JPH079387Y2 - Charge coupled device - Google Patents

Charge coupled device

Info

Publication number
JPH079387Y2
JPH079387Y2 JP1986124007U JP12400786U JPH079387Y2 JP H079387 Y2 JPH079387 Y2 JP H079387Y2 JP 1986124007 U JP1986124007 U JP 1986124007U JP 12400786 U JP12400786 U JP 12400786U JP H079387 Y2 JPH079387 Y2 JP H079387Y2
Authority
JP
Japan
Prior art keywords
transfer
electrode
coupled device
transfer electrode
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986124007U
Other languages
Japanese (ja)
Other versions
JPS6331551U (en
Inventor
英嗣 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1986124007U priority Critical patent/JPH079387Y2/en
Publication of JPS6331551U publication Critical patent/JPS6331551U/ja
Application granted granted Critical
Publication of JPH079387Y2 publication Critical patent/JPH079387Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、電荷結合素子に関し、特にフレーム転送型電
荷結合素子の転送電極の配線抵抗の低減が可能な電荷結
合素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a charge coupled device, and more particularly to a charge coupled device capable of reducing wiring resistance of a transfer electrode of a frame transfer type charge coupled device.

〔従来の技術〕[Conventional technology]

近年、電荷結合素子を用いた二次元固体撮像素子では、
高密度,高解像度化をめざす動きが活発である。特に、
電荷結合素子を用いたフレーム転送型固体撮像素子は、
水平方向の画素数を比較的容易に増加させることが可能
であり、将来の高解像度素子として有望である。
In recent years, in a two-dimensional solid-state imaging device using a charge coupled device,
There is active movement toward higher density and higher resolution. In particular,
A frame transfer type solid-state imaging device using a charge-coupled device is
It is possible to increase the number of pixels in the horizontal direction relatively easily, and it is promising as a high-resolution element in the future.

第2図は、従来の代表的なフレーム転送型電荷結合素子
の主要部の平面図を示す。図において、1〜3は垂直レ
ジスタの転送チャネル、4〜7はチャネルストッパ、8
〜12は多結晶シリコンによる転送電極である。本実施例
では、転送電極として、二層の重ね合わせ電極が用いら
れているが、必ずしも重ね合わせ電極である必要はな
い。このような、従来の素子では、水平方向に非常に細
長い多結晶シリコンによって転送電極が形成されてお
り、素子が多画素化されたときには、転送電極の抵抗と
容量負荷の増加は避けられない。
FIG. 2 is a plan view of a main part of a conventional typical frame transfer type charge coupled device. In the figure, 1 to 3 are vertical register transfer channels, 4 to 7 are channel stoppers, and 8
Reference numerals 12 to 12 are transfer electrodes made of polycrystalline silicon. In this embodiment, the two-layer superposed electrode is used as the transfer electrode, but the superposed electrode is not necessarily required. In such a conventional element, the transfer electrode is formed of polycrystalline silicon that is very elongated in the horizontal direction, and when the element has a large number of pixels, an increase in the resistance and capacitive load of the transfer electrode cannot be avoided.

現在の半導体・集積回路技術では、最小寸法としては1
μm程度が限界であり、最小セルサイズにもおのずから
下限があるため、画素数を増加させるにはチップサイズ
の大型化が避けられない。フレーム転送型固体撮像素子
の場合、光電変換領域とメモリ領域の転送電極は上記し
たように、通常多結晶シリコンによって形成されおり、
チップサイズの大型化に伴い、転送電極の水平方向長さ
が増大し、電極抵抗が増加する。因に、2/3″光学系を
使用した場合は、約9mm、1″光学系では約13mmにも達
する。一転送電極の垂直方向の長さは、10μm程度であ
る。多結晶シリコンの層抵抗は、20〜40Ωであり、従っ
て、一転送電極の電極抵抗は、20kΩ〜40kΩにも達す
る。一方、一転送電極の負荷容量は、数10pF程度であ
る。
In the current semiconductor / integrated circuit technology, the minimum size is 1
Since the limit is about μm and the minimum cell size naturally has a lower limit, it is inevitable to increase the chip size in order to increase the number of pixels. In the case of a frame transfer type solid-state image sensor, the transfer electrodes of the photoelectric conversion area and the memory area are usually formed of polycrystalline silicon as described above,
As the chip size increases, the horizontal length of the transfer electrode increases and the electrode resistance increases. By the way, when the 2/3 "optical system is used, it reaches about 9 mm and the 1" optical system reaches about 13 mm. The vertical length of one transfer electrode is about 10 μm. The layer resistance of polycrystalline silicon is 20 to 40Ω, so that the electrode resistance of one transfer electrode reaches 20 kΩ to 40 kΩ. On the other hand, the load capacitance of one transfer electrode is about several tens of pF.

フレーム転送型固体撮像素子では、転送電極への印加パ
ルスは、通常、転送電極の両端部より印加されている。
しかしながら、上記したように転送電極は、高抵抗,大
容量であるため印加パルスは、素子中央部において波形
歪を生じる。即ち、転送電極は、抵抗と容量の分布定数
回路とみなせるため、印加パルスは、素子中央部へ向か
って伝搬されるに従い、波形になまりを生じる。このた
め、転送電極端部で印加されたパルス電圧が素子中央部
では、低下してしまったり、位相がずれる等の不都合が
生じる。上記した例では、抵抗と容量で決まる時定数は
数100nsec であり、従って、印加パルス幅として1μse
c以下のパルスでは正常な伝搬は不可能である。このよ
うなパルスの歪は、転送効率の劣化,転送電荷量の低下
などの現象となってあらわれる。
In the frame transfer type solid-state imaging device, the pulse applied to the transfer electrode is usually applied from both ends of the transfer electrode.
However, as described above, since the transfer electrode has high resistance and large capacity, the applied pulse causes waveform distortion in the central portion of the element. That is, since the transfer electrode can be regarded as a distributed constant circuit of resistance and capacitance, the applied pulse has a rounded waveform as it propagates toward the central portion of the element. Therefore, the pulse voltage applied at the end of the transfer electrode is lowered in the central portion of the element, and the phase is out of phase. In the above example, the time constant determined by the resistance and capacitance is several 100 nsec. Therefore, the applied pulse width is 1 μse.
Normal propagation is impossible with pulses of c or less. Such pulse distortion appears as a phenomenon such as a decrease in transfer efficiency and a decrease in transfer charge amount.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

以上述べたように、従来技術では、垂直レジスタの転送
電極として高抵抗の多結晶シリコン電極が使用されてお
り、素子が多画素化されていったときには、負荷容量の
増加とあいまって時定数に非常に長い分布定数回路を構
成することになり、素子中央部に正常にパルスが印加さ
れないという不都合が発生し、転送効率の劣化,信号量
の低下などの望ましくない現象を生じせしめていた。
As described above, in the prior art, the high resistance polycrystalline silicon electrode is used as the transfer electrode of the vertical register, and when the element has a large number of pixels, the time constant is increased together with the increase of the load capacitance. As a result, a very long distributed constant circuit is formed, which causes the inconvenience that the pulse is not normally applied to the central part of the element, which causes undesirable phenomena such as deterioration of transfer efficiency and reduction of signal amount.

本考案の目的はこのような従来の欠点を解消することに
より、駆動パルスの正常な伝搬が可能な電荷結合素子を
提供することにある。
An object of the present invention is to provide a charge-coupled device capable of normally propagating a drive pulse by eliminating such a conventional defect.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、光電変換領域と信号電荷転送領域とが共用さ
れ、前記信号電荷転送領域の転送電極が多結晶シリコン
によって形成される電荷結合素子において、転送電極の
配線長手方向に沿って金属電極が形成され、前記転送電
極と前記金属電極とは、各転送電極毎にコンタクトホー
ルを介して互いに接続されていることを特徴としてい
る。
According to the present invention, in a charge-coupled device in which a photoelectric conversion region and a signal charge transfer region are shared, and a transfer electrode of the signal charge transfer region is formed of polycrystalline silicon, a metal electrode is provided along a wiring longitudinal direction of the transfer electrode. The transfer electrode and the metal electrode that are formed are connected to each other through a contact hole for each transfer electrode.

〔作用〕[Action]

本考案の電荷結合素子では、高抵抗の転送電極にコンタ
クトホールを介して金属電極を接続,配線し、転送電極
を見かけ上、低抵抗化させ、パルスの伝搬歪を軽減させ
ている。
In the charge-coupled device of the present invention, a metal electrode is connected to and wired to a high-resistance transfer electrode through a contact hole to apparently reduce the resistance of the transfer electrode and reduce pulse propagation distortion.

〔実施例〕〔Example〕

以下、本考案の実施例について図面を用いて詳細に説明
する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本考案による一実施例の要部を示し、フレー
ム転送型固体撮像素子の光電変換領域あるいはメモリ領
域の主要部平面図を示している。図において、第2図と
同一番号は同一の構成要素を示すものとする。図におい
て、13〜27は転送電極上に設けられたコンタクトホー
ル、28〜32は金属、例えばアルミニュームなどの配線で
ある。金属配線28〜32は、多結晶シリコンによる転送電
極8〜12の配線長手方向に沿って形成されており、垂直
の転送チャネル1,2,3の一列毎に、コンタクトホールが
設けられている。
FIG. 1 shows a main part of an embodiment according to the present invention, and is a plan view of a main part of a photoelectric conversion area or a memory area of a frame transfer type solid-state image pickup device. In the figure, the same numbers as in FIG. 2 indicate the same components. In the figure, 13 to 27 are contact holes provided on the transfer electrodes, and 28 to 32 are wirings of metal such as aluminum. The metal wirings 28 to 32 are formed along the wiring longitudinal direction of the transfer electrodes 8 to 12 made of polycrystalline silicon, and a contact hole is provided in each column of the vertical transfer channels 1, 2 and 3.

転送電極8と金属配線28とはコンタクトホール13,14,15
を介して接続され、転送電極11と金属配線29とはコンタ
クトホール16,17,18を介して接続され、転送電極9と金
属配線30とはコンタクトホール19,20,21を介して接続さ
れ、転送電極12と金属配線31とはコンタクトホール22,2
3,24を介して接続され、転送電極10と金属配線32とはコ
ンタクトホール25,26,27を介して接続されている。
The transfer electrode 8 and the metal wiring 28 have contact holes 13, 14, 15
, The transfer electrode 11 and the metal wiring 29 are connected through the contact holes 16, 17, 18 and the transfer electrode 9 and the metal wiring 30 are connected through the contact holes 19, 20, 21. The transfer electrode 12 and the metal wiring 31 have contact holes 22 and 2
The transfer electrode 10 and the metal wiring 32 are connected via contact holes 25, 26, and 27.

このように本実施例では、転送電極8〜12と金属配線28
〜32とが電気的に並列に配線される構成となっているた
め、転送電極の長手方向すなわち水平方向の電極抵抗
は、ほぼ金属配線の抵抗のみによって決まり、従来素子
にくらべ、大幅に低減する。一方、転送電極の負荷容量
は従来素子並に維持することは可能である。この結果、
転送電極にパルスを印加しても、素子中央部と端部とで
の波形の差がなくなり、従来素子で見られたような素子
中央部での歪が除去される。
Thus, in this embodiment, the transfer electrodes 8 to 12 and the metal wiring 28 are
Since ~ 32 and 32 are electrically wired in parallel, the electrode resistance in the longitudinal direction, that is, the horizontal direction, of the transfer electrode is substantially determined only by the resistance of the metal wiring, and is greatly reduced compared to the conventional element. . On the other hand, the load capacitance of the transfer electrode can be maintained at the same level as the conventional device. As a result,
Even if a pulse is applied to the transfer electrode, the difference in waveform between the central portion and the end portion of the element disappears, and the distortion in the central portion of the element, which is seen in the conventional element, is removed.

以上の実施例では、コンタクトホールは垂直の転送チャ
ネル一列毎に設けたが、転送チャネル複数列毎に設けて
もよい。また、金属配線の材料もアルミニュームに限ら
ず、その他の材料であってもよい。
In the above embodiments, the contact holes are provided for each vertical transfer channel row, but they may be provided for each vertical transfer channel row. Further, the material of the metal wiring is not limited to aluminum and may be other materials.

〔考案の効果〕[Effect of device]

以上、述べたように、本考案によれば、転送電極の配線
抵抗を大幅に低減でき、素子が多画面素化されたときに
も駆動パルスの正常な伝搬が可能となる。また、垂直レ
ジスタでの高速駆動も可能となり、高密度・高解像度固
体撮像素子が実現可能となった。
As described above, according to the present invention, the wiring resistance of the transfer electrodes can be significantly reduced, and the normal propagation of the drive pulse can be performed even when the element has multiple screen elements. In addition, high-speed driving with a vertical register is also possible, making it possible to realize a high-density, high-resolution solid-state image sensor.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本考案による電荷結合素子の一実施例を示す
図、 第2図は、従来の電荷結合素子を示す図である。 1〜3……垂直の転送チャネル 4〜7……チャネルストッパ 8〜12……多結晶シリコンによる転送電極 13〜27……電極上に設けられたコンタクトホール 28〜32……金属配線
FIG. 1 is a diagram showing an embodiment of a charge coupled device according to the present invention, and FIG. 2 is a diagram showing a conventional charge coupled device. 1 to 3 ... Vertical transfer channel 4 to 7 ... Channel stopper 8 to 12 ... Transfer electrode made of polycrystalline silicon 13 to 27 ... Contact hole provided on the electrode 28 to 32 ... Metal wiring

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】光電変換領域と信号電荷転送領域とが共用
され、前記信号電荷転送領域の転送電極が多結晶シリコ
ンによって形成される電荷結合素子において、転送電極
の配線長手方向に沿って金属電極が形成され、前記転送
電極と前記金属電極とは、各電荷転送領域毎にコンタク
トホールを介して互いに接続されていることを特徴とす
る電荷結合素子。
1. A charge-coupled device in which a photoelectric conversion region and a signal charge transfer region are shared, and a transfer electrode in the signal charge transfer region is formed of polycrystalline silicon. In the charge-coupled device, a metal electrode is provided along a wiring longitudinal direction of the transfer electrode. And the transfer electrode and the metal electrode are connected to each other through a contact hole for each charge transfer region.
JP1986124007U 1986-08-14 1986-08-14 Charge coupled device Expired - Lifetime JPH079387Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986124007U JPH079387Y2 (en) 1986-08-14 1986-08-14 Charge coupled device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986124007U JPH079387Y2 (en) 1986-08-14 1986-08-14 Charge coupled device

Publications (2)

Publication Number Publication Date
JPS6331551U JPS6331551U (en) 1988-03-01
JPH079387Y2 true JPH079387Y2 (en) 1995-03-06

Family

ID=31015629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986124007U Expired - Lifetime JPH079387Y2 (en) 1986-08-14 1986-08-14 Charge coupled device

Country Status (1)

Country Link
JP (1) JPH079387Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607390B2 (en) * 1976-09-17 1985-02-23 三洋電機株式会社 Drive pulse power supply method for charge-coupled semiconductor devices

Also Published As

Publication number Publication date
JPS6331551U (en) 1988-03-01

Similar Documents

Publication Publication Date Title
JP3579194B2 (en) Driving method of solid-state imaging device
US6300977B1 (en) Read-out circuit for active matrix imaging arrays
JPH03231560A (en) Photoelectric converter
KR960036156A (en) Amplification type photoelectric conversion element and amplification type solid-state imaging device using the same
JPH061829B2 (en) Two-dimensional CCD image sensor
JPH079387Y2 (en) Charge coupled device
JPH0682693B2 (en) Charge transfer device
JPH0588552B2 (en)
JPH0821705B2 (en) Charge transfer type solid-state image sensor
JP4088986B2 (en) Two-dimensional radiation detector
JPH03120947A (en) Image sensor
JP2714001B2 (en) Solid-state imaging device
JP4960587B2 (en) Storage capacitor design for solid-state imager
JPH022676A (en) Image sensor
EP0670658B1 (en) A charge storage device
JPH05145855A (en) Solid-state image pickup device
JP3279094B2 (en) Image sensor
JPH0879445A (en) Image sensor
JPH0319368A (en) Solid-state image sensing device
US6677997B1 (en) Amplifying solid-state imaging device, and method for driving the same
JPH0379076A (en) Solid state image pickup element
JPH07326720A (en) Image sensor
JPH02181470A (en) Solid-state image pick-up element
JPS6350058A (en) Semiconductor image sensing device
JP2569523B2 (en) Solid-state imaging device