JPH0794257A - Heating device - Google Patents

Heating device

Info

Publication number
JPH0794257A
JPH0794257A JP23486093A JP23486093A JPH0794257A JP H0794257 A JPH0794257 A JP H0794257A JP 23486093 A JP23486093 A JP 23486093A JP 23486093 A JP23486093 A JP 23486093A JP H0794257 A JPH0794257 A JP H0794257A
Authority
JP
Japan
Prior art keywords
terminal
ceramic
heater
insulating tube
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23486093A
Other languages
Japanese (ja)
Other versions
JP2698537B2 (en
Inventor
和宏 ▲昇▼
Kazuhiro Nobori
Ryusuke Ushigoe
隆介 牛越
Kouichi Umemoto
鍠一 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP23486093A priority Critical patent/JP2698537B2/en
Publication of JPH0794257A publication Critical patent/JPH0794257A/en
Application granted granted Critical
Publication of JP2698537B2 publication Critical patent/JP2698537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PURPOSE:To effectively prevent a discharge between power supply members of a ceramic heater by a simple constitution. CONSTITUTION:A recessed part 8 of 0.5mm or more depth is formed on the surface of a ceramic base unit 1 consisting of fine ceramic, and a resistance heater 4 is buried in the inside of the ceramics base unit 1. An end face 6a of an insulating tube 6 is inserted into the recessed part 8 to come into contact with the ceramic base unit 1. A terminal 2 made of high melting point metal is buried in the ceramic base unit 1, electrically connected relating to the resistance heater 4 and exposed in internal side space 7 of the insulating tube 6. A power supply member 5 made of high melting point metal is arranged in the internal side space 7 and electrically connected relating to the terminal 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラズマCVD、減圧
CVD、プラズマエッチング、光エッチング装置等にお
いて好適に使用できる加熱装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating apparatus which can be suitably used in plasma CVD, low pressure CVD, plasma etching, photo etching apparatus and the like.

【0002】[0002]

【従来の技術】従来、ヒーターとしては、ステンレスケ
ース内に金属線を埋め込んだものが一般的であった。こ
うしたヒーター、例えばグロープラグヒーターにおいて
は、加熱部が高温になっても、ヒーターの電極部分は、
温度の低い容器外に設けることが可能である。実公昭60
−30611 号等に開示されている窒化珪素製のグロープラ
グ用ヒーター等では、電極部分は 500℃以下の大気中に
配置されており、線状の抵抗発熱体端子と電極ケーブル
とを銀ろうによって接合し、電気的に導通させている。
2. Description of the Related Art Conventionally, as a heater, a heater having a metal wire embedded in a stainless case has been generally used. In such a heater, for example, a glow plug heater, the electrode part of the heater is
It can be provided outside the container having a low temperature. Mitsuko Sho60
In the heater for glow plugs made of silicon nitride disclosed in No. 30611 etc., the electrode part is placed in the atmosphere of 500 ° C or less, and the linear resistance heating element terminal and the electrode cable are connected by silver brazing. Joined and electrically connected.

【0003】一方、本発明者は、高融点金属線をセラミ
ックス基体内に埋設してセラミックスヒーターを作製
し、これを減圧CVD、熱CVD装置等の半導体製造装
置の加熱源とすることを検討した。こうしたセラミック
スヒーターでは、抵抗発熱体をセラミックス粉体内に入
れてプレス成形するため、円盤状等、プレス成形し易い
単純な形状としなければならず、焼成段階でもホットプ
レス焼成するので同様である。しかも、焼成後の焼成体
表面には黒皮といわれる焼成変質層があり、加工により
この変質層を除去する必要がある。このとき、ダイヤモ
ンド砥石による研削加工が必要であり、複雑な形状であ
るとコストが上がる。このように、抵抗体を埋設したセ
ラミックスヒーターでは、製造上の困難さから円盤状等
の単純形状としなければならず、その構造から必然的に
ヒーターの端子は、半導体製造装置内の高温、腐食性ガ
スに曝されることになる。
On the other hand, the inventor of the present invention examined the embedding of a refractory metal wire in a ceramic substrate to produce a ceramic heater and using this as a heating source for semiconductor manufacturing equipment such as low pressure CVD and thermal CVD equipment. . In such a ceramic heater, since the resistance heating element is put in the ceramic powder and press-molded, a simple shape such as a disk shape that is easy to press-mold has to be used, and the same is true because hot-press firing is performed in the firing step. In addition, there is a fired altered layer called black skin on the surface of the fired body after firing, and it is necessary to remove this altered layer by processing. At this time, a grinding process with a diamond grindstone is necessary, and a complicated shape increases cost. As described above, in the ceramic heater in which the resistor is embedded, it is necessary to have a simple shape such as a disc shape due to the difficulty in manufacturing, and the heater terminal inevitably has high temperature and corrosion in the semiconductor manufacturing equipment due to its structure. Will be exposed to a volatile gas.

【0004】[0004]

【発明が解決しようとする課題】上記のようなセラミッ
クスヒーターにおいては、各端子に電力供給用の部材を
接続し、この電力供給部材を半導体製造装置の外へと出
し、交流又は直流の電力を供給する必要がある。各電力
供給部材は、ヒーターの温度上昇に対応するため、高融
点金属で形成する必要がある。しかし、例えば成膜用ガ
スや不活性ガスを半導体製造装置内に流し、ヒーターを
高温に発熱させると、電力供給部材の間で放電が生じ、
ヒーターの機能が停止するという問題があった。各電力
供給部材を何らかの絶縁材料で被覆することも考えられ
る。しかし、ヒーターの温度は1000℃位まで上昇しうる
ので、適当な被覆材料は見つからない。従って、特別の
絶縁方法が必要である。
In the ceramic heater as described above, a member for supplying electric power is connected to each terminal, and this electric power supplying member is taken out of the semiconductor manufacturing apparatus to generate AC or DC electric power. Need to supply. Each power supply member needs to be formed of a refractory metal in order to cope with the temperature rise of the heater. However, for example, when a film forming gas or an inert gas is caused to flow in the semiconductor manufacturing apparatus and the heater is heated to a high temperature, discharge occurs between the power supply members,
There was a problem that the function of the heater stopped. It is also conceivable to coat each power supply member with some insulating material. However, since the temperature of the heater can rise up to about 1000 ° C, a suitable coating material cannot be found. Therefore, a special insulation method is required.

【0005】本発明者は、この問題を解決するため、図
3に示す絶縁方法を開発した。緻密質セラミックスから
なるセラミックス基体1の内部に抵抗発熱体4が埋設さ
れ、抵抗発熱体4の端部3が、図3において垂直方向を
向いている。塊状端子2がセラミックス基体1に埋設さ
れる。塊状端子2の本体2aの外側輪郭は略円柱状であ
り、本体2aの下側に圧着部2bが設けられ、本体2aの上部
に雌ネジ2eが設けられている。端部3が、圧着部2bの先
端2d間に挟まれ、空間2c内に挿入されている。端部3と
塊状端子2とは、いわゆるかしめ圧着構造によって接合
され、電気的に接続される。円柱形状の電力供給部材5
の雄ネジ5aが、雌ネジ2eに螺合され、固定されている。
The present inventor has developed an insulating method shown in FIG. 3 in order to solve this problem. A resistance heating element 4 is embedded inside a ceramic substrate 1 made of dense ceramics, and an end portion 3 of the resistance heating element 4 faces a vertical direction in FIG. The lump terminals 2 are embedded in the ceramic substrate 1. The outer contour of the main body 2a of the block-shaped terminal 2 has a substantially cylindrical shape, the crimp portion 2b is provided on the lower side of the main body 2a, and the female screw 2e is provided on the upper portion of the main body 2a. The end portion 3 is sandwiched between the tips 2d of the crimping portion 2b and inserted into the space 2c. The end portion 3 and the block-shaped terminal 2 are joined by a so-called caulking crimping structure and electrically connected. Cylindrical power supply member 5
Male screw 5a of is screwed to female screw 2e and fixed.

【0006】略円筒形状の絶縁管16を、窒化珪素によっ
て形成する。絶縁管16の下端部に円環形状のフランジ16
a を設け、フランジ16a とヒーター背面1aとを、オキシ
ナイトライドガラス層9によって接合する。塊状端子2
の表面が、絶縁管16の内側空間7に露出する。しかし、
この絶縁構造を作製するためには、絶縁管16と背面1aと
の間に、Si3N4, SiO2, Al2O3, Y2O3, Yb2O3等の粉末の
ペーストを塗布し、千数百度もの高温で塗布層を加熱
し、オキシナイトライドガラス層9を生成させなければ
ならない。このためには、特別の治具、窯が必要であ
り、かつ非常に手間がかかり、莫大なエネルギーを消費
する。また、窒化珪素等のセラミックスからなる部材同
士を強固に接合することは困難であり、特に高温で充分
な構造強度が得られない。また、千数百度という高温で
処理するため、埋設した抵抗発熱体が劣化する問題もあ
った。
A substantially cylindrical insulating tube 16 is formed of silicon nitride. An annular flange 16 is attached to the lower end of the insulating tube 16.
a is provided, and the flange 16a and the heater back surface 1a are joined by the oxynitride glass layer 9. Block terminal 2
Is exposed in the inner space 7 of the insulating tube 16. But,
To manufacture this insulating structure, a paste of powder such as Si 3 N 4 , SiO 2 , Al 2 O 3 , Y 2 O 3 , Yb 2 O 3 is applied between the insulating tube 16 and the back surface 1a. However, the coating layer must be heated at a high temperature of several thousand and several hundred degrees to form the oxynitride glass layer 9. For this purpose, a special jig and a kiln are required, and it is very troublesome and consumes enormous energy. Further, it is difficult to firmly join members made of ceramics such as silicon nitride, and sufficient structural strength cannot be obtained especially at high temperature. Further, since the processing is performed at a high temperature of a thousand and several hundred degrees, there is a problem that the embedded resistance heating element deteriorates.

【0007】このため、本発明者は、図4に示す方法を
検討した。即ち、窒化珪素等の絶縁性セラミックスから
円筒形状の絶縁管6を形成し、この絶縁管6の末端面6a
を背面1aに接触させる。そして、絶縁管6の自重によっ
て、あるいは絶縁管6に板バネ等によって押圧力を加え
ることによって、絶縁管6を背面1aに押圧し、絶縁を確
保する。こうした絶縁方法であれば、図3の例で説明し
たような困難な問題は生じない。
Therefore, the present inventor examined the method shown in FIG. That is, the cylindrical insulating tube 6 is formed from insulating ceramics such as silicon nitride, and the end surface 6a of the insulating tube 6 is formed.
To contact the back surface 1a. Then, the insulation pipe 6 is pressed against the back surface 1a by the weight of the insulation pipe 6 or by applying a pressing force to the insulation pipe 6 by a leaf spring or the like, and the insulation is secured. With such an insulating method, the difficult problem described in the example of FIG. 3 does not occur.

【0008】しかし、図4に示すような絶縁構造を実際
に製作してみると、チャンバー中の気体の圧力やヒータ
ーの温度によっては、やはり電力供給部材5間に放電が
生ずることが解った。これは、背面1aや末端面6aに微小
な凹凸があることから、背面1aに沿った沿面放電が生じ
ているものと考えられる。また、この方法では、絶縁管
6に板バネ等によって押圧力を加える必要があるが、チ
ャンバーの真空度を保持したうえでかかる押圧装置を設
置するためには、複雑なシール機構が必要になる。
However, when the insulating structure as shown in FIG. 4 was actually manufactured, it was found that the electric discharge was generated between the power supply members 5 depending on the pressure of the gas in the chamber and the temperature of the heater. It is considered that this is because creeping discharge along the back surface 1a occurs because the back surface 1a and the end surface 6a have minute irregularities. Further, in this method, it is necessary to apply a pressing force to the insulating tube 6 with a leaf spring or the like, but in order to install such a pressing device while maintaining the vacuum degree of the chamber, a complicated sealing mechanism is required. .

【0009】そこで、本発明者は、端子と端子との間に
細長い溝ないし段差部分を形成し、端子間の沿面距離
を、この溝の分だけ伸ばすことを検討した。しかし、チ
ャンバー内の圧力や温度によっては、やはり沿面放電が
発生することが解った。即ち、背面1aと端子2の表面と
真空とが接する三重接点には、電界が集中し易いため、
電子の放出源となる。端子2から放出された電子が背面
1aの表面を衝撃すると、表面から2次電子が放出され、
電子の増幅作用を起す。
Therefore, the present inventor has studied to form an elongated groove or a step portion between terminals and to extend the creepage distance between terminals by the amount of this groove. However, it was found that creeping discharge still occurs depending on the pressure and temperature inside the chamber. That is, since the electric field tends to concentrate at the triple contact point where the back surface 1a, the surface of the terminal 2 and the vacuum contact each other,
It becomes an electron emission source. Electrons emitted from terminal 2 are on the back
When the surface of 1a is impacted, secondary electrons are emitted from the surface,
Causes the amplification of electrons.

【0010】このため、上記の段差部を設ける場合に
は、なるべく三重接点の近くに設けることが好ましい。
しかし、セラミックスヒーターの端子は、セラミックス
の構造的には欠陥であり、熱応力破壊等の破壊開始点に
なり易いため、端子の近くに段差部を設けることは実用
上難しい。
For this reason, when the above step portion is provided, it is preferable to provide it as close to the triple contact as possible.
However, since the terminals of the ceramic heater are structurally defective in the ceramics and easily serve as a starting point of damage such as thermal stress damage, it is practically difficult to provide a stepped portion near the terminals.

【0011】また、他の方法として、端子の周辺のみを
背面1aから高く突出させ、端子の表面を背面よりも高い
位置に露出させ、端子間の沿面距離を長くすることを検
討した。しかし、この場合にも沿面放電が発生すること
が解った。これは、沿面距離は確かに伸びたのである
が、前述した、電子の増幅の抑制作用がほとんどないた
めと考えられる。
As another method, it was studied to make only the periphery of the terminal project higher from the back surface 1a, expose the surface of the terminal at a position higher than the back surface, and lengthen the creepage distance between the terminals. However, it was found that creeping discharge also occurs in this case. It is considered that this is because the creepage distance certainly increased, but there was almost no effect of suppressing the amplification of electrons as described above.

【0012】本発明の課題は、電力供給部材間の放電を
効果的に防止し、かつ絶縁性セラミックス同士を接合す
る困難を解決することである。
An object of the present invention is to effectively prevent discharge between power supply members and solve the difficulty of joining insulating ceramics together.

【0013】[0013]

【課題を解決するための手段】本発明は、緻密質セラミ
ックスからなり、表面に深さ0.5 mm以上の凹部が形成さ
れたセラミックス基体;このセラミックス基体の内部に
埋設された抵抗発熱体;前記セラミックス基体に対して
固定された絶縁管であって、末端面が前記凹部内に挿入
され、前記セラミックス基体に接触している絶縁管;前
記セラミックス基体に埋設された端子であって、前記抵
抗発熱体に対して電気的に接続されかつ前記絶縁管の内
側空間に露出している端子;及び前記内側空間に配置さ
れ、前記端子に対して電気的に接続された電力供給部材
を備えた、加熱装置に係るものである。
According to the present invention, there is provided a ceramic substrate which is made of dense ceramics and has a recess having a depth of 0.5 mm or more formed on its surface; a resistance heating element embedded in the ceramic substrate; An insulation tube fixed to a base body, the end surface of which is inserted into the recess and is in contact with the ceramic base body; a terminal embedded in the ceramic base body, the resistance heating element A heating device comprising a terminal electrically connected to the terminal and exposed in an inner space of the insulating tube; and a power supply member disposed in the inner space and electrically connected to the terminal. It is related to.

【0014】[0014]

【作用】本発明者は、図4に示した絶縁構造を更に改良
すべく種々検討を重ねたところ、セラミックス基体の表
面に凹部を形成し、絶縁管の末端面をこの凹部内に挿入
し、この末端面を凹部内でセラミックス基体に接触させ
ると、電力供給部材間の放電が見られなくなることを見
出した。しかも、この際、絶縁管とセラミックス基体と
を高融点の無機接着材で接合しなくとも、前記のような
放電を防止できることも確認し、本発明に到達した。
The present inventor has conducted various studies to further improve the insulating structure shown in FIG. 4. As a result, a recess is formed on the surface of the ceramic substrate, and the end face of the insulating tube is inserted into this recess. It has been found that when this end face is brought into contact with the ceramic substrate in the recess, discharge between the power supply members cannot be seen. Moreover, at this time, it was also confirmed that the above-mentioned discharge can be prevented without joining the insulating tube and the ceramic substrate with an inorganic adhesive having a high melting point, and the present invention was reached.

【0015】[0015]

【実施例】図1は、本発明の実施例に係る加熱装置の要
部拡大断面図である。図2は、この加熱装置を、放電試
験用のチャンバー内に固定した状態を概略的に示す断面
図である。
1 is an enlarged cross-sectional view of a main part of a heating device according to an embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing a state in which this heating device is fixed in a chamber for discharge test.

【0016】本実施例においては、セラミックスヒータ
ー10に対して本発明を適用している。即ち、セラミック
スヒーター10のセラミックス基体1は略円盤状であり、
セラミックス基体1の内部に抵抗発熱体4が埋設されて
いる。抵抗発熱体4の端部3が、図1において垂直方向
を向いている。塊状端子2がセラミックス基体1に埋設
される。塊状端子2の本体2aの外側輪郭は略円柱状であ
り、本体2aの下側に圧着部2bが設けられ、本体2aの上部
に雌ネジ2eが設けられている。端部3が、圧着部2bの先
端2d間に挟まれ、空間2c内に挿入されている。端部3と
塊状端子2とは、いわゆるかしめ圧着構造によって接合
され、電気的に接続される。円柱形状の電力供給部材5
の雄ネジ5aが、雌ネジ2eに螺合され、固定されている。
ただし、これらの各構造部材は、図面の寸法上の制約か
ら、図2の概略図においては、簡略化して図示してあ
る。
In the present embodiment, the present invention is applied to the ceramic heater 10. That is, the ceramic substrate 1 of the ceramic heater 10 has a substantially disc shape,
A resistance heating element 4 is embedded inside the ceramic substrate 1. The end 3 of the resistance heating element 4 faces the vertical direction in FIG. The lump terminals 2 are embedded in the ceramic substrate 1. The outer contour of the main body 2a of the block-shaped terminal 2 has a substantially cylindrical shape, the crimp portion 2b is provided on the lower side of the main body 2a, and the female screw 2e is provided on the upper portion of the main body 2a. The end portion 3 is sandwiched between the tips 2d of the crimping portion 2b and inserted into the space 2c. The end portion 3 and the block-shaped terminal 2 are joined by a so-called caulking crimping structure and electrically connected. Cylindrical power supply member 5
Male screw 5a of is screwed to female screw 2e and fixed.
However, each of these structural members is illustrated in a simplified manner in the schematic view of FIG. 2 due to the dimensional constraints of the drawing.

【0017】ヒーター背面1a側に、切削加工によって凹
部8を設け、凹部8に絶縁管6の末端を挿入し、固定す
る。絶縁管6の末端面6aを、凹部8の壁面に接触させ
る。本例では、凹部8の平面的形状を円形とし、その直
径を、絶縁管6の外側直径とほぼ同じにした。なお、絶
縁管6を2本か3本使用し、2重や3重の絶縁管構造を
形成してもよい。
A recess 8 is formed on the heater back surface 1a by cutting, and the end of the insulating tube 6 is inserted into the recess 8 and fixed. The end surface 6a of the insulating tube 6 is brought into contact with the wall surface of the recess 8. In this example, the planar shape of the recess 8 was circular and the diameter thereof was substantially the same as the outer diameter of the insulating tube 6. Two or three insulating tubes 6 may be used to form a double or triple insulating tube structure.

【0018】本実施例の加熱装置によれば、絶縁管6の
末端面6aを凹部8内に挿入し、末端面6aを凹部8内でセ
ラミックス基体1に接触させることで、電力供給部材5
間の沿面放電を防止することができる。しかも、絶縁管
6とセラミックス基体1とを、オキシナイトライドガラ
ス等の耐熱性無機接着剤で接合する必要がなく、比較的
簡単に上記の放電を防止することができる。
According to the heating device of the present embodiment, the power supply member 5 is manufactured by inserting the end face 6a of the insulating tube 6 into the recess 8 and bringing the end face 6a into contact with the ceramic substrate 1 in the recess 8.
It is possible to prevent the creeping discharge between. Moreover, it is not necessary to bond the insulating tube 6 and the ceramic substrate 1 with a heat-resistant inorganic adhesive such as oxynitride glass, and the above-mentioned discharge can be prevented relatively easily.

【0019】上記のように沿面放電を防止するうえで、
凹部8の深さlを0.5mm以上とする必要があり、これに
より10-2torr〜常圧の領域でも沿面放電が生じなくなる
ことを確認した。
In order to prevent the creeping discharge as described above,
It has been confirmed that the depth 1 of the recess 8 needs to be 0.5 mm or more, so that creeping discharge does not occur even in the region of 10 -2 torr to normal pressure.

【0020】また、電力供給部材5と塊状端子2との結
合部分付近には、各種の腐食性ガスが侵入してくるし、
高温への加熱と冷却とに繰り返し曝される。しかし、本
実施例では、電力供給部材5と塊状端子2とをネジによ
って結合してあるので、腐食性ガスや熱による結合部分
の劣化が生じにくい。
Further, various corrosive gases enter the vicinity of the joint between the power supply member 5 and the lumped terminal 2,
Repeated exposure to high temperature heating and cooling. However, in this embodiment, since the power supply member 5 and the lump-shaped terminal 2 are coupled by screws, deterioration of the coupled portion due to corrosive gas or heat is unlikely to occur.

【0021】電力供給部材5と塊状端子2との結合方法
は、ネジ切り法には限らないが、室温とヒーター使用温
度との間の冷熱サイクル及び腐食性ガスに対して安定で
あることが好ましい。こうした方法としては、下記の接
合及び結合方法がある。
The method for connecting the power supply member 5 and the lumped terminal 2 is not limited to the thread cutting method, but it is preferable that the power supply member 5 and the lumped terminal 2 are stable against a cooling / heating cycle between room temperature and a heater operating temperature and a corrosive gas. . Such methods include the following joining and joining methods.

【0022】高融点接合層を介した接合には、次のもの
がある。 (1)端子と電極部材との間に、Mo, W 等の高融点金属
の粉末を介在させ、拡散接合すること。 (2)ろう材で接合すること。 (3)箔を介在させて拡散接合すること。 (4)端子の端面又は電極部材の端面に、めっき、CV
D、溶射等によって被覆層を形成し、次いで拡散接合又
は摩擦圧接すること。 (5)溶接すること。 機械的結合法としては,圧入法、かしめ、埋め込み、差
し込み、スプリング、弾性ボードによる機械的圧接があ
る。
Joining via the high melting point bonding layer includes the following. (1) A powder of a refractory metal such as Mo or W is interposed between the terminal and the electrode member, and diffusion bonding is performed. (2) Join with brazing material. (3) Diffusion bonding with a foil interposed. (4) Plating, CV on the end face of the terminal or the end face of the electrode member
D, forming a coating layer by thermal spraying, and then performing diffusion bonding or friction welding. (5) Welding. As the mechanical connection method, there are press-fitting method, caulking, embedding, inserting, spring, and mechanical pressure welding using an elastic board.

【0023】セラミックス基体1の材質としては、窒化
珪素、サイアロン、窒化アルミニウム等が好ましい。窒
化珪素やサイアロンが耐熱衝撃性の点で更に好ましい。
窒化アルミニウムは、ClF3などのハロゲン系腐食性ガス
に対して耐久性が高いので好ましい。抵抗発熱体4とし
ては、高融点であり、しかも窒化珪素等との密着性に優
れたタングステン、モリブデン、白金等を使用すること
が適当である。
The material of the ceramic substrate 1 is preferably silicon nitride, sialon, aluminum nitride or the like. Silicon nitride and sialon are more preferable in terms of thermal shock resistance.
Aluminum nitride is preferable because it has high durability against a halogen-based corrosive gas such as ClF 3 . As the resistance heating element 4, it is suitable to use tungsten, molybdenum, platinum or the like, which has a high melting point and is excellent in adhesion to silicon nitride or the like.

【0024】図2に示すような設備を用い、本発明のセ
ラミックスヒーター10について、放電の有無を検査し
た。また、同じく図2に示す設備を用い、図3、図4に
示す比較例の絶縁構造について放電の有無を検査した。
この結果について述べる。図2に示す設備は、基本的に
はセラミックスヒーターの加熱面の均熱性等を検査する
ためのものである。
Using the equipment shown in FIG. 2, the ceramic heater 10 of the present invention was inspected for discharge. In addition, the facility shown in FIG. 2 was also used to inspect the insulating structure of the comparative example shown in FIGS. 3 and 4 for the presence or absence of discharge.
The results will be described. The equipment shown in FIG. 2 is basically for inspecting the heat uniformity of the heating surface of the ceramics heater.

【0025】ステンレス製の容器18の下側に開口18b を
設け、この開口18b をフランジ19で被覆する。フランジ
19と容器18とをOリング21でシールする。フランジ19の
中央付近に透明なサファイア製の窓22を設け、窓22の外
側に赤外線カメラ23を設置する。フランジ19の内部に水
冷ジャケット17Aを設け、容器18の外側に水冷ジャケッ
ト17B,17C,17Dを設ける。フランジ19の内壁面に複
数本の支持棒15を固定し、支持棒15の先端に台座14を固
定する。台座14の断面形状は変形L字形であり、台座14
の内側面に支持部14a が設けられている。複数の支持部
14aにニッケル製のパンチングメタル13が架け渡され、
パンチングメタル13上にグラファイト製フォイル12が載
置されている。パンチングメタル13には貫通孔13a が設
けられ、フォイル12には貫通孔12a が設けられ、各貫通
孔12a と13a との位置及び寸法が合わされている。
An opening 18b is provided on the lower side of the stainless steel container 18, and the opening 18b is covered with a flange 19. Flange
The container 19 and the container 18 are sealed with an O-ring 21. A transparent sapphire window 22 is provided near the center of the flange 19, and an infrared camera 23 is provided outside the window 22. A water cooling jacket 17A is provided inside the flange 19, and water cooling jackets 17B, 17C and 17D are provided outside the container 18. A plurality of support rods 15 are fixed to the inner wall surface of the flange 19, and the pedestal 14 is fixed to the tip of the support rod 15. The cross-sectional shape of the pedestal 14 is a modified L-shape,
A support portion 14a is provided on the inner surface of the. Multiple supports
The punching metal 13 made of nickel is laid over 14a,
A graphite foil 12 is placed on a punching metal 13. The punching metal 13 is provided with a through hole 13a, the foil 12 is provided with a through hole 12a, and the through holes 12a and 13a are aligned in position and size.

【0026】フォイル12の上にセラミックス基体1の加
熱面1bが直接載置されており、各絶縁管6は、ケース18
及び水冷ジャケット17Dの貫通孔を通過し、各絶縁管6
及び電力供給部材5が、図示しないOリングにより気密
にシールされている。なお、図2に示す例では、平面的
にみて円環形状をしたセラミックスヒーター20をフォイ
ル12上に載置した。このセラミックスヒーター20の基体
11は緻密質セラミックスからなり、セラミックス基体11
の内部に抵抗発熱体4が埋設されている。セラミックス
基体11には、平面的にみて円形の貫通孔11a が形成され
ており、貫通孔11a 内にセラミックス基体1が同心円状
に配置されている。
The heating surface 1b of the ceramic substrate 1 is directly placed on the foil 12, and each insulating tube 6 is attached to the case 18
And the insulation pipe 6 through the through hole of the water cooling jacket 17D.
The power supply member 5 is hermetically sealed by an O-ring (not shown). In addition, in the example shown in FIG. 2, the ceramics heater 20 having an annular shape in plan view is placed on the foil 12. Base of this ceramic heater 20
11 is made of dense ceramics and has a ceramic base 11
A resistance heating element 4 is embedded inside the. A circular through hole 11a is formed in the ceramic base 11 when seen in a plan view, and the ceramic base 1 is concentrically arranged in the through hole 11a.

【0027】こうした2ゾーンの8インチ用のセラミッ
クスヒーター10,20を用い、抵抗発熱体に電力を供給
し、セラミックスヒーター10側において電力供給部材5
間の放電の有無を確認した。この際、セラミックスヒー
ターの発熱温度を1000℃に設定した。図示しない真空ポ
ンプによって排気孔18a から矢印Aのように容器18内を
排気し、容器18内の気圧を102 〜10-6 torr に設定し
た。また、セラミックスヒーター10における1000℃保持
時の電圧、電流は約120 V,約16Aであり、セラミック
スヒーター20における1000℃保持時の電圧、電流は約15
4 V,約20Aであった。ただし、昇温中には、最大電圧
である200 Vが投入されることもあった。
By using the two-zone ceramic heaters 10 and 20 for 8 inches, power is supplied to the resistance heating element, and the power supply member 5 is provided on the ceramic heater 10 side.
The presence / absence of discharge during the period was confirmed. At this time, the heat generation temperature of the ceramics heater was set to 1000 ° C. The inside of the container 18 was exhausted from the exhaust hole 18a as shown by the arrow A by a vacuum pump (not shown), and the atmospheric pressure inside the container 18 was set to 10 2 to 10 -6 torr. The voltage and current of the ceramics heater 10 at 1000 ° C are about 120V and 16A, and the voltage and current of the ceramics heater 20 at 1000 ° C are about 15A.
It was 4 V and about 20 A. However, the maximum voltage of 200 V was sometimes applied during the temperature rise.

【0028】容器18内の真空度を表1に示すように変更
し、かつ凹部8の深さlを変更し、セラミックスヒータ
ー10の電力供給部材5間の放電の有無を検査した。この
結果を表1に示す。
The degree of vacuum in the container 18 was changed as shown in Table 1, the depth 1 of the recess 8 was changed, and the presence or absence of discharge between the power supply members 5 of the ceramic heater 10 was inspected. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から解るように、絶縁管6を設置して
も、凹部8が存在しない場合には、102 〜10-4 torr の
圧力領域で、電力供給部材5間に放電が生じている。凹
部8の深さlを0.5mm 以上にすれば、102 〜10-6 torr
の圧力で、こうした放電は生じていない。
As can be seen from Table 1, when the insulating tube 6 is installed and the recess 8 does not exist, discharge occurs between the power supply members 5 in the pressure range of 10 2 to 10 -4 torr. There is. If the depth 1 of the recess 8 is set to 0.5 mm or more, 10 2 to 10 -6 torr
At that pressure, no such discharge has occurred.

【0031】[0031]

【発明の効果】本発明によれば、セラミックス基体の表
面に深さ0.5 mm以上の凹部を形成し、絶縁管の末端面を
この凹部内に挿入し、この末端面を凹部内でセラミック
ス基体に接触させることで、電力供給部材間の沿面放電
を防止できる。しかも、この際に絶縁管とセラミックス
基体とを耐熱性の無機接着剤で接合する必要がないの
で、特別の治具、窯や手間がかからない。また工業生産
上、円筒研削機や平面研削機のような汎用加工機にて低
コストで実現でき、有利である。
According to the present invention, a recess having a depth of 0.5 mm or more is formed on the surface of a ceramic substrate, the end surface of the insulating tube is inserted into this recess, and this end surface is used as the ceramic substrate in the recess. By making them contact with each other, creeping discharge between the power supply members can be prevented. Moreover, at this time, since it is not necessary to bond the insulating tube and the ceramic substrate with the heat-resistant inorganic adhesive, no special jig, kiln or labor is required. Further, in industrial production, it can be realized at low cost with a general-purpose processing machine such as a cylindrical grinder or a surface grinder, which is advantageous.

【図面の簡単な説明】[Brief description of drawings]

【図1】塊状端子2の周辺を拡大して示す断面図であ
る。
FIG. 1 is an enlarged cross-sectional view showing the periphery of a lumped terminal 2.

【図2】セラミックスヒーター10を検査用設備内に設置
した状態を概略的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing a state in which a ceramic heater 10 is installed in an inspection facility.

【図3】絶縁管16とセラミックス基体1とをオキシナイ
トライドガラス層9によって接合した状態を示す断面図
である。
FIG. 3 is a cross-sectional view showing a state in which an insulating tube 16 and a ceramic substrate 1 are joined by an oxynitride glass layer 9.

【図4】絶縁管6をセラミックス基体1の表面に対して
固定した状態を示す断面図である。
FIG. 4 is a cross-sectional view showing a state in which an insulating tube 6 is fixed to the surface of a ceramic substrate 1.

【符号の説明】[Explanation of symbols]

1,11 セラミックス基体、1a 背面、2 塊状端子、
4 抵抗発熱体、5 電力供給部材、6,16 絶縁管、
6a 末端面、7 絶縁管の内側空間、8 凹部、9 オ
キシナイトライドガラス層、10, 20 セラミックスヒー
ター
1,11 Ceramics base, 1a back, 2 block terminals,
4 resistance heating element, 5 power supply member, 6,16 insulation tube,
6a End surface, 7 Insulation tube inner space, 8 recesses, 9 Oxynitride glass layer, 10, 20 Ceramic heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 緻密質セラミックスからなり、表面に深
さ0.5 mm以上の凹部が形成されたセラミックス基体;こ
のセラミックス基体の内部に埋設された抵抗発熱体;前
記セラミックス基体に対して固定された絶縁管であっ
て、末端面が前記凹部内に挿入され、前記セラミックス
基体に接触している絶縁管;前記セラミックス基体に埋
設された端子であって、前記抵抗発熱体に対して電気的
に接続されかつ前記絶縁管の内側空間に露出している端
子;及び前記内側空間に配置され、前記端子に対して電
気的に接続された電力供給部材を備えた、加熱装置。
1. A ceramic substrate made of dense ceramics and having a concave portion with a depth of 0.5 mm or more formed on the surface thereof; a resistance heating element embedded inside the ceramic substrate; an insulation fixed to the ceramic substrate. An insulating tube having a distal end inserted into the recess and in contact with the ceramic base; a terminal embedded in the ceramic base, the terminal electrically connected to the resistance heating element. A heating device comprising: a terminal exposed in the inner space of the insulating tube; and a power supply member arranged in the inner space and electrically connected to the terminal.
JP23486093A 1993-09-21 1993-09-21 Heating equipment Expired - Lifetime JP2698537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23486093A JP2698537B2 (en) 1993-09-21 1993-09-21 Heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23486093A JP2698537B2 (en) 1993-09-21 1993-09-21 Heating equipment

Publications (2)

Publication Number Publication Date
JPH0794257A true JPH0794257A (en) 1995-04-07
JP2698537B2 JP2698537B2 (en) 1998-01-19

Family

ID=16977485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23486093A Expired - Lifetime JP2698537B2 (en) 1993-09-21 1993-09-21 Heating equipment

Country Status (1)

Country Link
JP (1) JP2698537B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157661A (en) * 2005-12-08 2007-06-21 Shin Etsu Chem Co Ltd Ceramics heater and manufacturing method of the same
JP2012069623A (en) * 2010-09-22 2012-04-05 Nuflare Technology Inc Semiconductor manufacturing apparatus and semiconductor manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157661A (en) * 2005-12-08 2007-06-21 Shin Etsu Chem Co Ltd Ceramics heater and manufacturing method of the same
JP2012069623A (en) * 2010-09-22 2012-04-05 Nuflare Technology Inc Semiconductor manufacturing apparatus and semiconductor manufacturing method

Also Published As

Publication number Publication date
JP2698537B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
US5306895A (en) Corrosion-resistant member for chemical apparatus using halogen series corrosive gas
JP4602691B2 (en) Sealing technology for sealed lamps with uniquely sealed components and lamps
CN1856189B (en) Power-supplying member and heating apparatus
EP0506391B1 (en) Use of a corrosion-resistant member formed from aluminium nitride
EP0929204A2 (en) Ceramic Heater
JP2000114355A (en) Joint structure body of plate-like ceramic body and cylindrical ceramic body, and heating device using the joint structure body
JP2525974B2 (en) Semiconductor wafer-heating device
JP3810216B2 (en) Sample heating apparatus, processing apparatus, and sample processing method using the same
JP4637316B2 (en) Ceramic heater having cylindrical body and heating device using the same
US11560336B2 (en) Method for producing semiconductor production device component, and semiconductor production device component
JP2004363334A (en) Holder for semiconductor or liquid crystal production system and semiconductor or liquid crystal production system mounting it
JP2698537B2 (en) Heating equipment
JPH0677148A (en) Semiconductor wafer heating device
JP2518962B2 (en) Ceramic heater
JP2543638B2 (en) Ceramic heater
JP2604944B2 (en) Semiconductor wafer heating equipment
JP7064987B2 (en) Ceramic joint
JP2004363335A (en) Holder for semiconductor or liquid crystal production system and semiconductor or liquid crystal production system mounting it
JP3909248B2 (en) Sample heating device
JP2002121083A (en) Jointed body of ceramic member and metal member and wafer-supporting member using the same
JPH04104494A (en) Ceramics heater
JP2023023670A (en) ceramic heater
JP4157541B2 (en) Sample heating apparatus, processing apparatus, and sample processing method using the same
JP4026751B2 (en) Semiconductor manufacturing apparatus and manufacturing method thereof
JP4443556B2 (en) Method for manufacturing sample heating apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 16