JPH0794370A - Electrode foil for electrolytic capacitor - Google Patents

Electrode foil for electrolytic capacitor

Info

Publication number
JPH0794370A
JPH0794370A JP23391193A JP23391193A JPH0794370A JP H0794370 A JPH0794370 A JP H0794370A JP 23391193 A JP23391193 A JP 23391193A JP 23391193 A JP23391193 A JP 23391193A JP H0794370 A JPH0794370 A JP H0794370A
Authority
JP
Japan
Prior art keywords
foil
capacitance
electrode foil
electrolytic capacitor
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23391193A
Other languages
Japanese (ja)
Inventor
Toshiro Shinohara
敏郎 篠原
Kazuhiko Suzuki
和彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP23391193A priority Critical patent/JPH0794370A/en
Publication of JPH0794370A publication Critical patent/JPH0794370A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To give a capacitor stable and greater capacitance by providing a metallic foil that comprises a conductive material having microscopic unevenness on its surfaces covered with porous layers of molybdenum or tungsten. CONSTITUTION:Aluminum foil 1 is roughened by electrolytic etching so that unevenness of 0.5-20 microns Rmax, including recesses 2 and projections 3, may be observed on its surface with a scanning electron microscope. A porous film 4 of molybdenum or tungsten of 0.05-0.5 micron in thickness is deposited on each side of the roughened foil in a vacuum by electron beam heating. The foil thus obtained serves to give a capacitor greater capacitance than the conventional foil does.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解コンデンサの材料
として使用される電極箔に係り、特に、単位面積当たり
の静電容量を増大させるとともに、静電容量の安定性を
高めるための改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode foil used as a material for an electrolytic capacitor, and more particularly to an improvement for increasing capacitance per unit area and stability of capacitance. .

【0002】[0002]

【従来の技術】電解コンデンサは、リードを接合した一
対のアルミニウム等からなる電極箔と電極紙を交互に挟
んで円筒状に巻回し、電解液を含浸させたうえ、ケース
内に密封することにより製造されるものであるが、近年
は電子機器の小型軽量化に伴い、電子部品である電解コ
ンデンサを小型化する要求も強まっている。
2. Description of the Related Art An electrolytic capacitor is formed by alternately sandwiching a pair of electrode foils made of aluminum or the like, to which leads are joined, and an electrode paper, wound in a cylindrical shape, impregnated with an electrolytic solution, and sealed in a case. Although manufactured, in recent years, along with the reduction in size and weight of electronic devices, there is an increasing demand for downsizing of electrolytic capacitors, which are electronic components.

【0003】電解コンデンサの小型化を図るには、前記
電極箔の単位面積当たりの静電容量を高めることが重要
である。次式から明かなように、電極箔の静電容量Cを
増大するには、電極箔の表面積Sまたは誘電体の誘電率
εを大きくするか、誘電体の厚さtを減少させることが
有効である。 C=kεS/t (k:定数 ε:誘電率 S:表面積 t:誘電体膜
厚)
In order to reduce the size of the electrolytic capacitor, it is important to increase the capacitance per unit area of the electrode foil. As is clear from the following equation, in order to increase the capacitance C of the electrode foil, it is effective to increase the surface area S of the electrode foil or the dielectric constant ε of the dielectric material or decrease the thickness t of the dielectric material. Is. C = kεS / t (k: constant ε: dielectric constant S: surface area t: dielectric film thickness)

【0004】そこで従来より、アルミニウム箔の表面を
エッチング処理等により粗面化し、微細な凹凸を全面に
形成して表面積Sを大きくする方法が一般に採られてい
る。しかし、著しい粗面化を行うと電極箔が多孔質状態
となって強度が低下し、コンデンサの製造工程中に破断
しやすくなるため、電極箔の粗面化のみに頼った構成で
は、静電容量の増大に限界があった。
Therefore, conventionally, a method has been generally adopted in which the surface of the aluminum foil is roughened by etching or the like to form fine irregularities on the entire surface to increase the surface area S. However, if the surface is roughened significantly, the electrode foil will become porous and its strength will decrease, and it will easily break during the capacitor manufacturing process. There was a limit to the capacity increase.

【0005】上記限界を打破する手段として、特開昭5
6−83923号公報では、金属箔を粗面化したうえ、
その粗面上に、誘電率が高い酸化アルミニウム、酸化タ
ンタルまたは酸化チタンを蒸着する構成が提案されてい
る。この構成によれば、粗面化により面積Sを増大する
と共に、誘電率εを高めることができるので、粗面化の
みの場合よりも電極箔の静電容量を増大することが可能
である。
As means for overcoming the above-mentioned limit, Japanese Patent Laid-Open No. Sho 5
In Japanese Patent Publication No. 6-83923, a metal foil is roughened and
A structure has been proposed in which aluminum oxide, tantalum oxide, or titanium oxide having a high dielectric constant is vapor-deposited on the rough surface. According to this configuration, the area S can be increased by roughening and the dielectric constant ε can be increased, so that the capacitance of the electrode foil can be increased as compared with the case of only roughening.

【0006】また、特開昭61−180420号公報に
は、アルミニウム箔に粗面化処理を施したうえ、Ti,
Cr,Ag,Sn,Co,Zr,Ta,Si,Cu,F
eまたはその合金からなる0.02〜1.0μmの金属
微粒子を被覆して、厚さ0.02〜5.0μmの導電性
金属被覆を形成した電解コンデンサ用電極箔が記載され
ている。この構成によれば、導電性金属被覆の表面積S
を、アルミニウム箔にエッチング処理した場合より拡大
でき、静電容量が増大できる。
Further, in Japanese Patent Laid-Open No. 61-180420, an aluminum foil is roughened and Ti,
Cr, Ag, Sn, Co, Zr, Ta, Si, Cu, F
There is described an electrode foil for an electrolytic capacitor, in which 0.02 to 1.0 μm of metal fine particles made of e or its alloy is coated to form a conductive metal coating having a thickness of 0.02 to 5.0 μm. According to this configuration, the surface area S of the conductive metal coating is
Can be expanded more than when the aluminum foil is subjected to etching treatment, and the capacitance can be increased.

【0007】さらに、特開昭62−58609号公報に
は、粗面化処理したアルミニウム箔に多孔質状のチタン
蒸着膜を形成する構成が記載されている。この構成によ
れば、導電性金属被覆の表面積Sを拡大して静電容量を
増大するとともに、耐食性を高めることができる。
Further, Japanese Patent Application Laid-Open No. 62-58609 describes a structure in which a porous titanium vapor deposition film is formed on a surface-roughened aluminum foil. According to this configuration, the surface area S of the conductive metal coating can be increased to increase the capacitance and corrosion resistance.

【0008】[0008]

【発明が解決しようとする課題】しかし、上記3種の構
成によっても、電解コンデンサ用電極箔の静電容量の増
大には限界があった。また、金属箔上にTi等の金属を
蒸着した従来の電解コンデンサ用電極箔では、保管中に
電解コンデンサ用電極箔の表面が徐々に酸化するため、
誘電体である金属酸化物の厚さtが経時的に増していく
ことが避けられず、保管中の静電容量の経時減少が無視
できない問題があった。
However, even with the above three types of configurations, there is a limit to the increase in the capacitance of the electrode foil for electrolytic capacitors. Further, in the conventional electrode foil for electrolytic capacitors in which metal such as Ti is deposited on the metal foil, the surface of the electrode foil for electrolytic capacitors is gradually oxidized during storage,
There is an unavoidable increase in the thickness t of the metal oxide, which is a dielectric, with time, and there is a problem that the decrease in capacitance during storage with time cannot be ignored.

【0009】そこで、本発明者らは上記問題を改善する
ため、各種の金属箔と蒸着材料の組み合わせを詳細に検
討し、その結果、多孔質化した金属箔の表面にMoまた
はWの皮膜を形成すると、従来使用されているTiまた
は金属酸化物等で被覆した電解コンデンサ用電極箔に比
して静電容量を著しく増大でき、しかも静電容量の安定
化も図れることを見いだした。
In order to solve the above problems, the present inventors have studied in detail the combination of various metal foils and vapor deposition materials, and as a result, formed a Mo or W film on the surface of the porous metal foil. It has been found that when formed, the capacitance can be significantly increased and the capacitance can be stabilized as compared with the electrode foil for electrolytic capacitors coated with Ti or metal oxide that has been conventionally used.

【0010】[0010]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたもので、導電体材料からなりその表
面には微視的な凹凸が形成された金属箔と、この金属箔
の表面に設けられた厚さ0.005〜0.5μmのMo
またはWからなる多孔質被覆層とを具備することを特徴
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a metal foil made of a conductive material and having microscopic asperities formed on its surface, and a metal foil Mo having a thickness of 0.005 to 0.5 μm provided on the surface
Or a porous coating layer made of W.

【0011】なお、前記金属箔と前記被覆層との間に
は、Ti中間層が形成されていてもよい。また、前記多
孔質被覆層の表面の少なくとも一部は酸化されて、Mo
またはWの酸化物となっていてもよい。
A Ti intermediate layer may be formed between the metal foil and the coating layer. In addition, at least a part of the surface of the porous coating layer is oxidized and Mo
Alternatively, it may be an oxide of W.

【0012】さらに、前記金属箔は粗面化されたアルミ
ニウム箔とされ、その表面粗さは0.5〜20μmRm
axとされていてもよい。
Further, the metal foil is a roughened aluminum foil having a surface roughness of 0.5 to 20 μmRm.
It may be ax.

【0013】[0013]

【作用】本発明に係る電解コンデンサ用電極箔によれ
ば、従来の電解コンデンサ用電極箔に比して静電容量を
著しく向上することができる。また、表面に酸化膜が生
じにくいので、静電容量の経時劣化が少なく、電解コン
デンサの品質を向上することができる。
According to the electrode foil for an electrolytic capacitor of the present invention, the capacitance can be remarkably improved as compared with the conventional electrode foil for an electrolytic capacitor. Further, since an oxide film is unlikely to be formed on the surface, deterioration of the capacitance with time is small, and the quality of the electrolytic capacitor can be improved.

【0014】[0014]

【実施例】図1は、本発明に係る電解コンデンサ用電極
箔の第1実施例を示す模式的な断面拡大図である。この
電解コンデンサ用電極箔は、導電体材料からなりその両
面に微視的な凹凸(凹部2)が形成されたアルミニウム
箔(金属箔)1と、このアルミニウム箔1の両面に設け
られた厚さ0.005〜0.5μmのMoまたはWから
なる多孔質被覆層4とを具備している。
FIG. 1 is a schematic enlarged sectional view showing a first embodiment of an electrode foil for electrolytic capacitors according to the present invention. This electrode foil for electrolytic capacitors is made of a conductive material, and has an aluminum foil (metal foil) 1 on both sides of which microscopic asperities (recesses 2) are formed, and a thickness provided on both sides of this aluminum foil 1. The porous coating layer 4 is made of Mo or W and has a thickness of 0.005 to 0.5 μm.

【0015】上記のような粗面化アルミニウム箔を作成
するには、化学エッチングまたは電解エッチング処理等
が好適であり、粗面化の程度としては、0.5〜20μ
mRmax程度が好適である。0.5μmRmax未満
では多孔質被覆層4の表面の凹凸度が低下し、容量増大
効果が低減する。逆に20μmRmaxより大である
と、アルミニウム箔1の強度が低下するため好ましくな
い。
In order to prepare the above-mentioned roughened aluminum foil, chemical etching or electrolytic etching is suitable, and the degree of roughening is 0.5 to 20 μm.
About mRmax is preferable. If it is less than 0.5 μmRmax, the unevenness of the surface of the porous coating layer 4 is lowered, and the capacity increasing effect is reduced. On the contrary, when it is larger than 20 μmRmax, the strength of the aluminum foil 1 is lowered, which is not preferable.

【0016】MoまたはWからなる多孔質被覆層4の厚
さが0.005μm未満では、静電容量増加効果に乏し
く、0.5オングストロームより厚いと、製造コストが
かかるばかりで、静電容量の増加はほぼ飽和する。多孔
質被覆層4の表面の一部が酸化され、MoまたはWの酸
化物が生じていてもよい。
If the thickness of the porous coating layer 4 made of Mo or W is less than 0.005 μm, the effect of increasing the electrostatic capacity is poor, and if it is more than 0.5 angstrom, the manufacturing cost is increased and the electrostatic capacity is not increased. The increase is almost saturated. Part of the surface of the porous coating layer 4 may be oxidized to generate an oxide of Mo or W.

【0017】多孔質被覆層4の形成方法としては、真空
蒸着法、スパッタリング法、イオンプレーティング法等
の周知の方法が可能である。成膜時に不活性ガス等のガ
スを導入して微粒子化したり、酸素等の酸化性ガスを導
入してMoまたはWの一部の酸化を促進してもよい。
As a method for forming the porous coating layer 4, known methods such as a vacuum vapor deposition method, a sputtering method and an ion plating method can be used. A gas such as an inert gas may be introduced during film formation to form fine particles, or an oxidizing gas such as oxygen may be introduced to accelerate the oxidation of a part of Mo or W.

【0018】次に、図2は本発明の第2実施例を示し、
この例では、アルミニウム箔1と各多孔質被覆層4との
間に、Tiからなる中間層5がそれぞれ形成されている
ことを特徴としている。中間層5の表面には薄い酸化物
層(TiO2)が生じていてもよいが、中間層5と多孔
質被覆層4は導通していることが望ましい。
Next, FIG. 2 shows a second embodiment of the present invention.
This example is characterized in that an intermediate layer 5 made of Ti is formed between the aluminum foil 1 and each porous coating layer 4. A thin oxide layer (TiO 2 ) may be formed on the surface of the intermediate layer 5, but it is desirable that the intermediate layer 5 and the porous coating layer 4 are electrically connected.

【0019】なお、本発明に係る電解コンデンサ用電極
箔は、コンデンサの陰極材料としての使用に適する。そ
の場合、組み合わせる陽極材料としては、Al23等の
酸化物系絶縁膜を形成した金属箔が耐電圧の点で適して
いる。コンデンサの陽極においては、陰極よりも耐電圧
が要求されるためである。
The electrode foil for electrolytic capacitors according to the present invention is suitable for use as a cathode material for capacitors. In that case, as the anode material to be combined, a metal foil formed with an oxide insulating film such as Al 2 O 3 is suitable in terms of withstand voltage. This is because the anode of the capacitor is required to have a higher withstand voltage than the cathode.

【0020】[0020]

【実験例】次に、実験例を挙げて本発明の効果を実証す
る。厚さ50μmの純度99.8%のアルミニウム箔
に、以下の条件で電解エッチング処理を施し、その両面
を粗面化した。 エッチング処理液:2.5wt%塩酸水溶液 処理条件/温度:60℃ 時間:200秒 電解電流:20A/50cm2
[Experimental Example] Next, the effect of the present invention will be demonstrated with reference to an experimental example. An aluminum foil having a thickness of 50 μm and a purity of 99.8% was subjected to electrolytic etching treatment under the following conditions to roughen both surfaces thereof. Etching treatment liquid: 2.5 wt% hydrochloric acid aqueous treatment treatment condition / temperature: 60 ° C. time: 200 seconds Electrolytic current: 20 A / 50 cm 2

【0021】得られたアルミニウム箔の表面を走査型電
子顕微鏡で観察したところ、0.5μmRmax程度の
微視的な凹凸が全面に亙って形成されていた。また、こ
の粗面化したアルミニウム箔の静電容量を計測したとこ
ろ、0.290mF/cm2であった。静電容量の計測
は以下の条件で行った。 計測器:HP株式会社製LCRメーター4326A(商
品名) 印可条件:120Hz、50mV 電解液:ホウ酸アンモニウム10wt%溶液(浸漬して
3分後の測定値を記録した) 試験片寸法:10mm×50mm
Observation of the surface of the obtained aluminum foil with a scanning electron microscope revealed that microscopic irregularities of about 0.5 μm Rmax were formed over the entire surface. The electrostatic capacity of this roughened aluminum foil was measured and found to be 0.290 mF / cm 2 . The capacitance was measured under the following conditions. Measuring instrument: LCR meter 4326A (trade name) manufactured by HP Co., Ltd. Applicable condition: 120 Hz, 50 mV Electrolyte solution: ammonium borate 10 wt% solution (measurement value after 3 minutes of immersion was recorded) Specimen size: 10 mm x 50 mm

【0022】粗面化したアルミニウム箔の両面に、真空
度5×10-3Paの真空中で電子ビーム加熱式蒸着によ
り種々の厚さのMoまたはWからなる被覆層をそれぞれ
形成した。得られた電解コンデンサ用電極箔の静電容量
を計測した結果を図3に示す。静電容量の計測は前記と
同条件で行った。
On both surfaces of the roughened aluminum foil, coating layers made of Mo or W having various thicknesses were formed by electron beam heating vapor deposition in a vacuum having a vacuum degree of 5 × 10 −3 Pa. The result of measuring the capacitance of the obtained electrode foil for electrolytic capacitors is shown in FIG. The capacitance was measured under the same conditions as above.

【0023】一方、粗面化したアルミニウム箔の両面
に、真空度5×10-3Paの真空中で電子ビーム加熱式
蒸着により0.75μm(7500オングストローム)
のTiを蒸着した後、同じ真空度で種々の厚さのMoま
たはWからなる被覆層を形成した。得られた電解コンデ
ンサ用電極箔の静電容量を計測した結果を図3に併せて
示す(MoまたはWの厚さでプロットした)。静電容量
の計測は前記と同条件で行った。
On the other hand, 0.75 μm (7500 angstroms) was formed on both surfaces of the roughened aluminum foil by electron beam heating vapor deposition in a vacuum with a vacuum degree of 5 × 10 −3 Pa.
After Ti was vapor-deposited, a coating layer made of Mo or W having various thicknesses was formed under the same vacuum degree. The results of measuring the capacitance of the obtained electrode foil for electrolytic capacitors are also shown in FIG. 3 (plotted with the thickness of Mo or W). The capacitance was measured under the same conditions as above.

【0024】さらに、比較例として、粗面化したアルミ
ニウム箔の両面に、真空度5×10-3Paの真空中で電
子ビーム加熱式蒸着により種々の厚さのTi層をそれぞ
れ形成した。得られた電解コンデンサ用電極箔の静電容
量を計測した結果を図3に併せて示す。静電容量の計測
は前記と同条件で行った。
Further, as comparative examples, Ti layers having various thicknesses were formed on both surfaces of the roughened aluminum foil by electron beam heating vapor deposition in a vacuum having a vacuum degree of 5 × 10 −3 Pa. The results of measuring the capacitance of the obtained electrode foil for electrolytic capacitors are also shown in FIG. The capacitance was measured under the same conditions as above.

【0025】図3から明らかなように、Tiを蒸着した
場合に比して、MoまたはWを蒸着した場合には、その
厚さの割に静電容量が大きく、例えば膜厚2500オン
グストロームの場合で比較すると、MoではTiの約4
倍、Wでは約2倍の値が得られた。すなわち、通常の電
解コンデンサ用電極箔の静電容量の製品規格が例えば1
mF/cm2 である場合、この静電容量を得るためには
Ti膜で5100オングストローム必要であるのに対
し、Moでは1500オングストローム、Wで2000
オングストロームで済む。したがって成膜ラインの速度
を増して生産性を向上することができる。また、中間層
としてTi層が存在する場合にも、Mo,Wを被覆する
ことにより、Mo,Wの特徴である静電容量の増大効果
が得られた。
As is apparent from FIG. 3, when Mo or W is vapor-deposited, the capacitance is large relative to the thickness of Ti vapor-deposited. For example, when the film thickness is 2500 angstroms. Comparing with, Mo is about 4 of Ti
A double value and a double value for W were obtained. That is, the product standard of the capacitance of a normal electrode foil for electrolytic capacitors is, for example, 1
In the case of mF / cm 2 , in order to obtain this capacitance, the Ti film needs to have 5100 angstroms, whereas Mo has 1500 angstroms and W has 2,000 angstroms.
Angstrom is enough. Therefore, the speed of the film forming line can be increased and the productivity can be improved. Further, even when the Ti layer was present as the intermediate layer, the effect of increasing the electrostatic capacitance, which is a characteristic of Mo and W, was obtained by coating with Mo and W.

【0026】次に、上記の各電解コンデンサ用電極箔
を、同一条件で室温の大気中に放置し、静電容量の経時
変化を調べた。TiとMoとの比較結果を図4に、Ti
とTi+Moとの比較結果を図5に、TiとTi+Wと
の比較結果を図6にそれぞれ示す。Tiのみを蒸着した
場合には、最初の数日間で静電容量が大きく低下してい
るのに対し、Moを2000オングストローム以下に蒸
着した場合には、図4に示すように容量減少がほとんど
見られなかった。2500オングストロームのMoを蒸
着した場合には、経時につれ静電容量が逆に増える減少
が確認された。これは、Moの酸化につれMo被覆の表
面がいっそう多孔質化することを示していると考えられ
る。
Next, the above electrode foils for electrolytic capacitors were left in the atmosphere at room temperature under the same conditions, and the change in capacitance with time was examined. Fig. 4 shows the result of comparison between Ti and Mo.
5 shows the result of comparison between Ti and Mo +, and FIG. 6 shows the result of comparison between Ti and Ti + W. When only Ti is vapor-deposited, the electrostatic capacity is greatly reduced in the first few days, whereas when Mo is vapor-deposited to 2000 angstroms or less, the capacitance almost disappears as shown in FIG. I couldn't do it. In the case of depositing 2500 Å of Mo, it was confirmed that the capacitance increased conversely with time. This is considered to indicate that the surface of the Mo coating becomes more porous as Mo is oxidized.

【0027】また、図5および図6の結果より、Tiを
7500オングストローム蒸着してからMoまたはWを
蒸着した場合は、Tiのみを蒸着した場合に比して、静
電容量の経時変化を緩和し、静電容量を経時的に安定化
できることが確認できた。
Further, from the results of FIGS. 5 and 6, when Ti is deposited at 7500 angstroms and then Mo or W is deposited, the change in capacitance with time is reduced as compared with the case where only Ti is deposited. However, it was confirmed that the capacitance can be stabilized over time.

【0028】次に、Moを1000オングストローム蒸
着した電解コンデンサ用電極箔について、ESCA装置
によりMo蒸着側から厚さ方向の元素分布を測定した結
果を図7に示す。測定は、箔表面にArイオンを照射し
一定速度でスパッタリングしながらX線照射して元素分
析を行った。X線強度は8.0kV×30mA、Ar+
イオン加速条件は2.0kV×20mAとした。図7か
ら明らかなように、箔表面に形成されたMo蒸着膜に
は、20原子%程度の酸素原子がほぼ均一に含まれてい
る。
Next, FIG. 7 shows the result of measuring the element distribution in the thickness direction from the Mo vapor deposition side of the electrode foil for electrolytic capacitors in which Mo was vapor-deposited by 1000 Å, using the ESCA apparatus. For the measurement, elemental analysis was performed by irradiating the foil surface with Ar ions and irradiating with X-rays while sputtering at a constant rate. X-ray intensity is 8.0 kV x 30 mA, Ar +
The ion acceleration conditions were 2.0 kV × 20 mA. As is clear from FIG. 7, the Mo vapor deposition film formed on the foil surface contains oxygen atoms of approximately 20 atom% almost uniformly.

【0029】次に、Ti中間層を形成した電極箔につい
て、MoまたはWの蒸着膜を形成したものと、他の金属
の蒸着膜を形成したものとの静電容量の比較を行った。
粗面化したアルミニウム箔上にTiを0.75μm蒸着
した後、表1に示す物質をTi膜上にそれぞれ300オ
ングストローム蒸着し、得られた電極箔の静電容量を前
述の方法で測定した。成膜条件等は前記実験と同様であ
る。その結果を表1に示す。
Next, with respect to the electrode foil on which the Ti intermediate layer was formed, the capacitances of the deposited film of Mo or W and the deposited film of another metal were compared with each other.
After 0.75 μm of Ti was vapor-deposited on the roughened aluminum foil, the substances shown in Table 1 were vapor-deposited on the Ti film by 300 angstroms each, and the capacitance of the obtained electrode foil was measured by the method described above. The film forming conditions and the like are the same as in the above experiment. The results are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】表1の結果から明らかなように、静電容量
の増大効果が得られるのはMoおよびWを蒸着した場合
のみであり、他の金属をTi上に蒸着した場合には、T
i蒸着膜のみの場合と容量が同じか、減少した。
As is clear from the results shown in Table 1, the effect of increasing the capacitance is obtained only when Mo and W are vapor-deposited, and when another metal is vapor-deposited on Ti, T
The capacity was the same as that of the i-deposited film alone or decreased.

【0032】[0032]

【発明の効果】以上説明したように、本発明に係る電解
コンデンサ用電極箔によれば、粗面化金属箔上にTi等
を蒸着した従来の電解コンデンサ用電極箔に比して、静
電容量を大幅に向上することができ、同じ静電容量を得
るのであれば、蒸着厚さを減らして生産性を向上でき
る。また、表面に酸化膜が生じにくいので、静電容量の
経時劣化が少なく、電解コンデンサの品質を向上するこ
とができる。
As described above, according to the electrode foil for an electrolytic capacitor of the present invention, as compared with the conventional electrode foil for an electrolytic capacitor in which Ti or the like is deposited on the roughened metal foil, the electrostatic foil The capacitance can be significantly improved, and if the same capacitance is obtained, the vapor deposition thickness can be reduced to improve the productivity. Further, since an oxide film is unlikely to be formed on the surface, deterioration of the capacitance with time is small, and the quality of the electrolytic capacitor can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電解コンデンサ用電極箔の第1実
施例を示す断面拡大図である。
FIG. 1 is an enlarged cross-sectional view showing a first embodiment of an electrode foil for an electrolytic capacitor according to the present invention.

【図2】本発明に係る電解コンデンサ用電極箔の第2実
施例を示す断面拡大図である。
FIG. 2 is an enlarged sectional view showing a second embodiment of the electrode foil for an electrolytic capacitor according to the present invention.

【図3】本発明の電解コンデンサ用電極箔の被覆層厚さ
と静電容量の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the coating layer thickness and the capacitance of the electrode foil for electrolytic capacitors of the present invention.

【図4】本発明の電解コンデンサ用電極箔の静電容量の
経時変化を示すグラフである。
FIG. 4 is a graph showing changes with time of electrostatic capacitance of the electrode foil for electrolytic capacitors of the present invention.

【図5】本発明の電解コンデンサ用電極箔の静電容量の
経時変化を示すグラフである。
FIG. 5 is a graph showing changes with time of electrostatic capacitance of the electrode foil for electrolytic capacitors of the present invention.

【図6】本発明の電解コンデンサ用電極箔の静電容量の
経時変化を示すグラフである。
FIG. 6 is a graph showing changes with time of electrostatic capacitance of the electrode foil for electrolytic capacitors of the present invention.

【図7】本発明の電極箔の表面の元素分布を示すグラフ
である。
FIG. 7 is a graph showing element distribution on the surface of the electrode foil of the present invention.

【符号の説明】[Explanation of symbols]

1 金属箔 2 凹部 3 凸部 4 多孔質被覆層 5 Ti中間層 DESCRIPTION OF SYMBOLS 1 Metal foil 2 Recessed portion 3 Convex portion 4 Porous coating layer 5 Ti intermediate layer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年11月10日[Submission date] November 10, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】導電体材料からなりその表面には微視的な
凹凸が形成された金属箔と、この金属箔の表面に設けら
れた厚さ0.005〜0.5μmのMoまたはWからな
る多孔質被覆層とを具備することを特徴とする電解コン
デンサ用電極箔。
1. A metal foil which is made of a conductive material and has microscopic asperities formed on its surface, and Mo or W having a thickness of 0.005 to 0.5 μm provided on the surface of the metal foil. An electrode foil for an electrolytic capacitor, comprising:
【請求項2】前記金属箔と前記被覆層との間には、Ti
中間層が形成されていることを特徴とする請求項1記載
の電解コンデンサ用電極箔。
2. A Ti layer is provided between the metal foil and the coating layer.
The electrode foil for an electrolytic capacitor according to claim 1, wherein an intermediate layer is formed.
【請求項3】前記多孔質被覆層の表面の少なくとも一部
は酸化されて、MoまたはWの酸化物となっていること
を特徴とする請求項1または2記載の電解コンデンサ用
電極箔。
3. The electrode foil for an electrolytic capacitor according to claim 1, wherein at least a part of the surface of the porous coating layer is oxidized to be an oxide of Mo or W.
【請求項4】前記金属箔は粗面化されたアルミニウム箔
であり、その表面粗さは0.5〜20μmRmaxとさ
れていることを特徴とする請求項1,2または3記載の
電解コンデンサ用電極箔。
4. The electrolytic capacitor according to claim 1, wherein the metal foil is a roughened aluminum foil, and the surface roughness is 0.5 to 20 μmRmax. Electrode foil.
JP23391193A 1993-09-20 1993-09-20 Electrode foil for electrolytic capacitor Withdrawn JPH0794370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23391193A JPH0794370A (en) 1993-09-20 1993-09-20 Electrode foil for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23391193A JPH0794370A (en) 1993-09-20 1993-09-20 Electrode foil for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0794370A true JPH0794370A (en) 1995-04-07

Family

ID=16962525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23391193A Withdrawn JPH0794370A (en) 1993-09-20 1993-09-20 Electrode foil for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0794370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418599A1 (en) * 2001-07-18 2004-05-12 Nihon Parkerizing Co., Ltd. Aluminum foil for electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418599A1 (en) * 2001-07-18 2004-05-12 Nihon Parkerizing Co., Ltd. Aluminum foil for electrolytic capacitor
EP1418599A4 (en) * 2001-07-18 2007-05-02 Nihon Parkerizing Aluminum foil for electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP3746627B2 (en) Manufacturing method of high surface area foil electrode
KR101224064B1 (en) Electrode structure, capacitor and method for producing electrode structure
US4309810A (en) Porous metal films
KR970004301B1 (en) Electrode foil for electrolytic capacitor and process of manufacture thereof
WO2009125620A1 (en) Capacitor and method for manufacturing the same
JP2745875B2 (en) Cathode materials for electrolytic capacitors
US7709082B2 (en) Electrodes, printing plate precursors and other articles including multi-strata porous coatings, and method for their manufacture
JPH061751B2 (en) Anode material for electrolytic capacitors
JP4390456B2 (en) Electrolytic capacitor and manufacturing method thereof
JPH0794370A (en) Electrode foil for electrolytic capacitor
JP3016421B2 (en) Aluminum cathode foil for electrolytic capacitors
JPH03150822A (en) Aluminum electrode for electrolytic capacitor
JPS6353688B2 (en)
JP2864477B2 (en) Aluminum electrode for electrolytic capacitors
JPH08213288A (en) Anodic foil for electrolytic capacitor and manufacture thereof
JP2618281B2 (en) Aluminum electrode for electrolytic capacitor and method of manufacturing the same
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
JP2006310493A (en) Electrode foil for capacitor
JP4665854B2 (en) Valve metal composite electrode foil and manufacturing method thereof
JPH08107044A (en) Cathode foil for electrolytic capacitor
JP4604758B2 (en) Capacitor film and capacitor using the same
JP2734233B2 (en) Electrode materials for electrolytic capacitors
JP2023089803A (en) Single layer capacitor using dielectric area with flat interface, and production method thereof
JPH0513281A (en) Electrode material for electrolytic capacitor
JPH042109A (en) Aluminum electrode for electrolytic capacitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128