JPH0792139A - Method for evaluating fatigue damage of material - Google Patents

Method for evaluating fatigue damage of material

Info

Publication number
JPH0792139A
JPH0792139A JP5257464A JP25746493A JPH0792139A JP H0792139 A JPH0792139 A JP H0792139A JP 5257464 A JP5257464 A JP 5257464A JP 25746493 A JP25746493 A JP 25746493A JP H0792139 A JPH0792139 A JP H0792139A
Authority
JP
Japan
Prior art keywords
magnetic field
fatigue
strength
test
characteristic curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5257464A
Other languages
Japanese (ja)
Other versions
JP2794623B2 (en
Inventor
Hitohiro Isobe
仁博 礒部
Kazuhiko Aoki
一彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP5257464A priority Critical patent/JP2794623B2/en
Publication of JPH0792139A publication Critical patent/JPH0792139A/en
Application granted granted Critical
Publication of JP2794623B2 publication Critical patent/JP2794623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to evaluate fatigue damage not only in the final stage but also the initial stage by conducting fatigue test of a reference piece to determine a fatigue characteristic curve and then collating the field strength measured for a material to be inspected with the fatigue characteristic curve. CONSTITUTION:A flux meter 3 and a superconducting coil 4 for exciting alternating magnetic field are disposed in a Dewar vessel 2 filled with liquid helium. Assuming the instantaneous strength of alternating magnetic field generated by the coil 4 is H and the instantaneous strength of field when a test piece 5 is placed in the alternating magnetic field is H', the ratio theta=H'/H is constant. The magnitude of theta corresponds to the accumulated value of repetitive stress. The value of theta is determined for the number of acting times of repetitive stress assuming it is equal to theta0 under unfatigued state. Subsequently, a variation DELTAtheta=theta-theta0 is calculated and a fatigue characteristic curve is prepared from the ratio DELTAtheta/theta0 for the number of acting times N. The field strength measured for a member to be inspected is then collated with the fatigue characteristic curve thus determining and evaluating the fatigue damage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、材料の疲労損傷度を非
破壊検査手法により評価する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the degree of fatigue damage of materials by a nondestructive inspection method.

【0002】[0002]

【従来の技術】従来から各種の材料を破壊することなく
その疲労損傷の度合いを評価する種々の方法が提供され
ている。例えば、材料内にマクロクラックのような欠陥
が生じると欠陥部を透過した放射線(X線、γ線等)の
強度が健全な部分を透過したものよりも大きくなること
を利用し、被検材の背後に放射線感光フィルムを配置し
てその撮影画像から被検材の欠陥を検出する放射線探傷
法や、或いは被検材内に極めて短い超音波パルスを発し
てその反射エコーや透過した超音波を受信することによ
り、被検材内のマクロクラック等の欠陥の位置や大きさ
を知る超音波探傷法などである。
2. Description of the Related Art Conventionally, various methods have been provided for evaluating the degree of fatigue damage of various materials without destroying them. For example, the fact that when a defect such as a macrocrack occurs in the material, the intensity of the radiation (X-rays, γ-rays, etc.) transmitted through the defective portion becomes larger than that transmitted through a healthy portion, Radiation-sensitive film is placed behind the to detect the defect of the material to be detected from the captured image, or a very short ultrasonic pulse is emitted inside the material to detect its reflection echo and transmitted ultrasonic waves. An ultrasonic flaw detection method or the like is known in which the position and the size of a defect such as a macrocrack in the material to be inspected are received.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
ような従来の非破壊検査法にあっては、次のような問題
があった。すなわち、ある材料が疲労破壊するまでに
は、先ず結晶格子レベルでの微視的な物性変化が生じ、
その後マクロクラックが発生して破断に至ることが知ら
れているが、このような疲労破壊に至るまでの期間の大
半は、マクロクラック発生以前の前記結晶格子レベルで
の微視的な物性変化に占められている。
However, the above-mentioned conventional nondestructive inspection method has the following problems. In other words, before a material undergoes fatigue failure, first a microscopic change in physical properties occurs at the crystal lattice level,
After that, it is known that macrocracks occur and lead to rupture, but most of the period until such fatigue fracture occurs due to microscopic physical property changes at the crystal lattice level before macrocrack occurrence. Occupied.

【0004】これに対して、前記従来の非破壊検査法
は、前述のように材料に生じるマクロクラックの位置や
形状からその材料の疲労損傷度の評価を行っており、し
たがって、従来の方法では疲労破壊に至る末期における
評価しか行うことができなかった。
On the other hand, in the conventional nondestructive inspection method, the fatigue damage degree of the material is evaluated from the position and shape of the macrocracks generated in the material as described above. Only the end-of-life assessment leading to fatigue failure could be done.

【0005】本発明は、このような従来の問題を解決す
るためになされたもので、疲労破壊に至る末期のみなら
ず初期の段階においても疲労損傷度の評価を行うことが
できる方法を提供することを目的とする。
The present invention has been made in order to solve such a conventional problem, and provides a method capable of evaluating the degree of fatigue damage not only in the final stage of fatigue fracture but also in the early stages. The purpose is to

【0006】[0006]

【課題を解決するための手段】前記目的を達成すべく、
請求項1の発明は、材料の疲労損傷度を評価する方法で
あって、被検材に対応する材質の基準片に対して疲労試
験を行う工程と、前記疲労試験中の複数の時点におい
て、前記基準片を瞬時強度が既知の交流磁界中に位置せ
しめるとともに該基準片を位置せしめた場合の磁界強度
を測定する工程と、前記測定された磁界強度から疲労特
性曲線を求める工程と、前記被検材を瞬時強度が既知の
交流磁界中に位置せしめて磁界の強度を測定する工程
と、前記被検材について測定された磁界強度を前記疲労
特性曲線と照合して被検材の疲労損傷度を求める工程
と、を含む材料の疲労損傷度を評価する方法に係るもの
である。
[Means for Solving the Problems] To achieve the above object,
The invention of claim 1 is a method for evaluating the degree of fatigue damage of a material, comprising a step of performing a fatigue test on a reference piece of a material corresponding to a test material, and a plurality of time points during the fatigue test. Positioning the reference piece in an alternating magnetic field whose instantaneous strength is known and measuring the magnetic field strength when the reference piece is located, a step of obtaining a fatigue characteristic curve from the measured magnetic field strength, and The step of locating the test material in an alternating magnetic field whose instantaneous strength is known and measuring the strength of the magnetic field, and the magnetic field strength measured for the test material are compared with the fatigue characteristic curve to determine the degree of fatigue damage of the test material. And a method of evaluating the degree of fatigue damage of a material including the step of:

【0007】また、請求項2の発明は、前記請求項1の
発明において、前記磁界の強度の測定を超電導量子干渉
素子により行い、前記交流磁界の瞬時強度をH、前記基
準片又は前記被検材を前記交流磁界内に位置せしめた場
合の磁界強度の瞬時値をH´、前記Hに対するH´の比
(H´/H)をθとして、前記疲労試験中の複数の時点
における前記θの値から前記疲労特性曲線を求め、被検
材についての前記θの値から該被検材の疲労損傷度を求
める材料の疲労損傷度を評価する方法に係るものであ
る。
According to a second aspect of the invention, in the first aspect of the invention, the strength of the magnetic field is measured by a superconducting quantum interference device, and the instantaneous strength of the alternating magnetic field is H, the reference piece or the test object. When the instantaneous value of the magnetic field strength when the material is positioned in the alternating magnetic field is H ′, and the ratio of H ′ to H (H ′ / H) is θ, the θ of the θ at a plurality of time points during the fatigue test is set. The present invention relates to a method of evaluating the fatigue characteristic curve from a value and obtaining the fatigue damage degree of the test material from the value of θ for the test material to evaluate the fatigue damage degree of the material.

【0008】[0008]

【作用】以下、本発明に係る評価方法の原理を説明す
る。
The principle of the evaluation method according to the present invention will be described below.

【0009】A.先ず、被検材の疲労特性曲線を求める
が、この「疲労特性曲線」とは、被検材の疲労損傷度の
評価を行うにあたってその評価の基準となるもので、評
価対象である被検材がこの疲労特性曲線上のどの位置に
あるかを参照することにより、その被検材の余寿命、す
なわち破壊に至るまでにあとどのくらい寿命があるかを
判断することが可能となる。疲労特性曲線は、次のよう
にして求められる。
A. First, the fatigue characteristic curve of the test material is obtained, and this "fatigue characteristic curve" is the reference of the evaluation when evaluating the fatigue damage degree of the test material, It is possible to determine the remaining life of the material to be tested, that is, how much life is left until it breaks, by referring to the position on the fatigue characteristic curve at which is. The fatigue characteristic curve is obtained as follows.

【0010】先ず、例えば曲げ、引張、圧縮、捩り、
衝撃などの被検材の使用環境に予測される予め定められ
た種類の繰り返し応力の少なくとも一種を、被検材と対
応する材質の基準片に作用させる疲労試験を行う。
First, for example, bending, tension, compression, twisting,
A fatigue test is performed in which at least one kind of repetitive stress of a predetermined type predicted in the use environment of the test material such as impact is applied to a reference piece of a material corresponding to the test material.

【0011】そして、この繰り返し応力を基準片に与
え始めてから基準片が破壊に至るまでの間の複数の時点
において、基準片を強度が既知の交流磁界中に位置せし
めるとともに該基準片を位置せしめた場合の磁界強度を
測定する。
Then, the reference piece is positioned in an alternating magnetic field of known strength and the reference piece is positioned at a plurality of times from the time when the repeated stress is applied to the reference piece until the reference piece is destroyed. Measure the magnetic field strength.

【0012】ここで、本発明者は、前記交流磁界の強度
に対する前記基準片を位置せしめた場合の磁界強度が、
繰り返し応力の積算量(例えば、作用回数又は作用時間
など)に応じて一定の値をとることを見出した。また、
この一定値は、材料の種類(材質)や加工度など、また
疲労条件の如何により異なるが、前記材質や加工度、疲
労条件などが同一であれば、同一の値をとる。
[0012] Here, the inventor has found that the magnetic field strength when the reference piece is positioned with respect to the strength of the alternating magnetic field is
It has been found that a constant value is taken according to the cumulative amount of repeated stress (for example, the number of actions or the action time). Also,
This constant value varies depending on the type of material (material), workability, etc., and fatigue conditions, but if the material, workability, fatigue conditions, etc. are the same, it takes the same value.

【0013】したがって、被検材と材質、加工度など
が等しい基準片を用意し、該基準片に対する繰り返し応
力の積算量と、該積算量に応じた前記一定値との関係を
求め、これを疲労特性曲線とする。
Therefore, a reference piece having the same material, workability, etc. as the test material is prepared, and the relationship between the integrated amount of repeated stress with respect to the reference piece and the constant value corresponding to the integrated amount is obtained, and this is calculated. Fatigue characteristic curve.

【0014】B.次に、当該被検材の疲労損傷度の評価
を行うが、先ず、被検材を強度が既知の交流磁界中に
位置せしめるとともに該被検材を位置せしめた場合の磁
界強度を測定し、この磁界強度の、前記交流磁界の強度
(被検材が磁界中にない場合の強度)に対する大きさを
算出する。
B. Next, the fatigue damage degree of the test material is evaluated, but first, the magnetic field strength is measured when the test material is positioned in an alternating magnetic field whose strength is known, and when the test material is positioned, The magnitude of this magnetic field strength with respect to the strength of the alternating magnetic field (the strength when the test material is not in the magnetic field) is calculated.

【0015】そして、この算出値が前記疲労特性曲線
上のどの位置にあるかにより該被検材の余寿命を判断す
ることができる。なぜなら、前述のように、材料が存在
しない場合の磁界強度に対する材料を位置せしめた場合
の磁界強度は、繰り返し応力の積算量(例えば、作用回
数又は作用時間など)に応じて一定の値をとり、しかも
この値は、材料の種類や加工度などが同一であれば、同
一の値をとるからである。
Then, the remaining life of the material to be tested can be judged depending on the position of the calculated value on the fatigue characteristic curve. This is because, as described above, the magnetic field strength when the material is positioned with respect to the magnetic field strength when there is no material takes a constant value according to the cumulative amount of repeated stress (for example, the number of times of action or the time of action). Moreover, this value is the same if the type of material and the degree of processing are the same.

【0016】さらに、前記請求項2の発明においては、
前記磁界強度の測定に超電導量子干渉素子を用いる。こ
の超電導量子干渉素子(SQUID : Superconductive Quan
tumInterference Device )は、磁気センサとしてその
磁気検出感度が非常に高いことから、例えば生体磁場の
測定など、様々な分野で広範に利用されているもので、
このSQUID を利用することにより、10-14 T(Wb/m
2 )以下程度の高精度の磁界強度の測定が可能となり、
このため正確な疲労評価が可能となる。
Further, according to the invention of claim 2,
A superconducting quantum interference device is used to measure the magnetic field strength. This superconducting quantum interference device (SQUID: Superconductive Quan
tumInterference Device) is widely used in various fields such as measurement of biomagnetic field because its magnetic detection sensitivity is very high as a magnetic sensor.
By using this SQUID, 10 -14 T (Wb / m
2 ) It becomes possible to measure the magnetic field strength with high accuracy as below.
Therefore, accurate fatigue evaluation is possible.

【0017】[0017]

【実施例】以下、実施例を通じて本発明をさらに詳しく
説明する。本発明の一実施例として、蒸気発生器(S
G)の伝熱管材料であるインコネル(Inconel) 600材
からなる試験片を用い、これに対して疲労試験を実施し
て疲労特性曲線を求め、超電導コイルにより交流磁界を
印加してSQUID 磁束計により磁界強度を測定して疲労損
傷評価を行った。
EXAMPLES The present invention will be described in more detail by way of examples. As one embodiment of the present invention, a steam generator (S
(G) Using a test piece made of Inconel 600 material, which is a heat transfer tube material, a fatigue test is performed on this to obtain a fatigue characteristic curve, and an AC magnetic field is applied by a superconducting coil and a SQUID magnetometer is used. Fatigue damage was evaluated by measuring the magnetic field strength.

【0018】前記試験片は、図2に示すように、中間部
の幅が絞られた形状を有しており、その寸法は、全長2
20mm、幅60mm、厚さ5mm、中間部の幅が20mmであ
る。また、疲労試験は、試験片の長手方向に引っ張りと
戻しとを繰り返す完全片振で圧縮は行わない。負荷荷重
は最大応力が50kgf/mm2 であり、周波数は10Hzであ
る。
As shown in FIG. 2, the test piece has a shape in which the width of the intermediate portion is narrowed, and the dimension thereof is the total length 2
The width is 20 mm, the width is 60 mm, the thickness is 5 mm, and the width of the middle portion is 20 mm. Further, in the fatigue test, compression is not performed by perfect swinging in which pulling and returning are repeated in the longitudinal direction of the test piece. The applied load has a maximum stress of 50 kgf / mm 2 and a frequency of 10 Hz.

【0019】また、図1に、本実施例で使用した、交流
磁界を発生させると共に磁界強度を測定する装置(以
下、単に「測定装置」と称する。)を示す。図示のよう
にこの測定装置1は、液体ヘリウムが充填されたデュワ
ー2内にSQUID 磁束計3と交流磁界励起用の超電導コイ
ル4とを備えたもので、コイル4に流す電流は、SQUID
磁束計3の検出コイル3aと試験片5との距離dの大き
さにもよるが、1A以下程度であり、励起される交流磁
界の周波数は0.5Hzである。また、SQUID 磁束計3の
サンプリングレートは100Hz(毎秒100回測定す
る。)である。
FIG. 1 shows an apparatus (hereinafter, simply referred to as "measuring apparatus") for generating an alternating magnetic field and measuring the magnetic field strength, which is used in this embodiment. As shown in the figure, this measuring apparatus 1 is provided with a SQUID magnetometer 3 and a superconducting coil 4 for exciting an AC magnetic field in a dewar 2 filled with liquid helium.
Although it depends on the size of the distance d between the detection coil 3a of the magnetometer 3 and the test piece 5, it is about 1 A or less, and the frequency of the excited AC magnetic field is 0.5 Hz. Further, the sampling rate of the SQUID magnetometer 3 is 100 Hz (measurement is performed 100 times per second).

【0020】図3は、測定装置1のコイル4により発生
される交流磁界の強度と、SQUID 磁束計3の出力(コイ
ルにより発生される磁界内に試験片が置かれている場合
の磁界強度)とを示す線図であり、さらに、図4は両者
の関係を示す線図である。今、測定装置1のコイル4に
より発生される交流磁界強度の瞬時値をH、該交流磁界
内に試験片5を位置せしめた場合の磁界強度の瞬時値を
H´とすると、Hに対するH´の比θ(θ=H´/H)
は、図4からも明らかなように一定の値をとる。
FIG. 3 shows the strength of the AC magnetic field generated by the coil 4 of the measuring apparatus 1 and the output of the SQUID magnetometer 3 (the magnetic field strength when the test piece is placed in the magnetic field generated by the coil). And FIG. 4 is a diagram showing the relationship between the two. Now, let H be the instantaneous value of the AC magnetic field strength generated by the coil 4 of the measuring apparatus 1 and H ′ be the instantaneous value of the magnetic field strength when the test piece 5 is positioned in the AC magnetic field. Ratio θ (θ = H '/ H)
Takes a constant value as is clear from FIG.

【0021】そして、このθの大きさは、繰り返し応力
の積算量(例えば作用回数)に応じたものとなる。図5
は、この繰り返し応力の作用回数(N)に対するθの値
をプロットすることにより得られた線図である。なお、
同図において、θ0 は、繰り返し応力を作用させない未
疲労の状態におけるθの値である。
The magnitude of θ depends on the cumulative amount of repeated stress (for example, the number of actions). Figure 5
FIG. 4 is a diagram obtained by plotting the value of θ against the number of times (N) the repeated stress is applied. In addition,
In the figure, θ 0 is a value of θ in an unfatigue state where repetitive stress is not applied.

【0022】さらに、疲労に伴うθの変化量Δθ(Δθ
=θ−θ0 )を算出し、作用回数(N)に対するΔθ/
θ0 をプロットすることにより、図6に示す線図が得ら
れた。これを疲労特性曲線とする。なお、この疲労特性
曲線は、前述のように材料の種類、加工度、疲労条件等
により変化することがあるが、疲労損傷評価を行う対象
について予め必要な疲労条件で校正曲線となる該疲労特
性曲線を求めておけば、この校正曲線に基づいて疲労損
傷度(疲労余寿命)が求められる。
Furthermore, the amount of change in θ due to fatigue Δθ (Δθ
= Θ−θ 0 ) and calculate Δθ / with respect to the number of actions (N)
The plot shown in FIG. 6 was obtained by plotting θ 0 . This is the fatigue characteristic curve. The fatigue characteristic curve may change depending on the type of material, the degree of working, the fatigue condition, etc. as described above, but the fatigue characteristic becomes a calibration curve under the fatigue condition necessary for the object to be evaluated for fatigue damage. If the curve is obtained, the degree of fatigue damage (remaining fatigue life) can be obtained based on this calibration curve.

【0023】以上のように、対象とする材料の疲労条件
(材質、加工度、最大応力、繰り返し数、使用温度、雰
囲気など)が判明している場合、その材料のその条件下
での疲労特性曲線(図6)を予め求めておけば、実機で
の疲労損傷度は、Δθ/θ0を前記測定装置1により測
定することにより容易に知ることができる。なお、図6
の例では、Δθ/θ0 ≒−0.05が破断の目安であ
る。
As described above, when the fatigue conditions (material, workability, maximum stress, number of cycles, operating temperature, atmosphere, etc.) of the target material are known, the fatigue characteristics of the material under that condition If the curve (FIG. 6) is obtained in advance, the degree of fatigue damage in an actual machine can be easily known by measuring Δθ / θ 0 with the measuring device 1. Note that FIG.
In the example of, Δθ / θ 0 ≈−0.05 is the standard of fracture.

【0024】なお、前記図1の測定装置1による測定を
行う場合には、前記疲労試験を行う疲労試験機に対して
測定装置1を近接配置してもよいし、或いは、疲労試験
機から試験片を外して測定装置1にかけるようにしても
よい。また、交流磁界強度Hは、毎回測定する必要はな
く、測定中コイル4に流す電流を一定にしておけば、は
じめに設定した値が使える。
When performing the measurement by the measuring device 1 of FIG. 1, the measuring device 1 may be arranged close to the fatigue testing machine for performing the fatigue test, or the test may be performed from the fatigue testing machine. It is also possible to remove the piece and put it on the measuring device 1. Further, the AC magnetic field strength H does not have to be measured every time, and if the current flowing through the coil 4 is kept constant during measurement, the value set at the beginning can be used.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
マクロクラック発生以降に限らず、それ以前をも含めた
幅広い疲労損傷度の評価を行うことが可能となる。
As described above, according to the present invention,
It is possible to evaluate a wide range of fatigue damage not only after the occurrence of macrocracks but also before that.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る評価方法に使用した測
定装置の構成を示す概念図である。
FIG. 1 is a conceptual diagram showing the configuration of a measuring device used in an evaluation method according to an embodiment of the present invention.

【図2】本発明の一実施例に係る評価方法に使用した試
験片を示す図である。
FIG. 2 is a diagram showing a test piece used in an evaluation method according to an example of the present invention.

【図3】前記測定装置のコイルにより発生される交流磁
界の強度と、該磁界内に試験片が置かれている場合の磁
界強度(SQUID 磁束計の出力)とを示す線図である。
FIG. 3 is a diagram showing the strength of an AC magnetic field generated by a coil of the measuring device and the magnetic field strength (output of a SQUID magnetometer) when a test piece is placed in the magnetic field.

【図4】前記測定装置のコイルにより発生される交流磁
界の強度と、該磁界内に試験片が置かれている場合の磁
界強度(SQUID 磁束計の出力)との関係を示す線図であ
る。
FIG. 4 is a diagram showing a relationship between the strength of an alternating magnetic field generated by a coil of the measuring device and the magnetic field strength (output of a SQUID magnetometer) when a test piece is placed in the magnetic field. .

【図5】繰り返し応力の作用回数(N)と、θとの関係
を示す線図である。
FIG. 5 is a diagram showing a relationship between the number of times (N) the repeated stress is applied and θ.

【図6】繰り返し応力の作用回数(N)と、Δθ/θ0
との関係を示す線図である。
FIG. 6 is the number of times (N) the repeated stress is applied and Δθ / θ 0
It is a diagram which shows the relationship with.

【符号の説明】[Explanation of symbols]

1:測定装置,2:液体ヘリウムが充填されたデュワ
ー,3:SQUID 磁束計 4:交流磁界励起用の超電導コイル,5:試験片
1: Measuring device, 2: Dewar filled with liquid helium, 3: SQUID magnetometer 4: Superconducting coil for AC magnetic field excitation, 5: Test piece

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 材料の疲労損傷度を評価する方法であっ
て、 被検材に対応する材質の基準片に対して疲労試験を行う
工程と、 前記疲労試験中の複数の時点において、前記基準片を瞬
時強度が既知の交流磁界中に位置せしめるとともに該基
準片を位置せしめた場合の磁界強度を測定する工程と、 前記測定された磁界強度から疲労特性曲線を求める工程
と、 前記被検材を瞬時強度が既知の交流磁界中に位置せしめ
て磁界の強度を測定する工程と、 前記被検材について測定された磁界強度を前記疲労特性
曲線と照合して被検材の疲労損傷度を求める工程と、 を含む材料の疲労損傷度を評価する方法。
1. A method for evaluating a degree of fatigue damage of a material, comprising a step of performing a fatigue test on a reference piece of a material corresponding to a material to be tested, and the reference at a plurality of points during the fatigue test. A step of locating the piece in an alternating magnetic field whose instantaneous strength is known and a step of measuring the magnetic field strength when the reference piece is positioned; a step of obtaining a fatigue characteristic curve from the measured magnetic field strength; And the step of measuring the strength of the magnetic field by locating the instantaneous strength in a known AC magnetic field, and determining the fatigue damage degree of the test material by collating the magnetic field strength measured for the test material with the fatigue characteristic curve. And a method of evaluating the degree of fatigue damage of a material including the steps.
【請求項2】 前記磁界の強度の測定を超電導量子干渉
素子により行い、 前記交流磁界の瞬時強度をH、前記基準片又は前記被検
材を前記交流磁界内に位置せしめた場合の磁界強度の瞬
時値をH´、前記Hに対するH´の比(H´/H)をθ
として、 前記疲労試験中の複数の時点における前記θの値から前
記疲労特性曲線を求め、 被検材についての前記θの値から該被検材の疲労損傷度
を求める請求項1に記載の材料の疲労損傷度を評価する
方法。
2. The strength of the magnetic field is measured by a superconducting quantum interference device, the instantaneous strength of the AC magnetic field is H, and the strength of the magnetic field when the reference piece or the test material is positioned in the AC magnetic field is measured. The instantaneous value is H ', the ratio of H'to H (H' / H) is θ
The material according to claim 1, wherein the fatigue characteristic curve is obtained from the value of the θ at a plurality of times during the fatigue test, and the degree of fatigue damage of the material is obtained from the value of the θ for the material to be inspected. Method for assessing fatigue damage in humans.
JP5257464A 1993-09-22 1993-09-22 Method for evaluating the degree of fatigue damage of materials Expired - Fee Related JP2794623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5257464A JP2794623B2 (en) 1993-09-22 1993-09-22 Method for evaluating the degree of fatigue damage of materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5257464A JP2794623B2 (en) 1993-09-22 1993-09-22 Method for evaluating the degree of fatigue damage of materials

Publications (2)

Publication Number Publication Date
JPH0792139A true JPH0792139A (en) 1995-04-07
JP2794623B2 JP2794623B2 (en) 1998-09-10

Family

ID=17306684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5257464A Expired - Fee Related JP2794623B2 (en) 1993-09-22 1993-09-22 Method for evaluating the degree of fatigue damage of materials

Country Status (1)

Country Link
JP (1) JP2794623B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894581A (en) * 1994-09-20 1996-04-12 Nuclear Fuel Ind Ltd Method for evaluating thermal embrittlement of material
JP2007132923A (en) * 2005-10-11 2007-05-31 Osaka Univ Nondestructive inspection device, and design method for coil of nondestructive inspection device
CN111982552A (en) * 2020-07-29 2020-11-24 凯迈(洛阳)气源有限公司 Rapid cooling and heating system and method for Dewar chip fatigue test
CN112393987A (en) * 2020-05-29 2021-02-23 中国人民解放军陆军装甲兵学院 Method for analyzing influence of pulse magnetic field treatment on fatigue performance of transmission gear

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828293A (en) * 1971-08-13 1973-04-14
JPS50159787A (en) * 1974-06-13 1975-12-24
JPS61172059A (en) * 1985-01-28 1986-08-02 Mitsubishi Heavy Ind Ltd Method for nondestructive forecasting of life of turbine
JPS61265569A (en) * 1985-05-20 1986-11-25 Mitsubishi Heavy Ind Ltd Method for non-destructive forecasting of life of turbine
JPS63180851A (en) * 1987-01-12 1988-07-25 ウエスチングハウス・エレクトリック・コーポレーション Creep-damage decision method of ferromagnetic work
JPH01119756A (en) * 1987-11-04 1989-05-11 Hitachi Ltd Inspecting apparatus for deterioration of metal material
JPH01245149A (en) * 1988-03-28 1989-09-29 Hitachi Ltd Deterioration inspection instrument for metallic material
JPH01297546A (en) * 1988-05-26 1989-11-30 Idemitsu Eng Co Ltd Method of diagnosing deterioration of conductive material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828293A (en) * 1971-08-13 1973-04-14
JPS50159787A (en) * 1974-06-13 1975-12-24
JPS61172059A (en) * 1985-01-28 1986-08-02 Mitsubishi Heavy Ind Ltd Method for nondestructive forecasting of life of turbine
JPS61265569A (en) * 1985-05-20 1986-11-25 Mitsubishi Heavy Ind Ltd Method for non-destructive forecasting of life of turbine
JPS63180851A (en) * 1987-01-12 1988-07-25 ウエスチングハウス・エレクトリック・コーポレーション Creep-damage decision method of ferromagnetic work
JPH01119756A (en) * 1987-11-04 1989-05-11 Hitachi Ltd Inspecting apparatus for deterioration of metal material
JPH01245149A (en) * 1988-03-28 1989-09-29 Hitachi Ltd Deterioration inspection instrument for metallic material
JPH01297546A (en) * 1988-05-26 1989-11-30 Idemitsu Eng Co Ltd Method of diagnosing deterioration of conductive material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894581A (en) * 1994-09-20 1996-04-12 Nuclear Fuel Ind Ltd Method for evaluating thermal embrittlement of material
JP2007132923A (en) * 2005-10-11 2007-05-31 Osaka Univ Nondestructive inspection device, and design method for coil of nondestructive inspection device
CN112393987A (en) * 2020-05-29 2021-02-23 中国人民解放军陆军装甲兵学院 Method for analyzing influence of pulse magnetic field treatment on fatigue performance of transmission gear
CN111982552A (en) * 2020-07-29 2020-11-24 凯迈(洛阳)气源有限公司 Rapid cooling and heating system and method for Dewar chip fatigue test

Also Published As

Publication number Publication date
JP2794623B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
JP2720389B2 (en) Method and apparatus for detecting intrinsic stress of component
US11275002B2 (en) Method for detecting mechanoresponse of mechanical component by organic mechanoresponsive luminogen
CN1013461B (en) Nondestructive test to the ferromagnetic workpiece creep impairment
JP3300810B2 (en) Non-destructive method for measuring the aging of the strength of ferromagnetic structural materials
JP2766929B2 (en) Non-destructive inspection equipment
US5272746A (en) Method of evaluating a degree of fatigue in a structural material
JPH0621783B2 (en) Fatigue / remaining life evaluation method for machine parts
JP3639908B2 (en) Nondestructive measurement method for aging of ferromagnetic structural materials
JP2794623B2 (en) Method for evaluating the degree of fatigue damage of materials
JP3158182B2 (en) Non-destructive method for measuring the aging of the strength of ferromagnetic structural materials
US5423223A (en) Fatigue detection in steel using squid magnetometry
JP2002372519A (en) Non-destructive measuring method of secular deterioration associated with change in brittleness of ferromagnetic structure material
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
JP2004294341A (en) Flaw detection method and flaw detection apparatus by pulsed remote field eddy current
Merah DC potential drop calibration in creep-fatigue loading conditions
JP3091856B2 (en) How to evaluate the fatigue of structural materials
JP3732269B2 (en) Method for evaluating dislocation density of metallic materials
JPH02216036A (en) Evaluation of remaining life for structure
Merah et al. Calibration of DC potential technique using an optical image processing system in LCF testing
RU2173838C1 (en) Method for determination of article stressed-strained state according to magnetic leakage fields
JPH01269049A (en) Method of inspecting deterioration of metallic material
SU1727004A1 (en) Method of locating residual stress zones in ferromagnetic products
JP2003075410A (en) Method and system for diagnosis of fatigue and damage degree of steel material constituting steel structure
RU2009479C1 (en) Non-destructive control method
JP2002122572A (en) Method and apparatus for evaluation of material characteristic

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980526

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees