空気熱交換器41側)に配置されている。着霜判定モードにおいては、供給弁44vを閉鎖させたり、ポンプ44pの回転数を低下させたりできる。なお、上流および下流は暖房運転時を前提とする。着霜判定モードでは、第2膨張弁32を閉じるか、絞って良い。場合によっては第1膨張弁31を廃止し、キャピラリにしても良い。   FIG. 14 shows a thirteenth embodiment. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. The heat source heat exchanger 42 and the air heat exchanger 41 constituting the evaporation heat exchanger 4 are arranged in series. The heat source heat exchanger 42 is disposed closer to the compressor 1 than the air heat exchanger 41. A parallel flow path 42 y is provided in parallel with the heat source heat exchanger 42. The parallel flow path 42 y is a bypass passage that bypasses the heat source heat exchanger 42 and the second expansion valve 32. The first expansion valve 31 is disposed between the air heat exchanger 41 and the condensation heat exchanger 2. The second expansion valve 32 is disposed upstream of the heat source heat exchanger 42 (on the air heat exchanger 41 side). In the frosting determination mode, the supply valve 44v can be closed or the rotation speed of the pump 44p can be reduced. The upstream and downstream are premised on the heating operation. In the frost formation determination mode, the second expansion valve 32 may be closed or throttled. In some cases, the first expansion valve 31 may be eliminated and replaced with a capillary.

図15は実施例14を示す。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。図15は、冷凍サイクル装置の代表例を示す空気調和装置(ガスエンジンヒートポンプ)の配管図を示す。空気調和装置は、室内の空調を行う複数の室内機80と、室内で空調を行う冷媒を調整する室外機81とを備えている。図15に示すように、室内機80は室内に配置されており、空調のために冷媒と室内の空気との熱交換を行う凝縮用熱交換器として暖房運転時に機能する室内熱交換器2Xと、冷媒を膨張させる室内膨張弁116とを基本要素として有する。なお、室内機80の数は何台でも良い。   FIG. 15 shows a fourteenth embodiment. This embodiment basically has the same configuration and operational effects as the first embodiment. FIG. 15 is a piping diagram of an air conditioner (gas engine heat pump) showing a typical example of a refrigeration cycle apparatus. The air conditioner includes a plurality of indoor units 80 that perform indoor air conditioning, and an outdoor unit 81 that adjusts a refrigerant that performs indoor air conditioning. As shown in FIG. 15, the indoor unit 80 is disposed indoors, and the indoor heat exchanger 2X that functions as a condensation heat exchanger that performs heat exchange between the refrigerant and the indoor air for air conditioning functions during heating operation. And an indoor expansion valve 116 for expanding the refrigerant as a basic element. The number of indoor units 80 may be any number.

室外機81は室外に配置されている。室外機81は、気体燃料で駆動されるエンジン100(駆動源)と、気体状の冷媒と液状の冷媒とを分離した状態で冷媒を収容するアキュームレータ101と、エンジン100で駆動され駆動に伴いアキュムレータ101の気体状の冷媒を吸入して圧縮する複数の圧縮機1と、空調のために冷媒の熱交換を行う室外熱交換器として機能する空気熱交換器41と、熱源熱交換器42とを基本要素として有する。圧縮機1は、エンジン100によりタイミングベルト等の動力伝達部材102を介して連動される。故に、エンジン100は圧縮機1の駆動源として機能する。圧縮機1は、アキュムレータ101から気体状の冷媒を圧縮室に吸い込む吸込ポート1sと、圧縮室で圧縮された高圧の気体状の冷媒を吐出させる吐出ポート1oとを有する。   The outdoor unit 81 is arranged outdoors. The outdoor unit 81 includes an engine 100 (drive source) driven by gaseous fuel, an accumulator 101 that stores the refrigerant in a state where the gaseous refrigerant and the liquid refrigerant are separated, and an accumulator that is driven by the engine 100 and driven. A plurality of compressors 1 that sucks and compresses 101 gaseous refrigerant, an air heat exchanger 41 that functions as an outdoor heat exchanger that performs heat exchange of the refrigerant for air conditioning, and a heat source heat exchanger 42 As a basic element. The compressor 1 is interlocked by the engine 100 via a power transmission member 102 such as a timing belt. Therefore, the engine 100 functions as a drive source for the compressor 1. The compressor 1 has a suction port 1s that sucks gaseous refrigerant from the accumulator 101 into a compression chamber, and a discharge port 1o that discharges high-pressure gaseous refrigerant compressed in the compression chamber.

後述するように暖房運転時において室内機80から室外機81に冷媒が帰還する帰還方向(矢印K1方向)において、空気熱交換器41の上流には、電子調整弁としての第1膨張弁31および逆止弁103が並列に配置されている。逆止弁103は、室外機81の空気熱交換器41から室内機80への冷媒の流れを許容するものの、室内機80から室外機81の空気熱交換器41への冷媒の流れを遮断する。第1膨張弁31は電気的制御により開度が連続的または多段階に調整可能である。なお、空気熱交換器41に向けて送風するファン41f、室内熱交換器2Xに向けて送風するファン2fが設けられている。   As will be described later, in the return direction (arrow K1 direction) in which the refrigerant returns from the indoor unit 80 to the outdoor unit 81 during the heating operation, upstream of the air heat exchanger 41, the first expansion valve 31 as an electronic adjustment valve and A check valve 103 is arranged in parallel. The check valve 103 allows the flow of refrigerant from the air heat exchanger 41 of the outdoor unit 81 to the indoor unit 80, but blocks the flow of refrigerant from the indoor unit 80 to the air heat exchanger 41 of the outdoor unit 81. . The opening degree of the first expansion valve 31 can be adjusted continuously or in multiple stages by electrical control. A fan 41f that blows air toward the air heat exchanger 41 and a fan 2f that blows air toward the indoor heat exchanger 2X are provided.

除霜モード時には、圧縮機1から吐出された冷媒は、オイルセパレータ105,四方弁111に送られる。冷媒は四方弁111の第1ポート111fから空気熱交換器41に送られる。空気熱交換器41に送られた高温の冷媒により空気熱交換器41に着霜した霜を溶かす(冷媒が凝縮)。空気熱交換器41から排出された冷媒は、主に逆止弁103を通って一部が膨張弁116を介して室内熱交換器2Xに送られ、一部が第2膨張弁32を介して冷媒流路9pにより熱源熱交換器42に送られる。室内熱交換器2Xのファン2fは室内に冷風を流さないために停止する。このとき膨張弁116を最大開度にする場合と、閉じる場合とがある。前者の場合には膨張弁として使用することなく冷媒がそのまま室内熱交換器2Xを通過する。後者の場合には、冷媒は室内熱交換器2Xに送られない。いずれの場合でも室内熱交換器2Xにおける熱授受はない。熱源熱交換器42から排出された冷媒は冷媒流路9wを介してアクチュエータ101に送られる。室内熱交換器2Xに冷媒が送られた場合、冷媒は冷媒流路9i,9h、四方弁111、冷媒流路9wを介してアクチュエータ101に送られる。   In the defrosting mode, the refrigerant discharged from the compressor 1 is sent to the oil separator 105 and the four-way valve 111. The refrigerant is sent from the first port 111 f of the four-way valve 111 to the air heat exchanger 41. The high temperature refrigerant sent to the air heat exchanger 41 melts frost that forms on the air heat exchanger 41 (the refrigerant condenses). A part of the refrigerant discharged from the air heat exchanger 41 mainly passes through the check valve 103 and is sent to the indoor heat exchanger 2X via the expansion valve 116, and partly passes through the second expansion valve 32. It is sent to the heat source heat exchanger 42 by the refrigerant flow path 9p. The fan 2f of the indoor heat exchanger 2X stops in order not to flow cool air into the room. At this time, there is a case where the expansion valve 116 is set to the maximum opening degree and a case where the expansion valve 116 is closed. In the former case, the refrigerant passes through the indoor heat exchanger 2X without being used as an expansion valve. In the latter case, the refrigerant is not sent to the indoor heat exchanger 2X. In any case, there is no heat transfer in the indoor heat exchanger 2X. The refrigerant discharged from the heat source heat exchanger 42 is sent to the actuator 101 through the refrigerant flow path 9w. When the refrigerant is sent to the indoor heat exchanger 2X, the refrigerant is sent to the actuator 101 via the refrigerant flow paths 9i and 9h, the four-way valve 111, and the refrigerant flow path 9w.

(暖房運転時)
先ず、室内を暖房するときについて説明する。燃料気体を燃料としてエンジン100が駆動すると、圧縮機1が駆動し、アキュムレータ101の気体状の冷媒がアキュムレータ101の吸入ポート101s、圧縮機1の吸入ポート1sから流路9eを経て吸入され、圧縮機1の圧縮室で圧縮される。圧縮されて高温高圧となった気体状の冷媒は、圧縮機1の吐出ポート1oから吐出され、流路9f、オイルセパレータ105に至る。前述したようにオイルセパレータ105において冷媒からオイルが分離される。そしてオイルが分離された気体状の高温高圧の冷媒は、四方弁111の第3ポート111tを通り、流路9h、バルブ115b、流路9iを経て、凝縮器として機能する室内熱交換器2Xに至り、室内熱交換器2Xで室内の空気と熱交換されて凝縮(液化)する。凝縮熱は室内に放出されるため、室内が加熱される。このように暖房運転される。暖房運転時には、室内熱交換器2Xを経て液化が進行した冷媒は、液相状態または気液二相状態となり、室内膨張弁116に至り、室内機80の室内膨張弁116で膨張されて低圧となる。さらに、低圧となった冷媒は、流路9k、バルブ115a、流路9mを経て矢印K1方向(暖房運転時に、室内機80から室外機81に帰還する方向)に流れ、第1膨張弁31に至り、第1膨張弁31で膨張されて低圧化し、空気熱交換器41に至る。冷媒は空気熱交換器41で蒸発して空気と熱交換する。従って空気熱交換器41は室内機80の暖房運転時には蒸発器として機能する。
(During heating operation)
First, the case where the room is heated will be described. When the engine 100 is driven using fuel gas as fuel, the compressor 1 is driven, and the gaseous refrigerant in the accumulator 101 is sucked from the suction port 101s of the accumulator 101 and the suction port 1s of the compressor 1 through the flow path 9e and compressed. It is compressed in the compression chamber of the machine 1. The gaseous refrigerant compressed to high temperature and high pressure is discharged from the discharge port 1o of the compressor 1 and reaches the flow path 9f and the oil separator 105. As described above, oil is separated from the refrigerant in the oil separator 105. The gaseous high-temperature and high-pressure refrigerant from which the oil has been separated passes through the third port 111t of the four-way valve 111, passes through the flow path 9h, the valve 115b, and the flow path 9i to the indoor heat exchanger 2X that functions as a condenser. Finally, heat is exchanged with indoor air in the indoor heat exchanger 2X to condense (liquefy). Since the condensation heat is released into the room, the room is heated. Heating operation is performed in this way. During the heating operation, the refrigerant that has been liquefied through the indoor heat exchanger 2X enters a liquid phase state or a gas-liquid two phase state, reaches the indoor expansion valve 116, is expanded by the indoor expansion valve 116 of the indoor unit 80, and has a low pressure. Become. Further, the low-pressure refrigerant flows through the flow path 9k, the valve 115a, and the flow path 9m in the direction of the arrow K1 (in the direction of returning from the indoor unit 80 to the outdoor unit 81 during the heating operation) and flows to the first expansion valve 31. The pressure is expanded by the first expansion valve 31 to reduce the pressure, and the air heat exchanger 41 is reached. The refrigerant evaporates in the air heat exchanger 41 and exchanges heat with air. Therefore, the air heat exchanger 41 functions as an evaporator during the heating operation of the indoor unit 80.

更に冷媒は、流路9n、四方弁111の第1ポート111f、第2ポート111s、流路9wを経て、アキュムレータ101の帰還ポート101rに帰還する。帰還した冷媒は、アキュムレータ101で液状の冷媒と気体状の冷媒とに分離された状態で収容される。   Further, the refrigerant returns to the return port 101r of the accumulator 101 through the flow path 9n, the first port 111f, the second port 111s, and the flow path 9w of the four-way valve 111. The returned refrigerant is stored in a state where it is separated into a liquid refrigerant and a gaseous refrigerant by the accumulator 101.

図15に示すように、空気熱交換器41に対して熱源熱交換器42が並列に配置されている。ここで、第2膨張弁32が開放されると、冷媒が流路9pを介して熱源熱交換器42に流れる。第2膨張弁32が閉鎖されると、冷媒が流路9pを介して熱源熱交換器42に流れない。図15に示すように、熱源熱交換器42に繋がる加熱水通路43には、搬送源として機能するポンプ44p、エンジン100、第1弁300、第2弁400が設けられている。エンジン100を冷却させた加熱水通路43のエンジン加熱水の温度が低いときには、第1弁300のポート301およびポート302を連通させるものの、ポート303を閉鎖する。この場合、熱源熱交換器42およびラジエータ150には加熱水が流れない。加熱水通路43の加熱水の温度が上昇してくると、第1弁300のポート301およびポート302を連通させるものの、第1弁300のポート301およびポート303を連通させる。しかし第2弁400のポート401およびポート402を連通させるものの、第2弁400のポート401およびポート403を非連通とさせる。これにより暖かい加熱水が熱源熱交換器42の流路42wに流れるが、放熱量が大きなラジエータ150には流れない。熱源熱交換器42の流路42wは、熱源熱交換器42における冷媒を加熱する熱源として機能する。加熱水通路43の加熱水の温度が更に上昇してくると、第2弁400のポート401およびポート402を連通させるとともに、ポート401およびポート403を連通させる。これにより暖かい加熱水が熱源熱交換器42の流路42wに流れると共に、流路43rを介してラジエータ150にも流れ、流路43tを介してポンプ44p側に帰還する。なお、単位時間あたりの熱交換量については、ラジエータ150は熱源熱交換器42よりも大きくされている。従ってラジエータ150の放熱量は熱源熱交換器42よりも大きくされている。なお、加熱水通路43の加熱水の温度が過剰に上昇すると、ラジエータ150側のプレッシャキャップ151が開放し、リザーバ152に貯留される。再び加熱水の温度が冷えると、ラジエータ150側のプレッシャキャップ151が開放し、リザーバ152に貯留されていた加熱水がラジエータ150側に戻る。   As shown in FIG. 15, a heat source heat exchanger 42 is arranged in parallel with the air heat exchanger 41. Here, when the second expansion valve 32 is opened, the refrigerant flows to the heat source heat exchanger 42 via the flow path 9p. When the second expansion valve 32 is closed, the refrigerant does not flow to the heat source heat exchanger 42 via the flow path 9p. As shown in FIG. 15, a pump 44 p, an engine 100, a first valve 300, and a second valve 400 functioning as a conveyance source are provided in the heated water passage 43 connected to the heat source heat exchanger 42. When the temperature of the engine heating water in the heating water passage 43 that has cooled the engine 100 is low, the port 301 and the port 302 of the first valve 300 are communicated, but the port 303 is closed. In this case, heated water does not flow through the heat source heat exchanger 42 and the radiator 150. When the temperature of the heating water in the heating water passage 43 rises, the port 301 and the port 302 of the first valve 300 are communicated, but the port 301 and the port 303 of the first valve 300 are communicated. However, although the port 401 and the port 402 of the second valve 400 are communicated, the port 401 and the port 403 of the second valve 400 are not communicated. Accordingly, warm heated water flows through the flow path 42w of the heat source heat exchanger 42, but does not flow through the radiator 150 having a large heat release amount. The flow path 42w of the heat source heat exchanger 42 functions as a heat source for heating the refrigerant in the heat source heat exchanger 42. When the temperature of the heated water in the heated water passage 43 further increases, the port 401 and the port 402 of the second valve 400 are communicated, and the port 401 and the port 403 are communicated. Thus, warm heated water flows into the flow path 42w of the heat source heat exchanger 42, and also flows into the radiator 150 through the flow path 43r, and returns to the pump 44p side through the flow path 43t. Note that the radiator 150 is larger than the heat source heat exchanger 42 with respect to the heat exchange amount per unit time. Therefore, the heat radiation amount of the radiator 150 is made larger than that of the heat source heat exchanger 42. When the temperature of the heated water in the heated water passage 43 rises excessively, the pressure cap 151 on the radiator 150 side is opened and stored in the reservoir 152. When the temperature of the heated water cools again, the pressure cap 151 on the radiator 150 side is opened, and the heated water stored in the reservoir 152 returns to the radiator 150 side.

(室内機80の冷房運転時)
次に、室内機80で室内を冷房運転するときについて説明する。燃料気体を燃料としてエンジン100が駆動すると、圧縮機1が駆動し、アキュムレータ101の気体状の冷媒がアキュムレータ101の吸入ポート101s、圧縮機1の吸入ポート1sから吸入され、圧縮機1の圧縮室で圧縮される。圧縮されて高温高圧となった気体状の冷媒は、圧縮機1の吐出ポート1oから吐出され、流路9f、オイルセパレータ105に至る。オイルセパレータ105において冷媒からオイルが分離される。そしてオイルが分離された高温高圧の冷媒は、流路9u、流路切替弁としての四方弁111の第1ポート111f、流路9nを通り、空気熱交換器41に至る。そして高温高圧の冷媒は、空気熱交換器41で空気と熱交換されて冷却され、液化する。液化が進行した冷媒(液相状態または気液二相状態)は、逆止弁103、流路9m、更に、バルブ115a、流路9kを経て室内膨張弁116に至り、室内膨張弁116において膨張されて低温となる。
(When cooling indoor unit 80)
Next, a description will be given of a case where the indoor unit 80 performs a cooling operation in the room. When the engine 100 is driven using fuel gas as fuel, the compressor 1 is driven, and the gaseous refrigerant in the accumulator 101 is sucked from the suction port 101 s of the accumulator 101 and the suction port 1 s of the compressor 1, and the compression chamber of the compressor 1 is driven. It is compressed with. The gaseous refrigerant compressed to high temperature and high pressure is discharged from the discharge port 1o of the compressor 1 and reaches the flow path 9f and the oil separator 105. Oil is separated from the refrigerant in the oil separator 105. The high-temperature and high-pressure refrigerant from which the oil has been separated passes through the flow path 9u, the first port 111f of the four-way valve 111 as the flow path switching valve, and the flow path 9n, and reaches the air heat exchanger 41. The high-temperature and high-pressure refrigerant is heat-exchanged with air by the air heat exchanger 41 to be cooled and liquefied. The liquefied refrigerant (liquid phase state or gas-liquid two-phase state) reaches the indoor expansion valve 116 via the check valve 103, the flow path 9m, the valve 115a and the flow path 9k, and expands in the indoor expansion valve 116. It becomes low temperature.

更に、室内熱交換器2Xに至り、室内熱交換器2Xにおいて室内の空気と熱交換されて室内を冷却する。更に冷媒は、流路9i、バルブ115b、流路9h、四方弁111の第3ポート111t、四方弁111の第2ポート111s、流路9wを経て、アキュムレータ101の帰還ポート101rに帰還する。アキュムレータ101に帰還した冷媒は、アキュムレータ101で液状の冷媒と気体状の冷媒とに分離された状態で収容される。   Furthermore, it reaches the indoor heat exchanger 2X, and heat is exchanged with indoor air in the indoor heat exchanger 2X to cool the room. Furthermore, the refrigerant returns to the return port 101r of the accumulator 101 through the flow path 9i, the valve 115b, the flow path 9h, the third port 111t of the four-way valve 111, the second port 111s of the four-way valve 111, and the flow path 9w. The refrigerant returned to the accumulator 101 is accommodated in a state where it is separated into a liquid refrigerant and a gaseous refrigerant by the accumulator 101.

(その他)
本発明は上記し且つ図面に示した各実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できる。空気熱交換器41は1個搭載されているが、複数個でも良い。熱源熱交換器42は1個搭載されているが、複数個でも良い。
(Other)
The present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications without departing from the scope of the invention. Although one air heat exchanger 41 is mounted, a plurality of air heat exchangers 41 may be used. Although one heat source heat exchanger 42 is mounted, a plurality of heat source heat exchangers 42 may be used.

本発明は空気調和装置等の冷凍サイクル装置に利用できる。   The present invention can be used for a refrigeration cycle apparatus such as an air conditioner.

実施例1に係り、冷凍サイクル装置の概念を示す構成図である。1 is a configuration diagram illustrating a concept of a refrigeration cycle apparatus according to Embodiment 1. FIG. 実施例2に係り、試験データを示すグラフである。6 is a graph showing test data according to Example 2. 実施例2に係り、試験データを示すグラフである。6 is a graph showing test data according to Example 2. 実施例3に係り、冷凍サイクル装置の概念を示す構成図である。It is a block diagram which concerns on Example 3 and shows the concept of a refrigerating-cycle apparatus. 実施例4に係り、制御部が実行する制御形態Aに係るフローチャートである。10 is a flowchart according to control mode A executed by a control unit according to a fourth embodiment. 実施例4に係り、制御部が実行する制御形態Bに係るフローチャートである。10 is a flowchart according to a control mode B executed by a control unit according to a fourth embodiment. 実施例4に係り、制御部が実行する制御形態Cに係るフローチャートである。12 is a flowchart according to a control mode C executed by a control unit according to a fourth embodiment. 実施例5に係り、冷凍サイクル装置の概念を示す構成図である。FIG. 10 is a configuration diagram illustrating a concept of a refrigeration cycle apparatus according to a fifth embodiment. 実施例6に係り、冷凍サイクル装置の概念を示す構成図である。FIG. 10 is a configuration diagram illustrating a concept of a refrigeration cycle apparatus according to a sixth embodiment. 実施例9に係り、冷凍サイクル装置の概念を示す構成図である。It is a block diagram which shows the concept of a refrigeration cycle apparatus in connection with Example 9. 実施例10に係り、冷凍サイクル装置の概念を示す構成図である。It is a block diagram which concerns on Example 10 and shows the concept of a refrigerating-cycle apparatus. 実施例11に係り、制御部が実行するフローチャートである。18 is a flowchart executed by the control unit according to the eleventh embodiment. 実施例12に係り、冷凍サイクル装置の概念を示す構成図である。It is a block diagram which concerns on Example 12 and shows the concept of a refrigeration cycle apparatus. 実施例13に係り、冷凍サイクル装置の概念を示す構成図である。It is a block diagram which concerns on Example 13 and shows the concept of a refrigerating-cycle apparatus. 実施例14に係り、空気調和装置の概念を示す構成図である。It is a block diagram which concerns on Example 14 and shows the concept of an air conditioning apparatus. 従来例に係り、冷凍サイクル装置の概念を示す構成図である。It is a block diagram which shows the concept of a refrigeration cycle apparatus concerning a prior art example. 他の従来例に係り、冷凍サイクル装置の概念を示す構成図である。It is a block diagram which shows the concept of a refrigeration cycle apparatus concerning another prior art example.

1は圧縮機、2は凝縮用熱交換器、3は膨張弁、31は第1膨張弁、32は第2膨張弁、4は蒸発用熱交換器、41は空気熱交換器、42は熱源熱交換器、51は空気温度センサ、52は熱交換温度センサ、6は制御部を示す。   1 is a compressor, 2 is a heat exchanger for condensation, 3 is an expansion valve, 31 is a first expansion valve, 32 is a second expansion valve, 4 is a heat exchanger for evaporation, 41 is an air heat exchanger, 42 is a heat source A heat exchanger, 51 is an air temperature sensor, 52 is a heat exchange temperature sensor, and 6 is a control unit.

Claims (8)

冷媒を圧縮させる圧縮工程を行う圧縮機と、前記圧縮機を経た冷媒を凝縮させる凝縮工程を行う凝縮用熱交換器と、前記凝縮工程を経た冷媒を膨張させる膨張弁と、前記膨張弁を経た冷媒を蒸発させる蒸発工程を行う蒸発用熱交換器と、前記膨張弁を制御する制御部とを具備する冷凍サイクル装置において、
(i)前記蒸発工程を行う蒸発用熱交換器は、空気と熱交換する空気熱交換器と、熱源からの熱と熱交換する熱源熱交換器とを備えており、
(ii)前記制御部は、
(a)前記膨張弁を経た冷媒を前記空気熱交換器および前記熱源熱交換器に流すことにより前記空気熱交換器および前記熱源熱交換器において熱交換を行う通常運転モードと、
(b)前記膨張弁を経た冷媒を前記空気熱交換器に流して前記空気熱交換器において熱交換を行うと共に、前記熱源熱交換器から冷媒への単位時間当たりの伝熱量を前記通常運転モードの場合よりも減少させる操作を行う着霜判定モードとを実施し、
(iii)前記膨張弁は、前記凝縮用熱交換器と前記空気熱交換器との間に設けられた第1膨張弁と、前記凝縮用熱交換器と前記熱源熱交換器との間に設けられた第2膨張弁とを備えており、
前記制御部は、前記着霜判定モードにおいて、前記熱源熱交換器に繋がる前記第2膨張弁の開度を0にするか、前記第2膨張弁の開度を前記通常運転モードの場合よりも減少させ、前記熱源熱交換器に向けて流れる単位時間当たりの冷媒流量を0または前記通常運転モードの場合よりも減少させることを特徴とする冷凍サイクル装置。
A compressor that performs a compression process for compressing the refrigerant, a heat exchanger for condensation that performs a condensation process for condensing the refrigerant that has passed through the compressor, an expansion valve that expands the refrigerant that has undergone the condensation process, and the expansion valve In a refrigeration cycle apparatus comprising an evaporation heat exchanger that performs an evaporation step for evaporating a refrigerant, and a control unit that controls the expansion valve,
(I) The evaporation heat exchanger that performs the evaporation step includes an air heat exchanger that exchanges heat with air, and a heat source heat exchanger that exchanges heat with heat from the heat source,
(Ii) The control unit
(A) a normal operation mode in which heat exchange is performed in the air heat exchanger and the heat source heat exchanger by flowing the refrigerant that has passed through the expansion valve to the air heat exchanger and the heat source heat exchanger;
(B) The refrigerant having passed through the expansion valve is flowed to the air heat exchanger to perform heat exchange in the air heat exchanger, and the amount of heat transferred from the heat source heat exchanger to the refrigerant per unit time is set in the normal operation mode. performed and frost formation determination mode for performing an operation to reduce than the,
(Iii) The expansion valve is provided between the first expansion valve provided between the heat exchanger for condensation and the air heat exchanger, and between the heat exchanger for condensation and the heat source heat exchanger. A second expansion valve,
In the frosting determination mode, the control unit sets the opening of the second expansion valve connected to the heat source heat exchanger to 0, or sets the opening of the second expansion valve to be in the normal operation mode. A refrigeration cycle apparatus, characterized in that the refrigerant flow rate per unit time flowing toward the heat source heat exchanger is reduced to 0 or less than in the normal operation mode .
請求項1において、前記制御部は、前記着霜判定モードにおいて、前記第1膨張弁の開度を前記通常運転モードの場合よりも増加させ、前記空気熱交換器に向けて流れる単位時間当たりの冷媒流量を前記通常運転モードの場合よりも増加させることを特徴とする冷凍サイクル装置。In Claim 1, the said control part increases the opening degree of a said 1st expansion valve in the said frost determination mode rather than the case of the said normal operation mode, and per unit time which flows toward the said air heat exchanger. A refrigeration cycle apparatus, wherein the refrigerant flow rate is increased as compared with the normal operation mode. 冷媒を圧縮させる圧縮工程を行う圧縮機と、前記圧縮機を経た冷媒を凝縮させる凝縮工程を行う凝縮用熱交換器と、前記凝縮工程を経た冷媒を膨張させる膨張弁と、前記膨張弁を経た冷媒を蒸発させる蒸発工程を行う蒸発用熱交換器と、前記膨張弁を制御する制御部とを具備する冷凍サイクル装置において、A compressor that performs a compression process for compressing the refrigerant, a heat exchanger for condensation that performs a condensation process for condensing the refrigerant that has passed through the compressor, an expansion valve that expands the refrigerant that has undergone the condensation process, and the expansion valve In a refrigeration cycle apparatus comprising an evaporation heat exchanger that performs an evaporation step for evaporating a refrigerant, and a control unit that controls the expansion valve,
(i)前記蒸発工程を行う蒸発用熱交換器は、空気と熱交換する空気熱交換器と、熱源からの熱と熱交換する熱源熱交換器とを備えており、  (I) The evaporation heat exchanger that performs the evaporation step includes an air heat exchanger that exchanges heat with air, and a heat source heat exchanger that exchanges heat with heat from the heat source,
(ii)前記制御部は、  (Ii) The control unit
(a)前記膨張弁を経た冷媒を前記空気熱交換器および前記熱源熱交換器に流すことにより前記空気熱交換器および前記熱源熱交換器において熱交換を行う通常運転モードと、  (A) a normal operation mode in which heat exchange is performed in the air heat exchanger and the heat source heat exchanger by flowing the refrigerant that has passed through the expansion valve to the air heat exchanger and the heat source heat exchanger;
(b)前記膨張弁を経た冷媒を前記空気熱交換器に流して前記空気熱交換器において熱交換を行うと共に、前記熱源熱交換器から冷媒への単位時間当たりの伝熱量を前記通常運転モードの場合よりも減少させる操作を行う着霜判定モードとを実施し、  (B) The refrigerant having passed through the expansion valve is flowed to the air heat exchanger to perform heat exchange in the air heat exchanger, and the amount of heat transferred from the heat source heat exchanger to the refrigerant per unit time is set in the normal operation mode. The frosting determination mode for performing the operation to reduce than in the case of
(iii)前記膨張弁は、前記凝縮用熱交換器に繋がるポートと前記空気熱交換器に繋がるポートと前記熱源熱交換器に繋がるポートとを備える三方弁で形成された共通膨張弁であり、  (Iii) The expansion valve is a common expansion valve formed of a three-way valve including a port connected to the heat exchanger for condensation, a port connected to the air heat exchanger, and a port connected to the heat source heat exchanger,
前記制御部は、前記着霜判定モードにおいて、前記共通膨張弁のうち前記熱源熱交換器に繋がるポートの開度を0にするか前記通常運転モードの場合よりも減少させることにより、前記熱源熱交換器に向けて流れる単位時間当たりの冷媒流量を0または前記通常運転モードの場合よりも減少させることを特徴とする冷凍サイクル装置。  In the frosting determination mode, the control unit sets the opening of a port connected to the heat source heat exchanger in the common expansion valve to 0 or reduces the opening of the heat source heat than in the normal operation mode. A refrigeration cycle apparatus characterized in that the flow rate of refrigerant per unit time flowing toward the exchanger is reduced to 0 or less than in the normal operation mode.
冷媒を圧縮させる圧縮工程を行う圧縮機と、前記圧縮機を経た冷媒を凝縮させる凝縮工程を行う凝縮用熱交換器と、前記凝縮工程を経た冷媒を膨張させる膨張弁と、前記膨張弁を経た冷媒を蒸発させる蒸発工程を行う蒸発用熱交換器と、前記膨張弁を制御する制御部とを具備する冷凍サイクル装置において、A compressor that performs a compression process for compressing the refrigerant, a heat exchanger for condensation that performs a condensation process for condensing the refrigerant that has passed through the compressor, an expansion valve that expands the refrigerant that has undergone the condensation process, and the expansion valve In a refrigeration cycle apparatus comprising an evaporation heat exchanger that performs an evaporation step for evaporating a refrigerant, and a control unit that controls the expansion valve,
(i)前記蒸発工程を行う蒸発用熱交換器は、空気と熱交換する空気熱交換器と、熱源からの熱と熱交換する熱源熱交換器とを備えており、  (I) The evaporation heat exchanger that performs the evaporation step includes an air heat exchanger that exchanges heat with air, and a heat source heat exchanger that exchanges heat with heat from the heat source,
(ii)前記制御部は、  (Ii) The control unit
(a)前記膨張弁を経た冷媒を前記空気熱交換器および前記熱源熱交換器に流すことにより前記空気熱交換器および前記熱源熱交換器において熱交換を行う通常運転モードと、  (A) a normal operation mode in which heat exchange is performed in the air heat exchanger and the heat source heat exchanger by flowing the refrigerant that has passed through the expansion valve to the air heat exchanger and the heat source heat exchanger;
(b)前記膨張弁を経た冷媒を前記空気熱交換器に流して前記空気熱交換器において熱交換を行うと共に、前記熱源熱交換器から冷媒への単位時間当たりの伝熱量を前記通常運転モードの場合よりも減少させる操作を行う着霜判定モードとを実施し、  (B) The refrigerant having passed through the expansion valve is flowed to the air heat exchanger to perform heat exchange in the air heat exchanger, and the amount of heat transferred from the heat source heat exchanger to the refrigerant per unit time is set in the normal operation mode. The frosting determination mode for performing the operation to reduce than in the case of
(iii)前記膨張弁は、前記凝縮用熱交換器と前記空気熱交換器,前記熱源熱交換器との間に設けられており、  (Iii) The expansion valve is provided between the heat exchanger for condensation, the air heat exchanger, and the heat source heat exchanger,
前記制御部は、前記着霜判定モードにおいて、前記熱源熱交換器に繋がる前記膨張弁の開度を調整することにより、前記熱源熱交換器に向けて流れる単位時間当たりの冷媒流量を0または前記通常運転モードの場合よりも減少させることを特徴とする冷凍サイクル装置。  In the frost determination mode, the control unit adjusts the opening of the expansion valve connected to the heat source heat exchanger, thereby reducing the refrigerant flow rate per unit time flowing toward the heat source heat exchanger to 0 or A refrigeration cycle apparatus characterized in that the refrigeration cycle device is reduced as compared with a normal operation mode.
請求項1〜4のうちの一項において、前記制御部は、前記着霜判定モードにおいて、前記熱源熱交換器に向けて流れる単位時間当たりの冷媒流量を0または前記通常運転モードの場合よりも減少させ、且つ、前記空気熱交換器に向けて流れる単位時間当たりの冷媒流量を前記通常運転モードの場合よりも増加させることを特徴とする冷凍サイクル装置。5. The refrigerant control unit according to claim 1, wherein the control unit sets the refrigerant flow rate per unit time flowing toward the heat source heat exchanger in the frosting determination mode to 0 or in the normal operation mode. A refrigeration cycle apparatus that decreases and increases the flow rate of refrigerant per unit time that flows toward the air heat exchanger as compared to the normal operation mode. 請求項1〜のうちの一項において、前記制御部は、前記着霜判定モードにおいて、前記圧縮機の単位時間当たりの回転数を前記通常運転モードの場合よりも増加させることを特徴とする冷凍サイクル装置。 In one of the claims 1-5, wherein, in the frost determination mode, wherein the increase than the rotational speed per unit of compressor time of the normal operation mode Refrigeration cycle equipment. 請求項1〜のうちの一項において、前記制御部は、前記着霜判定モードにおいて、前記空気温度と前記空気熱交換器の蒸発温度との温度差が時間的に増加していると、着霜が成長していると判定する着霜成長判定手段をもち、着霜が成長していると判定されるとき、前記制御部は、除霜時間を増加させることを特徴とする冷凍サイクル装置。 In one of claims 1 to 6, wherein, in the frost determination mode, can the temperature difference between the evaporation temperature of the air heat exchanger and the air temperature is increasing temporally , has a determining frost growth determination unit frost is grown, when it is determined that the frost is growing, the control unit is characterized by increasing during the defrosting frozen Cycle equipment. 請求項1〜7のうちの一項において、前記圧縮機の吐出ポートと前記空気熱交換器の入口とを繋ぐバイパス通路が前記凝縮器用熱交換器を迂回させるように設けられており、前記バイパス通路にはバイパス弁が設けられており、8. The bypass according to claim 1, wherein a bypass passage connecting a discharge port of the compressor and an inlet of the air heat exchanger is provided to bypass the condenser heat exchanger. There is a bypass valve in the passage,
前記制御部は、前記着霜判定モードにおいて着霜有りと判定するときには、前記バイパス弁の開度を開放させて、前記圧縮機で圧縮された冷媒を前記バイパス通路および前記バイパス弁を介して前記空気熱交換器の入口側に供給させることにより前記空気熱交換器に着霜している霜を低減または除去させることを特徴とする冷凍サイクル装置。  When the controller determines that frost is present in the frost determination mode, the controller opens the opening of the bypass valve, and causes the refrigerant compressed by the compressor to pass through the bypass passage and the bypass valve. A refrigeration cycle apparatus that reduces or removes frost forming on the air heat exchanger by supplying the air heat exchanger to an inlet side of the air heat exchanger.
JP2007066892A 2007-03-15 2007-03-15 Refrigeration cycle equipment Expired - Fee Related JP4978777B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007066892A JP4978777B2 (en) 2007-03-15 2007-03-15 Refrigeration cycle equipment
CN2008100857387A CN101266083B (en) 2007-03-15 2008-03-13 Refrigeration circulation device
KR1020080023915A KR100944312B1 (en) 2007-03-15 2008-03-14 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066892A JP4978777B2 (en) 2007-03-15 2007-03-15 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2008224190A JP2008224190A (en) 2008-09-25
JP4978777B2 true JP4978777B2 (en) 2012-07-18

Family

ID=39843021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066892A Expired - Fee Related JP4978777B2 (en) 2007-03-15 2007-03-15 Refrigeration cycle equipment

Country Status (3)

Country Link
JP (1) JP4978777B2 (en)
KR (1) KR100944312B1 (en)
CN (1) CN101266083B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167824A (en) * 2009-06-19 2012-09-06 Daikin Industries Ltd Refrigerator
JP2012245857A (en) * 2011-05-26 2012-12-13 Nippon Soken Inc Cooling apparatus, and method and device for controlling the same
CN103090507A (en) * 2013-01-19 2013-05-08 德州亚太集团有限公司 Defrosting control method of air cooled heat pump air conditioning unit
JP5963941B2 (en) * 2013-03-04 2016-08-03 三菱電機株式会社 Air conditioner
CN104633173A (en) * 2015-02-03 2015-05-20 国家电网公司 Novel SF6 gas splitter
JP2016161256A (en) * 2015-03-04 2016-09-05 株式会社富士通ゼネラル Air conditioner
CN108800417B (en) * 2018-05-28 2021-03-16 青岛海尔空调器有限总公司 Defrosting control method and system for outdoor unit of air conditioner
CN109323877B (en) * 2018-11-14 2024-01-30 仲恺农业工程学院 Heat exchanger comprehensive test system based on refrigeration cycle
CN112361640B (en) * 2020-10-15 2022-01-28 珠海格力电器股份有限公司 Air conditioning system and defrosting method thereof
CN113175732B (en) * 2021-04-20 2022-09-20 海信空调有限公司 Air conditioner, method of controlling the same, and computer-readable storage medium
US20240068714A1 (en) * 2022-08-30 2024-02-29 Daikin Comfort Technologies Manufacturing, LP Thermal energy reservoirs and heat pump systems

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500707B2 (en) * 1991-05-17 1996-05-29 ダイキン工業株式会社 Refrigeration system operation controller
JPH11294885A (en) 1998-04-10 1999-10-29 Toshiba Corp Air conditioner
JP2001004254A (en) * 1999-06-22 2001-01-12 Sanyo Electric Co Ltd Refrigeration system
JP2001221531A (en) * 2000-02-04 2001-08-17 Mitsubishi Heavy Ind Ltd Air conditioner
JP2005016805A (en) * 2003-06-25 2005-01-20 Aisin Seiki Co Ltd Air-conditioner
JP4561147B2 (en) * 2004-03-30 2010-10-13 アイシン精機株式会社 Air conditioner
GB0409147D0 (en) * 2004-04-24 2004-05-26 Thermal Energy Ventures Ltd Heat pump
JP2006125769A (en) * 2004-10-29 2006-05-18 Denso Corp Heat pump cycle device
KR100627879B1 (en) 2004-11-02 2006-09-25 주식회사 대우일렉트로닉스 Heat pump air-conditioner
JP2006242443A (en) 2005-03-02 2006-09-14 Matsushita Electric Ind Co Ltd Air conditioner
JP2006308156A (en) 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Air conditioner

Also Published As

Publication number Publication date
KR20080084735A (en) 2008-09-19
CN101266083B (en) 2010-06-02
JP2008224190A (en) 2008-09-25
CN101266083A (en) 2008-09-17
KR100944312B1 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP4978777B2 (en) Refrigeration cycle equipment
US9010135B2 (en) Refrigeration apparatus with a refrigerant collection operation between a plurality of outdoor units
JP2008224189A (en) Refrigerating cycle device
KR101161240B1 (en) Air conditioner
KR101513768B1 (en) Air conditioning apparatus
CN100587368C (en) Control of refrigeration circuit with internal heat exchanger
KR101445992B1 (en) Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
KR20100081621A (en) Air conditioner and defrosting driving method of the same
JP4704728B2 (en) Refrigerant temperature control device and control method for air conditioner
JP6028816B2 (en) Air conditioner
JP6028817B2 (en) Air conditioner
CN102395842B (en) Heat source unit
JP2006071137A (en) Refrigeration unit
WO2005024313A1 (en) Freezer device
JP2007107771A (en) Refrigeration cycle device
JP2007225140A (en) Turbo refrigerating machine, and control device and method of turbo refrigerating machine
JP7034227B1 (en) Air conditioner and management device
KR100821729B1 (en) Air conditioning system
JP6092606B2 (en) Air conditioner
JP3661014B2 (en) Refrigeration equipment
JP2006029738A (en) Heat storage type air conditioner
KR100767857B1 (en) Air conditioner and controlling method therefor
KR101384148B1 (en) Air conditioner and method for controling of air conditioner
CN101644502B (en) Refrigerating circuit and method for operating same
KR101513305B1 (en) Injection type heat pump air-conditioner and the converting method for injection mode thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4978777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees