JPH03175243A - Delayed-open type solenoid valve - Google Patents

Delayed-open type solenoid valve

Info

Publication number
JPH03175243A
JPH03175243A JP1310579A JP31057989A JPH03175243A JP H03175243 A JPH03175243 A JP H03175243A JP 1310579 A JP1310579 A JP 1310579A JP 31057989 A JP31057989 A JP 31057989A JP H03175243 A JPH03175243 A JP H03175243A
Authority
JP
Japan
Prior art keywords
valve
flow path
refrigerant
pressure
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1310579A
Other languages
Japanese (ja)
Other versions
JP2740309B2 (en
Inventor
Hiroshi Kuno
博 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP1310579A priority Critical patent/JP2740309B2/en
Publication of JPH03175243A publication Critical patent/JPH03175243A/en
Application granted granted Critical
Publication of JP2740309B2 publication Critical patent/JP2740309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

PURPOSE:To restrain and ease the abrupt inflow of refrigerant without using a special controller by a method wherein a pilot type refrigerant on-off valve is provided on a pipe upstream an expander in a refrigerating circuit and its main valve is brought in action after the refrigerant pressure on the outlet side is increased to some extent. CONSTITUTION:Where flow resistances of a leakage flow path 2a, bypass flow path 1f and pressure equalizing pipe 2b and A, B and C, those flow paths are designed so that a relationship of A > B > C is established, and where the refrigerant flow resistance of an expansion valve is D, D >= B. When the difference between pressures in a back pressure chamber 1e and a low pressure chamber 4c decreases gradually and becomes less than the compression force of a valve spring 6, a differential pressure valve 5 closes the pressure equalizing pipe 2b. As a result, the pressure in the back pressure chamber 1e sharply drops because the refrigerant is fed into the back pressure chamber 1e only from the leakage flow path 2a and the refrigerant rapidly flows out through the bypass flow path 1f. Therefore, a main valve disc 2 is pushed up by the refrigerant pressure in a valve chamber 1a against the compression force of the valve spring 6, and the refrigerant is directly supplied from an upstream flow path 1b to a downstream flow path 1d.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は冷凍回路、特にそれぞれ独立に使用する複数の
蒸発用熱交換器を備えた冷凍回路に於ける冷媒の供給を
制御するためのパイロット型開閉弁に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pilot system for controlling the supply of refrigerant in a refrigeration circuit, particularly a refrigeration circuit equipped with a plurality of evaporative heat exchangers that are used independently. Regarding mold opening/closing valves.

〔従来の技術〕[Conventional technology]

独立の冷蔵室や冷凍室を複数個備えた冷凍設備たとえば
プレハブ冷蔵倉庫等においては、冷媒圧縮機を常時運転
していて、必要な冷蔵室等のみに冷媒を供給するように
している。この様な場合の冷媒の供給制御用の開閉弁は
、通常それぞれの蒸発用熱交換器の前、特に膨張器の直
前に取り付けられるのが普通である。
In refrigeration equipment such as prefabricated refrigerated warehouses that include a plurality of independent refrigerator compartments or freezer compartments, a refrigerant compressor is constantly operated to supply refrigerant only to the necessary refrigerator compartments. In such a case, an on-off valve for controlling the supply of refrigerant is usually installed in front of each evaporative heat exchanger, particularly just before the expander.

従来、かかる開閉弁として手動のストップ弁などを用い
ていたときは、弁の上流側の配管内に滞留している冷媒
が膨張器に突入しないように徐々に弁開操作を行なうよ
うにしていた。ところが、遠隔制御のために電磁弁たと
えば電磁パイロット弁等を用いようとすると、急速な弁
開操作が行なねれるために冷媒の突入が起こる。しかも
、近時圧縮機が大型となり、また電磁制御弁が熱交換器
や膨張弁などと共に冷凍室内に一括して設けられるよう
になっているので、電磁制御弁の入口側の配管内に液化
して充満している冷媒は電磁制御弁が開くと同時に流入
し、膨張器たとえば膨張弁等に衝突して衝撃音を発生し
、また冷媒配管を振動させるばかりでなく、ときには膨
張弁等を破壊するなどの問題があった。
Conventionally, when a manual stop valve or the like was used as such an on-off valve, the valve was opened gradually to prevent the refrigerant stagnant in the piping on the upstream side of the valve from rushing into the expander. . However, if an attempt is made to use a solenoid valve, such as a solenoid pilot valve, for remote control, the valve cannot be opened rapidly, causing refrigerant to rush into the valve. In addition, compressors have recently become larger, and solenoid control valves are now installed together with heat exchangers, expansion valves, etc. in the freezing chamber, so liquefaction can occur in the piping on the inlet side of the solenoid control valve. The refrigerant flowing into the refrigerant flows in at the same time as the electromagnetic control valve opens, collides with the expander, e.g., the expansion valve, and generates an impact noise, which not only vibrates the refrigerant piping, but also sometimes destroys the expansion valve, etc. There were other problems.

このような冷凍室の運転開始時における液状冷媒の突入
を緩和するには、冷媒の供給制御用の主電磁弁と並列に
小口径の副電磁弁を設けておき、まず副電磁弁を開いて
から適当な遅れ時間の後に主電磁弁を開くように制御す
ることが考えられている。しかし、電磁弁を並列に配管
で接続することは配管工事が複雑となって設備費用が嵩
むうえにごみなどの混入の機会が増加し、故障が発生し
やす(なる欠点がある。
In order to alleviate the intrusion of liquid refrigerant at the start of operation of the freezer compartment, a small diameter sub solenoid valve is installed in parallel with the main solenoid valve for controlling the supply of refrigerant, and the sub solenoid valve is opened first. The idea is to control the main solenoid valve to open after an appropriate delay time. However, connecting solenoid valves in parallel with piping complicates the piping work, increases equipment costs, increases the chance of contamination with dirt, etc., and has the disadvantage of making failures more likely.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで本発明は、冷媒の供給制御用に用いて上記のよう
な欠点がなく、また特別な制御装置を用いることなく冷
媒の突入を抑制緩和することができる徐動型の遅延開型
電磁弁を提供しようとするものである。
Therefore, the present invention provides a slow-acting, delayed-opening solenoid valve that can be used for refrigerant supply control and does not have the above-mentioned drawbacks, and can suppress and alleviate the rush of refrigerant without using a special control device. This is what we are trying to provide.

〔課題を解決するための手段] 本発明の目的とする遅延開型電磁弁は、冷凍回路におい
て膨張器の上流側に管路を介して設けられる冷媒制御用
のパイロット型開閉弁であって、漏洩流路と背圧室とパ
イロット弁で遮断できるバイパス流路とを順に直列に接
続した制御流I烙を上流通路と下流通路との間に設け、
背圧室内圧力と弁ばねの押圧力との合力が上流通路圧力
を下回ったとき開作動する主弁を上流通路と下流通路と
の間に該制御流路と並列に設け、下流通路圧力と弁ばね
の押圧力との合力が背圧室内圧力を上回ったとき閉作動
する差圧弁と均圧流路とを直列に接続した制御遅延流路
を上流通路と背圧室との間に該漏洩流路と並列に設けて
なり、前記の漏洩流路、バイパス流路、均圧流路、及び
前記の膨張器の冷媒の流通抵抗をそれぞれA、B、C,
Dとするとき、A>B>CでありかつD≧Bであること
を特徴とするものである。
[Means for Solving the Problems] A delayed-opening solenoid valve as an object of the present invention is a pilot-type on-off valve for controlling refrigerant that is provided upstream of an expander in a refrigeration circuit via a pipe line, and comprises: A controlled flow path in which a leakage flow path, a back pressure chamber, and a bypass flow path that can be shut off by a pilot valve are connected in series is provided between the upstream path and the downstream path,
A main valve that opens when the resultant force of the back pressure chamber pressure and the pressing force of the valve spring is lower than the upstream passage pressure is provided between the upstream passage and the downstream passage in parallel with the control passage, and the downstream passage pressure is A control delay flow path, in which a differential pressure valve and a pressure equalization flow path are connected in series, is connected between the upstream passage and the back pressure chamber, and the pressure equalization flow path is closed when the resultant force of the pressure force of the valve spring exceeds the back pressure chamber pressure. The flow resistance of the refrigerant of the leakage flow path, the bypass flow path, the pressure equalization flow path, and the expansion device is set to A, B, C, respectively.
When D, it is characterized in that A>B>C and D≧B.

〔作 用〕[For production]

本発明の遅延開型電磁弁は、上流側に圧縮機からの冷媒
供給配管を接続し、また下流側には結合用配管を介して
膨張弁および蒸発用熱交換器を接続して、−括して冷凍
室内に設けられる。このような冷凍設備において、別の
冷凍室を稼働するために圧縮機が運転されていて当の遅
延開型電磁弁が閉止しているときは、該弁の上流側の配
管内の冷媒は液化しており、また該弁の下流側の結合用
配管以降の系内冷媒は圧縮機によって殆ど吸引回収され
て低圧のガスのみが残っている。従って上流側の冷媒は
背圧室内を満たしており、差圧弁が開いていて冷媒が均
圧流路を自由に流通できる状態となっている。
The delayed opening type solenoid valve of the present invention has a refrigerant supply pipe from a compressor connected to the upstream side, and an expansion valve and an evaporation heat exchanger connected to the downstream side via a connecting pipe. and installed in the freezing room. In such refrigeration equipment, when the compressor is operated to operate another freezer compartment and the delayed opening solenoid valve is closed, the refrigerant in the piping upstream of the valve is liquefied. Furthermore, most of the refrigerant in the system after the coupling pipe on the downstream side of the valve is suctioned and recovered by the compressor, leaving only low-pressure gas. Therefore, the upstream refrigerant fills the back pressure chamber, and the differential pressure valve is open, allowing the refrigerant to freely flow through the pressure equalization channel.

このような状態でまずパイロット弁を開放すると、背圧
室内の冷媒はバイパス流路を通じて一部気化しながら下
流側配管内に流れ出し、背圧室へは漏洩流路と均圧流路
とを通じて冷媒が供給されるから、背圧室内圧力は直ち
には低Fしない。従って、上流側の冷媒はバイパス流路
の流通抵抗によって制限された流量で下流側配管に一部
気化しながら流入するが、その流入量は少量であって膨
張弁に衝突して衝撃音や振動を発生させる事がない。そ
して膨張弁の流通抵抗はバイパス流路の流通抵抗より小
さくはないから、膨張弁に至る遅延開型電磁弁の下流側
配管内圧力は次第に上昇してく る。
When the pilot valve is first opened in this condition, the refrigerant in the back pressure chamber partially vaporizes and flows into the downstream piping through the bypass flow path, and the refrigerant flows into the back pressure chamber through the leakage flow path and the pressure equalization flow path. Since the back pressure is supplied, the pressure inside the back pressure chamber does not immediately become low F. Therefore, the refrigerant on the upstream side flows into the downstream piping while partially vaporizing at a flow rate limited by the flow resistance of the bypass flow path, but the amount of inflow is small and collides with the expansion valve, causing impact noise and vibration. It never occurs. Since the flow resistance of the expansion valve is not smaller than the flow resistance of the bypass flow path, the pressure in the downstream pipe of the delayed opening type solenoid valve leading to the expansion valve gradually increases.

こうして下流通路圧力と弁ばねの押圧力との合力が背圧
室内圧力を越えるに到ったとき差圧弁が閉じ、均圧流路
の流通は停止する。そうすると背圧室には流通抵抗の大
きい漏洩流路を経て冷媒が流入するのみとなるから、背
圧室内圧力は急低下して主弁体が開き、上流側配管内の
液状冷媒は主弁体を通してそのまま膨張弁に向かって流
れることになる。そして下流通路圧力も更に上昇するか
ら、主弁体は安定した開放状態を維持する。
In this way, when the resultant force of the downstream passage pressure and the pressing force of the valve spring exceeds the back pressure chamber pressure, the differential pressure valve closes and the flow in the pressure equalizing passage is stopped. In this case, the refrigerant will only flow into the back pressure chamber through the leakage path with high flow resistance, so the pressure in the back pressure chamber will drop rapidly and the main valve will open, and the liquid refrigerant in the upstream pipe will flow through the main valve. It will flow directly towards the expansion valve through the air. Since the downstream passage pressure also increases further, the main valve body maintains a stable open state.

また、この状態からパイロ・ント弁を閉じると、背圧室
からの冷媒の流出が停止するから、背圧室内圧力は速や
かに上流通路圧力と均圧化し、主弁体が閉止して膨張弁
に対する冷媒の併給は停止される。
In addition, when the pilot valve is closed from this state, the flow of refrigerant from the back pressure chamber is stopped, so the pressure in the back pressure chamber is quickly equalized with the upstream passage pressure, and the main valve body closes and expands. Co-supply of refrigerant to the valve is stopped.

〔実施例] 本発明の遅延開型電磁弁の例を第1図に示す。〔Example] An example of the delayed opening type solenoid valve of the present invention is shown in FIG.

図において、lは弁本体であって、弁室1aの側面には
上流通路1bが連通して設けられ、また弁室1aの底面
には下流通路1dに通ずる弁座ICが設けられている。
In the figure, l is the valve body, and an upstream passage 1b is provided in communication with the side surface of the valve chamber 1a, and a valve seat IC is provided in the bottom surface of the valve chamber 1a, which communicates with the downstream passage 1d. .

弁室1a内にはピストン型の主弁体2が摺動自在に遊嵌
されていて、その背後に背圧室1eを弁室1aから区画
している。この主弁体2には弁室1a側と背圧室le側
とを連絡する漏洩流路2aと均圧流路2bとが設けられ
ている。
A piston-shaped main valve body 2 is slidably fitted into the valve chamber 1a, and a back pressure chamber 1e is separated from the valve chamber 1a behind the main valve body 2. The main valve body 2 is provided with a leakage passage 2a and a pressure equalization passage 2b that communicate the valve chamber 1a side and the back pressure chamber le side.

弁本体1の上部には、下流通路1dと連絡管3によって
連通ずる低圧室4cを形成した頭体4aと帽体4bとが
取り付けられており、頭体4aを貫通して背圧室1eと
低圧室4cとの差圧で作動する差圧弁5が設けられてい
る。更に、この差圧弁5は弁ばね6によって常時主弁体
2に向かって付勢されており、背圧室1eと低圧室4c
との差圧が少ないときは均圧流路2bの背圧室Ie側開
開口部圧着され、従って主弁体2も弁座1cに圧着され
ている。なお、5aは弾性材のストッパである。
Attached to the upper part of the valve body 1 are a head body 4a and a cap body 4b, which form a low pressure chamber 4c that communicates with the downstream passage 1d through a communication pipe 3. A differential pressure valve 5 is provided which operates based on the differential pressure with the low pressure chamber 4c. Furthermore, this differential pressure valve 5 is always urged toward the main valve body 2 by a valve spring 6, and the back pressure chamber 1e and the low pressure chamber 4c are
When the differential pressure is small, the opening on the back pressure chamber Ie side of the pressure equalizing flow path 2b is pressed, and therefore the main valve body 2 is also pressed against the valve seat 1c. Note that 5a is a stopper made of an elastic material.

一方、弁本体1の側部には、背圧室1eと下流通路1d
とを連絡するバイパス流路Ifを開閉することができる
電磁型パイロット弁7が設けられている。なお、7aは
ボール状のパイロット弁体、7bはプランジャ、7cは
電磁コイルである。
On the other hand, on the side of the valve body 1, there is a back pressure chamber 1e and a downstream passage 1d.
An electromagnetic pilot valve 7 is provided that can open and close a bypass flow path If communicating with the above. Note that 7a is a ball-shaped pilot valve body, 7b is a plunger, and 7c is an electromagnetic coil.

このように構成された本発明の遅延開型電磁弁■を冷凍
回路の膨張弁Eおよび蒸発用熱交換器Hに組み合゛わせ
たときの回路構成を第3図に示す。
FIG. 3 shows a circuit configuration when the delayed opening solenoid valve (1) of the present invention constructed as described above is combined with an expansion valve E and an evaporative heat exchanger H of a refrigeration circuit.

本発明の遅延開型電磁弁Vにおいては、漏洩流路2a、
バイパス流路If、および均圧流路2bの冷媒の流通抵
抗をそれぞれA、B、およびCとするときにA>B>C
の関係が成立するように構成されており、また膨張弁E
の冷媒の流通抵抗をDとするときにD≧Bであるように
選択されている。このような冷媒制御用の回路構成を備
えた冷凍回路において、遅延開型電磁弁■に対する制御
信号が入力されていないときは、冷媒は上流通路1bか
らパイロット弁7の入口までを満たして制御弁V内に滞
留しており、下流通路1dの冷媒は膨張弁Eを通して吸
引回収されて低圧ガス状態となっている。
In the delayed opening type solenoid valve V of the present invention, the leakage flow path 2a,
When the refrigerant flow resistances of the bypass flow path If and the pressure equalization flow path 2b are respectively A, B, and C, A>B>C.
The expansion valve E
The selection is made so that D≧B, where D is the flow resistance of the refrigerant. In a refrigeration circuit equipped with such a circuit configuration for refrigerant control, when a control signal is not input to the delayed opening solenoid valve (■), the refrigerant is controlled by filling from the upstream passage 1b to the inlet of the pilot valve 7. The refrigerant remaining in the valve V and in the downstream passage 1d is suctioned and recovered through the expansion valve E and becomes a low-pressure gas.

ここで遅延開型電磁弁Vに対する制御信号が端子Rから
入力されると、第2図に示すようにパイロット弁7が開
き、背圧室Le内の冷媒がバイパス流路Ifを経て一部
気化しながら下流通路1dに流出するが、均圧流路2b
が開いたままとなっているから液状冷媒が背圧室Le内
に補給され、背圧室1e内圧力はあまり低下しない。そ
の一方で、膨張弁Eの流通抵抗りはバイパス流路1fの
流通抵抗Bより大きいから、下流通路ld内の圧力、従
って低圧室4c内の圧力も同時に次第に上昇してゆく。
Here, when a control signal for the delayed opening type solenoid valve V is input from the terminal R, the pilot valve 7 opens as shown in FIG. It flows out into the downstream passage 1d while changing, but the pressure equalizing passage 2b
Since it remains open, liquid refrigerant is replenished into the back pressure chamber Le, and the pressure inside the back pressure chamber 1e does not drop much. On the other hand, since the flow resistance of the expansion valve E is greater than the flow resistance B of the bypass flow path 1f, the pressure in the downstream passage ld and therefore the pressure in the low pressure chamber 4c also gradually rises at the same time.

こうして背圧室Le内の圧力と低圧室4c内の圧力との
差が次第に縮まって弁ばね6の押圧力より小さくなった
ときに差圧弁5が均圧流路2bを閉じる。そうすると背
圧室Le内への冷媒の補給は漏洩流路2aのみとなり、
冷媒はバイパス流路1fを経て急速に流出するから、背
圧室Le内の圧力が急低下するに至る。その結果、主弁
体2は弁ばね6の押圧力に逆らって弁室1a内の冷媒の
圧力によって押し上げられ、液状冷媒が上流通路1bか
ら直接下流通路1dに供給されるようになる。
In this way, when the difference between the pressure in the back pressure chamber Le and the pressure in the low pressure chamber 4c gradually decreases and becomes smaller than the pressing force of the valve spring 6, the differential pressure valve 5 closes the pressure equalization flow path 2b. Then, refrigerant is supplied into the back pressure chamber Le only through the leakage flow path 2a,
Since the refrigerant rapidly flows out through the bypass flow path 1f, the pressure in the back pressure chamber Le suddenly drops. As a result, the main valve body 2 is pushed up by the pressure of the refrigerant in the valve chamber 1a against the pressing force of the valve spring 6, and the liquid refrigerant is directly supplied from the upstream passage 1b to the downstream passage 1d.

このように、本発明の遅延開型電磁弁は冷媒の圧力を利
用して膨張弁への冷媒の供給量を一時的に抑制すること
により、液状冷媒の突入による衝撃を緩和させることが
でやる。
As described above, the delayed opening type solenoid valve of the present invention can alleviate the impact caused by the rush of liquid refrigerant by temporarily suppressing the amount of refrigerant supplied to the expansion valve using the refrigerant pressure. .

更に、この状態からパイロット弁7が閉じられると、背
圧室1e内圧力は漏洩流路2aからの冷媒の流入によっ
て上昇し始めるので、主弁体2を押し上げる力が弱まり
、弁ばね6の押圧力によって主弁体2が弁座1cに着座
する。そうすると、下流通路圧力とともに低圧室4c内
の圧力が更に低下する結果差圧弁5が開き、弁ばね6の
押圧力が働かなくなっても主弁体2は上流通路圧力と下
流通路圧力との差圧によって弁座ICに圧着されること
となり、閉止状態が維持される。
Furthermore, when the pilot valve 7 is closed from this state, the pressure inside the back pressure chamber 1e starts to rise due to the inflow of refrigerant from the leakage passage 2a, so the force pushing up the main valve body 2 weakens, and the pressure on the valve spring 6 is reduced. The main valve body 2 is seated on the valve seat 1c due to the pressure. Then, the pressure in the low pressure chamber 4c further decreases together with the pressure in the downstream passage, and as a result, the differential pressure valve 5 opens, and even if the pressing force of the valve spring 6 no longer works, the main valve body 2 is able to absorb the difference between the pressure in the upstream passage and the pressure in the downstream passage. The valve seat IC is pressed against the valve seat IC by the pressure, and the closed state is maintained.

〔発明の効果] 本発明の遅延開型電磁弁は、出口側の冷媒圧力がある程
度増大してから主弁が作動するようにしたパイロット式
電磁弁であって、特に律動用の制御装置を用いる必要が
なくまた回路構成も複雑にならないので、冷凍装置の組
立や配管工事等が容易であって効率的かつ経済的に実施
できるばかりでなく、故障等の発生しにくい信頼性の高
い冷凍装置が得られるという利点がある。
[Effects of the Invention] The delayed opening type solenoid valve of the present invention is a pilot type solenoid valve in which the main valve is operated after the refrigerant pressure on the outlet side has increased to a certain extent, and in particular uses a rhythm control device. Since it is unnecessary and the circuit configuration is not complicated, the assembly of the refrigeration equipment and piping work are not only easy, efficient and economical, but also the refrigeration equipment is highly reliable and less likely to break down. There are advantages that can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の遅延開型電磁弁の例の断面図であって
その非使用時の状態を示し、 第2図は同じくその作動開始の際の遅延期間中の状態を
示す。 第3図は本発明の遅延開型電磁弁を用いて構成された蒸
発用熱交換器ユニット部の回路構成図である。 I・・・弁本体、la・・・弁室、1b・・・上流通路
、1C・・・・弁座、1d・・・下流通路、1e・・・
背圧室、1r・・・バイパス流路、2・・・主弁体、2
a・・・漏洩流路、2b・・・均圧流路、3・・・連絡
管、4a・・・頭体、4b・・・帽体、4C・・・低圧
室、5・・・差圧弁、5a・・・ストッパ、6・・・弁
ばね、7・・・パイロット弁、7a・・・パイロット弁
体、7b・・・プランジャ、7c・・・電磁コイル、E
・・・膨張弁、H・・・蒸発用熱交換器、R・・・端子
、■・・・遅延開型電磁弁。
FIG. 1 is a cross-sectional view of an example of the delayed-opening solenoid valve of the present invention, showing its state when not in use, and FIG. 2 similarly showing its state during a delay period when starting its operation. FIG. 3 is a circuit diagram of an evaporative heat exchanger unit constructed using the delayed opening solenoid valve of the present invention. I... Valve body, la... Valve chamber, 1b... Upstream passage, 1C... Valve seat, 1d... Downstream passage, 1e...
Back pressure chamber, 1r... bypass flow path, 2... main valve body, 2
a...Leakage flow path, 2b...Pressure equalization flow path, 3...Connection pipe, 4a...Head body, 4b...Cap body, 4C...Low pressure chamber, 5...Differential pressure valve , 5a... Stopper, 6... Valve spring, 7... Pilot valve, 7a... Pilot valve body, 7b... Plunger, 7c... Electromagnetic coil, E
...Expansion valve, H...evaporation heat exchanger, R...terminal, ■...delayed opening type solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 冷凍回路において膨張器の上流側に管路を介して設けら
れる冷媒制御用のパイロット型開閉弁であって、漏洩流
路と背圧室とパイロット弁で遮断できるバイパス流路と
を順に直列に接続した制御流路を上流通路と下流通路と
の間に設け、背圧室内圧力と弁ばねの押圧力との合力が
上流通路圧力を下回ったとき開作動する主弁を上流通路
と下流通路との間に該制御流路と並列に設け、下流通路
圧力と弁ばねの押圧力との合力が背圧室内圧力を上回っ
たとき閉作動する差圧弁と均圧流路とを直列に接続した
制御遅延流路を上流通路と背圧室との間に該漏洩流路と
並列に設けてなり、前記の漏洩流路、バイパス流路、均
圧流路、及び前記の膨張器の冷媒の流通抵抗をそれぞれ
A、B、C、Dとするとき、A>B>CでありかつD≧
Bであることを特徴とする遅延開型電磁弁。
This is a pilot-type on-off valve for controlling refrigerant that is installed upstream of the expander in the refrigeration circuit via a pipe, and the leakage flow path, back pressure chamber, and bypass flow path that can be shut off by a pilot valve are connected in series in order. A control flow path is provided between the upstream passage and the downstream passage, and a main valve that opens when the resultant force of the back pressure chamber pressure and the pressing force of the valve spring is lower than the upstream passage pressure is connected between the upstream passage and the downstream passage. A differential pressure valve is provided in parallel with the control flow path between the passage and the pressure equalization flow path and is connected in series with the differential pressure valve that closes when the resultant force of the pressure in the downstream passage and the pressing force of the valve spring exceeds the pressure in the back pressure chamber. A controlled delay flow path is provided between the upstream passage and the back pressure chamber in parallel with the leakage flow path, and the leakage flow path, the bypass flow path, the pressure equalization flow path, and the flow of the refrigerant of the expander are controlled. When the resistances are A, B, C, and D, A>B>C and D≧
A delayed opening solenoid valve characterized by B.
JP1310579A 1989-12-01 1989-12-01 Delayed open solenoid valve Expired - Fee Related JP2740309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1310579A JP2740309B2 (en) 1989-12-01 1989-12-01 Delayed open solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1310579A JP2740309B2 (en) 1989-12-01 1989-12-01 Delayed open solenoid valve

Publications (2)

Publication Number Publication Date
JPH03175243A true JPH03175243A (en) 1991-07-30
JP2740309B2 JP2740309B2 (en) 1998-04-15

Family

ID=18006938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1310579A Expired - Fee Related JP2740309B2 (en) 1989-12-01 1989-12-01 Delayed open solenoid valve

Country Status (1)

Country Link
JP (1) JP2740309B2 (en)

Also Published As

Publication number Publication date
JP2740309B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US4267702A (en) Refrigeration system with refrigerant flow controlling valve
US5070707A (en) Shockless system and hot gas valve for refrigeration and air conditioning
CN100353130C (en) Air conditioner
JP3397862B2 (en) Expansion valve with solenoid valve
US4748818A (en) Transport refrigeration system having means for enhancing the capacity of a heating cycle
US6843064B2 (en) Method and apparatus for turbulent refrigerant flow to evaporator
JPH03175243A (en) Delayed-open type solenoid valve
JPH0387573A (en) Control valve for refrigerant
JPH0571659A (en) Two-way solenoid valve
US20050274133A1 (en) Refrigeration plant
JPS63293373A (en) Two stage operating type solenoid valve
JPH10318425A (en) Pilot type solenoid valve
JP3896560B2 (en) Solenoid valve with differential pressure valve
JPH1114164A (en) Freezing cycle with bypass pipeline
JPH0814711A (en) Solenoid valve-integrated receiver and refrigerating cycle
JP2005315376A (en) Shutoff valve
EP0060315A1 (en) Refrigeration system with refrigerant flow controlling valve and method of conserving energy in the operation of a compressor-condensor-evaporator type refrigeration system
CN216112312U (en) Electromagnetic valve
JP2645854B2 (en) Two-stage expansion valve
US2983114A (en) Refrigerating system and valve construction
JPS6353463B2 (en)
JPH10176864A (en) Refrigeration cycle using variable capacity compressor
JPS6340760Y2 (en)
JP3780101B2 (en) Expansion valve with solenoid valve
JPH07280393A (en) Flow control valve and refrigerating cycle apparatus using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees