JP3091856B2 - How to evaluate the fatigue of structural materials - Google Patents

How to evaluate the fatigue of structural materials

Info

Publication number
JP3091856B2
JP3091856B2 JP05037291A JP3729193A JP3091856B2 JP 3091856 B2 JP3091856 B2 JP 3091856B2 JP 05037291 A JP05037291 A JP 05037291A JP 3729193 A JP3729193 A JP 3729193A JP 3091856 B2 JP3091856 B2 JP 3091856B2
Authority
JP
Japan
Prior art keywords
fatigue
ray
test material
reference piece
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05037291A
Other languages
Japanese (ja)
Other versions
JPH0611464A (en
Inventor
仁博 磯部
篤史 上村
一彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP05037291A priority Critical patent/JP3091856B2/en
Publication of JPH0611464A publication Critical patent/JPH0611464A/en
Application granted granted Critical
Publication of JP3091856B2 publication Critical patent/JP3091856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば金属等の構造材
料の疲労による損傷の程度を非破壊検査手法によって検
査し評価する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of inspecting and evaluating the degree of damage of a structural material such as a metal due to fatigue by a nondestructive inspection technique.

【0002】[0002]

【従来の技術】各種材料や構造物などの被検材を破壊す
ること無しに、被検材の組織構造,材質,強度,あるい
は形状等に関する健全性を、被検材の物理的性質の検出
結果を利用して評価するために、従来より種々の非破壊
検査方法が利用化されている。材料検査に利用されてい
る主な非破壊検査方法としては、例えば以下に示すもの
がある。
2. Description of the Related Art The soundness of the structure, material, strength, shape, etc. of a test material can be determined without destroying the test material such as various materials and structures, and the physical properties of the test material can be detected. Conventionally, various non-destructive inspection methods have been used to evaluate using the results. For example, the following non-destructive inspection methods are mainly used for material inspection.

【0003】1.放射線探傷:物体内にマイクロクラッ
クのような欠陥が存在すると欠陥部を透過した放射線
(X線,γ線等)の強度が健全部を透過したものよりも
が強くなる。よって被検材の背後に放射線の感光フィル
ムを配置し、欠陥の形状を写真フィルム上に撮影し、撮
影画像からその被験材の健全性を調べる。
[0003] 1. Radiation flaw detection: When a defect such as a microcrack exists in an object, the intensity of radiation (such as X-rays and γ-rays) transmitted through the defect becomes stronger than that transmitted through a healthy portion. Therefore, a radiation sensitive film is arranged behind the test material, the shape of the defect is photographed on a photographic film, and the soundness of the test material is examined from the photographed image.

【0004】2.超音波探傷: (a) パルス反射法; 極めて短い超音波パルスを被験材
内に伝搬させ、被験材内のマイクロクラック等の欠陥に
よる反射エコーを受信して、その位置および大きさ等を
知る。 (b) 透過法; 連続波又はパルス波の超音波を送信探触
子から発し、被験材を透過した超音波を受信探触子で受
信して、受信波の強度から欠陥の位置および大きさ等を
観測する。 (c) 共振法; 周波数が連続的に関係する高周波電圧を
探触子に印加して、被験材の厚さにより共振した定常波
を測定し、被験材の厚さを測定する。
[0004] 2. Ultrasonic flaw detection: (a) Pulse reflection method: An extremely short ultrasonic pulse is propagated in a test material, and a reflected echo due to a defect such as a micro crack in the test material is received to know its position and size. (b) Transmission method: A continuous wave or pulse wave ultrasonic wave is emitted from the transmitting probe, the ultrasonic wave transmitted through the test material is received by the receiving probe, and the position and size of the defect are determined based on the intensity of the received wave. Observe etc. (c) Resonance method: A high-frequency voltage whose frequency is continuously related is applied to the probe, and a standing wave that resonates with the thickness of the test material is measured to measure the thickness of the test material.

【0005】3.渦電流探傷:コイルから発生された交
流磁界の強さと、それによって被検材内に生じた渦電流
による磁界との発生分布状態との関係より、被検材内の
クラック等の欠陥を検知する。一般的に検出感度は超音
波法よりも低いが、特定のクラックに対しては感度がよ
いため、超音波検査の補助手段として用いられることが
多い。
[0005] 3. Eddy current flaw detection: Detects defects such as cracks in the test material from the relationship between the strength of the AC magnetic field generated from the coil and the resulting distribution of the magnetic field due to the eddy current generated in the test material. . Generally, the detection sensitivity is lower than that of the ultrasonic method, but the sensitivity is high for a specific crack, so that it is often used as an auxiliary means for an ultrasonic inspection.

【0006】[0006]

【発明が解決しようとする課題】一般に金属材料が例え
ば繰り返し応力の作用を受けると材料中の結晶粒に滑り
が起こり、次いでマイクロクラックが発生し、クラック
が進むと遂には疲労破壊に至る。ところで、この場合に
材料が疲労破壊に至るまでの期間の大半は、マイクロク
ラック発生以前の結晶格子レベルでの微視的な変化に占
められている。
Generally, when a metal material is subjected to, for example, a repetitive stress, a crystal grain in the material slips, and then a microcrack is generated. When the crack progresses, a fatigue fracture finally occurs. By the way, in this case, most of the period until the material reaches fatigue fracture is occupied by microscopic changes at the crystal lattice level before microcracks occur.

【0007】従来より疲労度の評価に利用されている非
破壊検査技術は、主として既に発生したマイクロクラッ
クの大きさと形状および位置の検出を目的としているた
め、材料が疲労破壊に到る末期でしか疲労度を評価する
ことができなかった。
[0007] Non-destructive inspection techniques conventionally used for evaluating the degree of fatigue mainly aim at detecting the size, shape and position of microcracks that have already occurred. The degree of fatigue could not be evaluated.

【0008】本発明の目的は、金属等の被検材が破壊に
到る前に、即ちマイクロクラック発生以前に被検材の疲
労度を非破壊検査手法で計測・評価することのできる方
法を提供することである。
An object of the present invention is to provide a method capable of measuring and evaluating the fatigue degree of a test material by a non-destructive inspection method before the test material such as a metal is destroyed, that is, before the occurrence of microcracks. To provide.

【0009】[0009]

【課題を解決するための手段】本発明の基本理念は、金
属のように結晶構造をもつ材料にX線を照射することに
より得られるX線回折ピーク(振幅高さ、もしくはエネ
ルギー)のデータが、材料の疲労の進行に伴って特に疲
労破壊に到る前兆として特徴的な変化を示すことに基づ
いている。
The basic philosophy of the present invention is that data of an X-ray diffraction peak (amplitude height or energy) obtained by irradiating a material having a crystal structure such as a metal with X-rays is obtained. It is based on the fact that it shows a characteristic change as a precursor to fatigue fracture particularly as the fatigue of the material progresses.

【0010】本発明の一つの特徴的な態様に従えば、構
造材料の疲労度を評価するための方法は、例えば曲げ、
引張圧縮、捩り、衝撃などの被検材の使用環境に予測さ
れる予め定められた種類の繰り返し応力の少なくとも一
種を前記被検材と対応する材質の基準片に作用させて疲
労試験を行う工程と、前記繰り返し応力を前記基準片に
与え始めてから該基準片が破壊に至るまでの間の複数の
時点において前記基準片にX線を照射して被照射部位か
ら生じる予め定められた回折角の回折X線の強度を計測
する工程と、この計測結果から前記繰り返し応力の積算
量(例えば作用回数または作用時間で代表される)と前
記回折X線強度との関係に相当する疲労特性曲線を求め
る工程と、前記被検材の測定対象部位に前記X線を照射
して前記測定対象部位から生じる前記回折角の回折X線
の強度を計測する工程と、使用環境下における少なくと
も二つの時点において前記被検材について計測された前
記回折X線強度間の変化率を前記疲労特性曲線と照合し
て被検材の疲労度、および必要に応じて疲労破壊に至る
までの余寿命を求める工程とを含んでいる。
According to one characteristic aspect of the invention, a method for assessing the degree of fatigue of a structural material includes, for example, bending,
A step of performing a fatigue test by applying at least one of predetermined types of repetitive stresses predicted in the use environment of the test material such as tensile compression, torsion, and impact to a reference piece of a material corresponding to the test material. And a predetermined diffraction angle of a predetermined diffraction angle generated from a portion to be irradiated by irradiating the reference piece with X-rays at a plurality of time points from when the repetitive stress is applied to the reference piece to when the reference piece is broken. A step of measuring the intensity of the diffracted X-ray, and from this measurement result, a fatigue characteristic curve corresponding to the relationship between the integrated amount of the repetitive stress (eg, represented by the number of times of action or the time of action) and the intensity of the diffracted X-ray is obtained. A step of irradiating the measurement target site of the test material with the X-ray to measure the intensity of the diffracted X-ray having the diffraction angle generated from the measurement target site, and at least two points in the use environment. Comparing the rate of change between the diffracted X-ray intensities measured for the test material with the fatigue characteristic curve to determine the degree of fatigue of the test material and, if necessary, the remaining life up to fatigue failure. And

【0011】[0011]

【作用】本発明において、計測されるべき回折X線強度
とは回折X線のピーク高さ(振幅)又はピーク面積(エ
ネルギー)の何れでも良い。この計測は、基準片に対す
る前記計測工程と、被検材に対する前記計測工程とにお
いて各々行われる。基準片に対する計測工程では、基準
片に対して疲労試験の手法によって所定の繰り返し応力
を作用させると共に、予め定められた応力積算量毎に応
力付与操作を中断し、この中断期間中に基準片に対する
X線回折計測が行われる。一方、被検材に対する計測工
程では例えば被検材が構造材の場合、例えば複数の定期
点検時のように、使用状態における被検材に対して使用
状態下の異なる時点で同一被検材に対して複数回のX線
回折計測が行われる。これらの使用状態下での被検材に
対するX線回折計測は、使用箇所から一時的に取りはず
された被検材に対して行われてもよいし、あるいはX線
回折計測用のプローブを準備した場合は、使用箇所にあ
るままの被検材に対して行われてもよい。
In the present invention, the diffracted X-ray intensity to be measured may be either the peak height (amplitude) or the peak area (energy) of the diffracted X-ray. This measurement is performed in each of the measurement step for the reference piece and the measurement step for the test material. In the measurement process for the reference piece, a predetermined repetitive stress is applied to the reference piece by a fatigue test method, and the stress applying operation is interrupted for each predetermined amount of integrated stress. X-ray diffraction measurement is performed. On the other hand, in the measurement process for the test material, for example, when the test material is a structural material, the test material in the use condition is applied to the same test material at different time points under the use condition, for example, during a plurality of periodic inspections. X-ray diffraction measurement is performed a plurality of times. The X-ray diffraction measurement for the test material under these use conditions may be performed on the test material temporarily removed from the place of use, or a probe for the X-ray diffraction measurement may be prepared. In this case, the measurement may be performed on the test material as it is at the place of use.

【0012】このように、本発明では、被検材に対して
は例えばX線回折プローブなどによって測定対象部位に
X線を照射して所定の回折角のX線回折強度を測定すれ
ばよいので、被検材はサンプル採取する必要がなく、ま
た測定で破壊されることもない。この被検材に対するX
線回折測定は、例えば構造材料としての初期時点とその
後の使用による或る積算量の繰り返し応力の作用を受け
た後の時点、或は使用中の異なる二つの時点に行なわれ
る。いずれにせよ二つの時点で計測された被検材の前記
回折角における回折X線強度の変化率には、クラックが
発生する以前の被検材中の結晶構造の変化に応じた情報
が含まれており、したがって、この変化率は、前記二つ
の時点の間に被検材が受けた繰り返し応力の作用による
疲労に対する評価の指標となる。
As described above, in the present invention, the X-ray diffraction intensity at a predetermined diffraction angle can be measured by irradiating the test material with X-rays by using, for example, an X-ray diffraction probe. The test material does not have to be sampled and is not destroyed by the measurement. X for this test material
The line diffraction measurement is performed, for example, at an initial time as a structural material and at a time after being subjected to a certain amount of repeated stress by the subsequent use, or at two different times during use. In any case, the change rate of the diffracted X-ray intensity at the diffraction angle of the test material measured at the two time points includes information corresponding to the change in the crystal structure in the test material before the crack occurs. Therefore, this rate of change is an index for evaluating fatigue due to the effect of the repeated stress applied to the test material between the two time points.

【0013】一方、被検材と同じ材質の基準片には、曲
げ、引張圧縮、捩り、衝撃などの被検材の使用環境に予
測される種類の繰り返し応力の少なくとも一種が作用さ
れ、その応力の作用した積算量に対する所定の回折角の
回折X線強度の関係が疲労特性曲線として求められる。
On the other hand, a reference piece made of the same material as the test material is subjected to at least one of repetitive stresses of a type expected in the use environment of the test material, such as bending, tensile compression, torsion, and impact. Is obtained as a fatigue characteristic curve.

【0014】本発明では、この基準片について求められ
た疲労特性曲線を指標として被検材の疲労度を評価する
ものである。即ち、或る種類の繰り返し応力の積算量に
対する特定の回折X線強度の変化を示す疲労特性曲線を
被検材と対応する材質の基準片について求めておき、被
検材について計測された対応する回折X線強度の応力作
用積算量による変化率を、この疲労特性曲線と照合し、
例えば変化率の正負の判定により、被検材を破壊するこ
となく、計測時の被検材の疲労度を評価し、その疲労に
関する余寿命を求める。
In the present invention, the degree of fatigue of the test material is evaluated using the fatigue characteristic curve obtained for the reference piece as an index. That is, a fatigue characteristic curve showing a change in the specific diffraction X-ray intensity with respect to an integrated amount of a certain kind of repetitive stress is obtained for a reference piece of a material corresponding to the test material, and the corresponding corresponding value measured for the test material is obtained. The rate of change of the diffracted X-ray intensity by the integrated amount of stress action is compared with this fatigue characteristic curve,
For example, by judging whether the change rate is positive or negative, the degree of fatigue of the test material at the time of measurement is evaluated without destroying the test material, and the remaining life related to the fatigue is obtained.

【0015】前述の疲労特性曲線は、例えば横軸を繰り
返し応力の作用回数などの応力積算量、縦軸を回折X線
強度で表した直交座標系における曲線として求めること
ができ、この場合、該曲線は、被検材の材質,加工度,
疲労条件等、種々の因子に関係して異なるが、予め必要
な疲労条件等で基準化した座標軸スケールにより疲労特
性曲線を求めておけば、被検材の材質,加工度,疲労条
件等が異なる場合についても疲労特性曲線は一本の曲線
で表わすことが可能となる場合がある。このためには、
例えば、疲労特性曲線の直交座標系において、横軸の応
力積算量は、基準片が疲労破壊に到ったときの応力積算
量との比で表すことができ、また縦軸の回折X線強度
は、繰り返し応力が未作用の基準片について計測された
初期の回折X線強度との比で表すことができる。このよ
うな基準化により、被検材の材質,加工度,疲労条件等
が異なる場合についても、共通の一つの疲労特性曲線か
ら被検材の疲労度の評価及び余寿命の推定を行うことが
できる。
The above-mentioned fatigue characteristic curve can be obtained as a curve in an orthogonal coordinate system in which the horizontal axis represents the amount of integrated stress such as the number of times of repeated stress application, and the vertical axis represents the diffraction X-ray intensity. The curves are the material of the test material,
Although it differs depending on various factors such as fatigue conditions, if the fatigue characteristic curve is obtained in advance on a coordinate axis scale standardized based on necessary fatigue conditions, etc., the material of the test material, the degree of work, the fatigue conditions, etc., differ. In some cases, the fatigue characteristic curve may be represented by a single curve. To do this,
For example, in the orthogonal coordinate system of the fatigue characteristic curve, the stress integrated amount on the horizontal axis can be represented by a ratio with the stress integrated amount when the reference piece reaches fatigue failure, and the diffraction X-ray intensity on the vertical axis. Can be expressed as a ratio to the initial diffraction X-ray intensity measured for the reference piece on which the repetitive stress is not applied. With this standardization, it is possible to evaluate the fatigue degree of the test material and estimate the remaining life from one common fatigue characteristic curve even when the material of the test material, the working degree, the fatigue condition, etc. are different. it can.

【0016】以上のように、回折X線強度の測定結果に
は被検材の結晶構造などの内部の種々の情報が含まれる
ているため、疲労に伴う回折X線強度の変化を測定する
ことにより、疲労の評価が可能である。このようにして
本発明によれば、マイクロクラックが発生する以前の金
属等の被検材の疲労損傷を非破壊測定手法による測定結
果から評価することができるものである。
As described above, since the measurement result of the diffraction X-ray intensity includes various internal information such as the crystal structure of the test material, it is necessary to measure the change in the diffraction X-ray intensity due to fatigue. Allows evaluation of fatigue. As described above, according to the present invention, fatigue damage of a test material such as a metal before a microcrack occurs can be evaluated from a measurement result by a nondestructive measurement method.

【0017】本発明は、一般的な機械部品などを始めと
して、建築、構築、航空機、船舶、自動車、原子炉およ
びそれらの付帯設備などの各種構造材料の疲労度の評価
に好適であり、対象材料も、ステンレス、ステンレス合
金等の金属はもとより、一般的な結晶構造を有するもの
であれば、いずれにも適用可能である。
The present invention is suitable for evaluating the degree of fatigue of various structural materials such as general mechanical parts, construction, construction, aircraft, ships, automobiles, nuclear reactors and their auxiliary equipment. The material can be applied not only to metals such as stainless steel and stainless alloys but also to any other materials having a general crystal structure.

【0018】本発明の上述およびそれ以外の目的、特徴
および利点を明確にするために、限定を意図しない好ま
しい実施例について添付図面と共に詳細に説明すれば以
下の通りである。
In order to clarify the above and other objects, features and advantages of the present invention, preferred embodiments which are not intended to be limited are described in detail below with reference to the accompanying drawings.

【0019】[0019]

【実施例】図1において、測定対象物11は被検材また
は基準片であり、対象物11の表面の測定対象部位にX
線源12からの入射X線13が入射角θで照射される。
照射部位からは回折角θの回折X線14が発生し、これ
がX線検出器15に入射する。検出器15は、図示しな
い計測信号処理装置に検出信号を与え、これにより前記
照射部位からの前記回折角θの回折X線のピーク値が測
定位置データと共に入手される。
In FIG. 1, an object 11 to be measured is a test material or a reference piece, and an X-ray is applied to a portion of the surface of the object 11 to be measured.
An incident X-ray 13 from a radiation source 12 is emitted at an incident angle θ.
A diffracted X-ray 14 having a diffraction angle θ is generated from the irradiated portion, and is incident on an X-ray detector 15. The detector 15 supplies a detection signal to a measurement signal processing device (not shown), whereby the peak value of the diffracted X-ray at the diffraction angle θ from the irradiation site is obtained together with the measurement position data.

【0020】本実施例に従って行われる主な計測の具体
的な操作は以下の各プロセス1〜6を含んでいる。
The specific operations of the main measurement performed in accordance with the present embodiment include the following processes 1 to 6.

【0021】プロセス1:疲労損傷評価を実施する対象
の被検材に対応する材質の基準片を準備し、この基準片
に対して、曲げ、引張圧縮、捩り、衝撃などの被検材の
使用環境に予測される種類の繰り返し応力の少なくとも
一種が作用され、作用させた繰り返し応力の或る積算量
において、特定の回折角のX線回折測定により回折X線
強度のピーク値が測定される。前記積算量は、例えば曲
げ回数等の応力作用回数で代表される。
Process 1: Prepare a reference piece of a material corresponding to the test material to be subjected to the fatigue damage evaluation, and use the test piece such as bending, tensile compression, torsion, and impact on the reference piece. At least one kind of repetitive stress of the kind expected in the environment is applied, and at a certain integrated amount of the applied repetitive stress, the peak value of the diffraction X-ray intensity is measured by X-ray diffraction measurement at a specific diffraction angle. The integrated amount is represented by, for example, the number of times of stress such as the number of times of bending.

【0022】プロセス2:得られた回折X線のピーク強
度(ピーク高さ又はピーク面積)とそのときの応力作用
回数とが直交座標系上にプロットされる。尚、この操作
は、例えば測定装置に付設されたコンピュータ内でのデ
ータ処理によって行われても良い。
Process 2: The peak intensity (peak height or peak area) of the obtained diffracted X-ray and the number of times of the stress at that time are plotted on a rectangular coordinate system. This operation may be performed by, for example, data processing in a computer attached to the measuring device.

【0023】プロセス3:前述のプロセス1と2を異な
る応力作用回数毎に繰り返すことにより、応力作用回数
に対する回折X線強度の関係を表す特性グラフ(疲労損
傷特性曲線)を得る。図2に得られた疲労特性曲線の一
例を示し、図3に基準片の形状寸法の一例を示す。
Process 3: By repeating the above processes 1 and 2 for each different number of times of stress action, a characteristic graph (fatigue damage characteristic curve) showing the relationship between the number of times of stress action and the intensity of diffracted X-rays is obtained. FIG. 2 shows an example of the obtained fatigue characteristic curve, and FIG. 3 shows an example of the shape and size of the reference piece.

【0024】プロセス4:被検材に対してプロセス1と
同様のX線回折測定を行って第1の回折X線強度の値を
得る。
Process 4: The same X-ray diffraction measurement as in Process 1 is performed on the test material to obtain a first X-ray diffraction value.

【0025】プロセス5:前記被検材について、使用環
境下における或る時間の繰り返し応力の作用を受けた後
のX線回折測定をプロセス4と同様に行って第2の回折
X線強度の値を得る。
Process 5: X-ray diffraction measurement of the test material after subjecting it to repeated stress for a certain period of time in a use environment in the same manner as in Process 4 to obtain a second diffraction X-ray intensity value Get.

【0026】プロセス6:プロセス4で得られた第1の
値とプロセス5で得られた第2の値との比から、当該被
検材について回折X線強度の変化率を求める。
Process 6: From the ratio between the first value obtained in Process 4 and the second value obtained in Process 5, the rate of change of the diffraction X-ray intensity for the test sample is determined.

【0027】プロセス6で得られた変化率と、プロセス
3で得られた疲労特性曲線とに基づき、被検材の疲労度
を把握することが可能となる。
Based on the rate of change obtained in the process 6 and the fatigue characteristic curve obtained in the process 3, it is possible to grasp the degree of fatigue of the test material.

【0028】疲労度を求めるには、例えば次のようにし
て行う。
The degree of fatigue is determined, for example, as follows.

【0029】図2において、横軸Nは基準片に対する応
力作用回数であり、縦軸Iは回折X線強度である。応力
作用回数NA,NB の時にそれぞれ測定された回折X線強
度をそれぞれIA,IB とすると、その間の応力作用回数
に対する回折X線強度の変化率(ΔI/ΔN)は次式の
ようになる。
In FIG. 2, the horizontal axis N represents the number of times of stress acting on the reference piece, and the vertical axis I represents the diffraction X-ray intensity. Stress acting number N A, N respectively I A respectively measured diffraction X-ray intensity at the time of B, and the I B, the change rate of the diffracted X-ray intensity to stress action times of between (ΔI / ΔN) is of the formula Become like

【0030】 ΔI/ΔN=(IB −IA )/(NB −NAThe ΔI / ΔN = (I B -I A) / (N B -N A)

【0031】この変化率は、例えば図2では、最低の回
折X線強度を示す作用回数NC 以前では負、作用回数N
C では0、作用回数NC 以降では正となる。
For example, in FIG. 2, the rate of change is negative before the number of times of action N C showing the lowest diffraction X-ray intensity, and the number of times of action N
It is 0 at C and positive after the number of actions N C.

【0032】故にプロセス6で得られた変化率(ΔI/
ΔN)の少なくとも正負を判定すれば、その被検材の疲
労度が、基準片について求められた疲労特性曲線の前記
最低の回折X線強度を示す作用回数NC の前または後の
何れの領域にあるかが解り、この疲労特性曲線から、疲
労破壊時の応力作用時間Nf に至るまでの余寿命(疲労
度)がかなりの高精度で予測可能である。もちろん、被
検材としての個々の構造材料の材質等に応じて疲労特性
曲線の疲労破壊点に到る前兆は、例えば変化率の大きさ
などにも現れるので、これによってその材料の余寿命を
評価することも可能である。
Therefore, the rate of change (ΔI /
ΔN), if at least positive or negative is determined, the fatigue degree of the test material is either before or after the number of times of action N C indicating the lowest diffraction X-ray intensity of the fatigue characteristic curve obtained for the reference piece. It knows whether the found from the fatigue curve, remaining life (fatigue) up to the stress acting time for fatigue failure N f is predictable with considerable precision. Of course, the precursor to the fatigue failure point of the fatigue characteristic curve according to the material of the individual structural material as the test material also appears in, for example, the magnitude of the change rate, so that the remaining life of the material can be reduced. It is also possible to evaluate.

【0033】尚、実際に被検材について疲労度の評価を
実施する間隔(ΔN)については、対応する基準片につ
いて予め求めた疲労特性曲線から必要な間隔を定めるの
がよい。
As for the interval (ΔN) at which the evaluation of the degree of fatigue is actually performed for the test material, it is preferable to determine the required interval from the fatigue characteristic curve obtained in advance for the corresponding reference piece.

【0034】この疲労特性曲線は、被検材の材質,加工
度,疲労条件等により関係するが、予め必要な疲労条件
で疲労特性曲線を基準化しておけば、この基準化された
疲労特性曲線に基づいて、被検材の材質,加工度,疲労
条件等が異なる場合についても、疲労度及び余寿命を求
めることができる。即ち、例えば図2の横軸の応力作用
回数を疲労破壊時の応力作用回数で割った比や、縦軸の
回折X線強度を応力が未作用のときの回折X線強度(初
期値)で割った比を用いることにより、被検材に対する
負荷応力が異なる場合等についても疲労特性曲線は基準
化された一本の特性曲線で間に合わせることが可能であ
る。
The fatigue characteristic curve depends on the material of the test material, the degree of working, the fatigue condition, and the like. If the fatigue characteristic curve is standardized under necessary fatigue conditions in advance, the standardized fatigue characteristic curve is obtained. Based on the above, the degree of fatigue and the remaining life can be obtained even when the material of the test material, the degree of processing, the fatigue conditions, and the like are different. That is, for example, the ratio of the number of times of stress action on the horizontal axis in FIG. 2 divided by the number of times of stress action at the time of fatigue fracture, or the diffraction X-ray intensity on the vertical axis is the diffraction X-ray intensity (initial value) when no stress is applied. By using the divided ratio, the fatigue characteristic curve can be adjusted to one standardized characteristic curve even when the applied stress to the test material is different.

【0035】次に、本発明に従って原子炉構造材の疲労
度を評価した実施例を示す。
Next, an example in which the degree of fatigue of a reactor structural material was evaluated according to the present invention will be described.

【0036】高ニッケルの耐熱合金材(商品名:インコ
ネル718、FCC結晶)からなる原子炉構造材につい
てX線回折測定により疲労度の評価を行った。
The degree of fatigue of a reactor structural material made of a high nickel heat resistant alloy material (trade name: Inconel 718, FCC crystal) was evaluated by X-ray diffraction measurement.

【0037】同一合金材により図3に示す形状寸法の二
本の基準片1を準備した。これらの基準片1に対して、
図4に示す疲労試験装置により繰り返しの回転曲げ応力
を作用させることとした。即ち、この疲労試験装置は、
図4に示すように、それぞれ支点6a,6bで傾動可能
に支持されて向かい合わせに並んだベアリング4a,4
bと、これらベアリングによって回転可能に支持された
2つの回転チャック2a,2bと、一方の回転チャック
2aを回転駆動するモータ5と、両ベアリング間に掴ま
れた基準片1に曲げ応力を作用させる為の荷重を与える
重錘3とを備えている。
Two reference pieces 1 having the same dimensions as those shown in FIG. 3 were prepared from the same alloy material. For these reference pieces 1,
A repetitive rotational bending stress was applied by the fatigue test apparatus shown in FIG. That is, this fatigue test apparatus
As shown in FIG. 4, bearings 4a, 4 supported tiltably at fulcrums 6a, 6b, respectively, are arranged facing each other.
b, two rotating chucks 2a, 2b rotatably supported by these bearings, a motor 5 for rotating one of the rotating chucks 2a, and a bending stress acting on the reference piece 1 gripped between the two bearings. And a weight 3 for applying a load to the vehicle.

【0038】このチャック2a,2bによって基準片1
の両端を掴み、モータ5によって基準片1を回転させな
がら、重錘3によって負荷荷重をかけることにより、一
回転毎に繰り返される回転曲げ応力を基準片1に作用さ
せ、所謂回転曲げによる疲労試験を行った。一方の基準
片に対して重錘による負荷荷重は75kg/mm2、他方の基準
片に対して負荷荷重は80kg/mm2(それぞれ最大評価応力
値)であり、回転の周波数はそれぞれ30Hzである。
The reference piece 1 is held by the chucks 2a and 2b.
By applying a load to the reference piece 1 by rotating the reference piece 1 by the motor 5 while applying a load to the reference piece 1 by rotating the reference piece 1 by the motor 5, a so-called rotary bending fatigue test is performed. Was done. The load applied by the weight to one reference piece is 75 kg / mm 2 , and the load applied to the other reference piece is 80 kg / mm 2 (the maximum evaluation stress value), and the rotation frequency is 30 Hz. .

【0039】X線回折測定は以下のようにして行った。
即ち、X線回折計のX線源に使用したX線管球はCu管
球(モノクロメータ付)であり、励起電子線をCu
(銅)ターゲットに当てて発生させたX線の波長を、グ
ラファイト単結晶のモノクロメータによるスクリーニン
グで揃えた。具体的な管電圧と管電流は40kV及び4
0mAであり、スリットを用いた集中ビーム方式により
試料にX線を照射した。X線回折計の検出側では、照射
部位から発生する回折X線のピークを中心として数deg
の幅についてX線カウンターによる走査を行いながら回
折X線をカウントした。このときのスキャン速度は1.
0 deg/min、サンプリングステップは0.002deg と
した。なお、X線回折測定は、疲労試験中に適時試験片
を疲労試験機から取りはずして実施した。
The X-ray diffraction measurement was performed as follows.
That is, the X-ray tube used for the X-ray source of the X-ray diffractometer is a Cu tube (with a monochromator), and the excitation electron beam is
The wavelength of X-rays generated by irradiating a (copper) target was aligned by screening a graphite single crystal with a monochromator. Specific tube voltage and tube current are 40 kV and 4
The sample was irradiated with X-rays by a focused beam method using a slit at 0 mA. On the detection side of the X-ray diffractometer, a few degrees centered on the peak of the diffracted X-ray generated from the irradiated site
X-rays were counted while scanning with an X-ray counter for the width of. The scanning speed at this time is 1.
0 deg / min and the sampling step were 0.002 deg. In addition, the X-ray diffraction measurement was performed by removing the test piece from the fatigue tester at appropriate times during the fatigue test.

【0040】図5は回転曲げ回数に対する基準片1のF
CC結晶(111)面からの回折X線のピーク高さをプ
ロットした疲労特性線図である。図中、△印は負荷荷重
75kg/mm2での測定結果を示し、□印は負荷荷重80kg
/mm2での測定結果を示す。またI0 は初期値を、Fは疲
労破壊点である。図5のように、何れの負荷荷重の場合
であっても、ピーク高さは疲労破壊前に急減して急増す
るという特徴的な変化を示した。
FIG. 5 shows the F of the reference piece 1 with respect to the number of times of rotation bending.
FIG. 4 is a fatigue characteristic diagram in which the peak height of a diffracted X-ray from the CC crystal (111) plane is plotted. In the figure, the symbol △ indicates the measurement result at a load of 75 kg / mm 2 , and the symbol □ indicates a load of 80 kg / mm 2.
4 shows the measurement results at / mm 2 . I 0 is an initial value, and F is a fatigue fracture point. As shown in FIG. 5, in any case of the applied load, the peak height showed a characteristic change such that it suddenly decreased and increased suddenly before the fatigue fracture.

【0041】図6は、図5の縦軸と横軸を基準化した
(即ち横軸目盛を破壊点の回転曲げ回数NF で割り、縦
軸の目盛を初期値のピーク高さI0 で割った)目盛で表
して校正した線図である。
[0041] FIG. 6 is a vertical axis and the horizontal axis was normalized (i.e. the horizontal axis scale divided by the rotating bending number N F breaking point, peak height I 0 of the initial values the scale of the vertical axis in FIG. 5 FIG. 3 is a diagram that has been calibrated on a scale (divided).

【0042】図5では負荷荷重毎に初期ピーク高さと破
壊点の曲げ回数とが異なって表されているが、前述のよ
うにそれらを基準化することによって、図6に示したよ
うに一本の疲労特性曲線で表わすことが可能である。即
ち、図6では、例えばピーク高さ比(I/I0 )の曲げ
回数比(N/Nf )に対する変化率が0の時、疲労寿命
比は0.75、即ち疲労破壊に到る寿命の75%に達し
ていることがわかる。尚、この例では回折X線のピーク
高さを計測したが、ピーク面積を計測しても同様傾向の
曲線が得られる。
In FIG. 5, the initial peak height and the number of bending at the break point are differently shown for each applied load, but by standardizing them as described above, a single line as shown in FIG. Can be represented by a fatigue characteristic curve of That is, in FIG. 6, when the rate of change of the peak height ratio (I / I 0 ) with respect to the number of bending times (N / Nf) is 0, for example, the fatigue life ratio is 0.75, that is, the life of the fatigue failure fracture. It can be seen that it has reached 75%. In this example, the peak height of the diffracted X-ray was measured, but a curve having the same tendency can be obtained by measuring the peak area.

【0043】実際に原子炉プラント内で使用されている
前記合金からなる構造部品についてX線回折プローブに
より同等の測定条件でX線回折測定を時間間隔をあけて
2回行い、それらの間の回折X線ピーク高さの変化率を
求めたところ負の値が得られた。このことから、この構
造部品の疲労寿命は未だ75%に達していない事がわか
った。
X-ray diffraction measurement was carried out twice on a structural part made of the alloy actually used in a nuclear reactor plant under a similar measuring condition with an X-ray diffraction probe at a time interval, and diffraction between them was performed. When the rate of change of the X-ray peak height was determined, a negative value was obtained. This indicates that the fatigue life of this structural component has not yet reached 75%.

【0044】本発明は主に繰り返し応力の作用による構
造材料の疲労の評価に有用である。しかしながら、例え
ば構造材料のクリープ、熱脆性、放射線照射脆性などに
ついてもX線回折測定によって基準となる履歴特性が得
られれば、同様の手法でその寿命を評価する方法を開発
できるものと考えられる。
The present invention is useful mainly for evaluating the fatigue of a structural material due to the action of repeated stress. However, it is considered that a method for evaluating the life of the structural material by a similar method can be developed if the reference hysteresis characteristics can be obtained by X-ray diffraction measurement for creep, thermal embrittlement, radiation embrittlement, and the like, for example.

【0045】[0045]

【発明の効果】以上のように、本発明によれば、回折X
線強度の測定結果には被検材の結晶構造などの内部の種
々の情報が含まれるているため、疲労に伴う回折X線強
度の変化を測定することにより、疲労の評価が可能であ
る。このようにして本発明によれば、マイクロクラック
が発生する以前の金属等の被検材の疲労損傷を非破壊測
定手法による測定結果から評価することができるもので
ある。
As described above, according to the present invention, diffraction X
Since the measurement results of the line intensity include various internal information such as the crystal structure of the test material, it is possible to evaluate the fatigue by measuring the change in the diffraction X-ray intensity accompanying the fatigue. As described above, according to the present invention, fatigue damage of a test material such as a metal before a microcrack occurs can be evaluated from a measurement result by a nondestructive measurement method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好ましい実施例に従って被検材および
基準片に対して行われるX線回折測定の様子を模式的に
示す説明図である。
FIG. 1 is an explanatory view schematically showing a state of an X-ray diffraction measurement performed on a test material and a reference piece according to a preferred embodiment of the present invention.

【図2】基準片について得られた疲労特性曲線の一例を
示す線図である。
FIG. 2 is a diagram showing an example of a fatigue characteristic curve obtained for a reference piece.

【図3】基準片の外観形状および寸法(単位はmm)の一
例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of the external shape and dimensions (unit: mm) of a reference piece.

【図4】基準片に対して繰り返し応力として回転曲げ応
力を繰り返し作用させるための装置の概要を示す説明図
である。
FIG. 4 is an explanatory view showing an outline of an apparatus for repeatedly applying a rotating bending stress as a repetitive stress to a reference piece.

【図5】回転曲げ応力の作用回数に対して基準片の(1
11)面の回折X線ピーク高さをプロットした線図であ
る。
FIG. 5 shows the reference piece (1
FIG. 11 is a diagram plotting the diffraction X-ray peak height of the 11) plane.

【図6】図5に関して横軸の目盛を破壊に到った応力作
用回数で基準化し、同じく縦軸の目盛を回折X線ピーク
高さの初期値で基準化して示した線図である。
FIG. 6 is a diagram showing the scale of FIG. 5 in which the scale on the horizontal axis is normalized by the number of times of stress applied to breakage, and the scale on the vertical axis is also normalized by the initial value of the diffraction X-ray peak height.

【符号の説明】[Explanation of symbols]

11 測定対象物(被検材または基準片) 12 X線源 13 入射X線 14 回折X線 15 X線検出器 11 Measurement object (test material or reference piece) 12 X-ray source 13 Incident X-ray 14 Diffracted X-ray 15 X-ray detector

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−87849(JP,A) 特開 昭51−20894(JP,A) 特開 平2−165041(JP,A) 特開 平4−66852(JP,A) 特開 平2−136737(JP,A) 特開 昭56−162039(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 23/20 - 23/207 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-56-87849 (JP, A) JP-A-51-20894 (JP, A) JP-A-2-1655041 (JP, A) JP-A-4- 66852 (JP, A) JP-A-2-136737 (JP, A) JP-A-56-162039 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 23/20-23 / 207 JICST file (JOIS)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 構造材料の疲労度を評価するための方法
であって、 被検材と対応する材質の基準片に対して疲労試験を行う
工程と、 前記疲労試験中の複数の時点において前記基準片にX線
を照射して被照射部位から生じる予め定められた回折角
の回折X線の強度を計測する工程と、 この計測結果から前記疲労試験による繰り返し応力の積
算量と前記回折X線強度との関係に相当する疲労特性曲
線を求める工程と、 前記被検材の測定対象部位に前記X線を照射して前記測
定対象部位から生じる前記回折角の回折X線の強度を計
測する工程と、 被検材に対する使用環境下における前記種類の繰り返し
応力の作用を途中に挟む少なくとも二つの時点において
前記被検材について計測された前記回折X線強度間の変
化率を前記損傷特性曲線と照合して被検材の疲労度を求
める工程とを含むことを特徴とする方法。
1. A method for evaluating the degree of fatigue of a structural material, comprising: performing a fatigue test on a reference piece of a material corresponding to a test material; and performing a fatigue test at a plurality of time points during the fatigue test. A step of irradiating the reference piece with X-rays and measuring the intensity of the diffracted X-rays having a predetermined diffraction angle generated from the irradiated portion; and from the measurement results, the integrated amount of the repetitive stress by the fatigue test and the diffracted X-rays A step of obtaining a fatigue characteristic curve corresponding to a relationship with the intensity; and a step of irradiating the measurement target site of the test material with the X-ray and measuring the intensity of the diffraction X-ray having the diffraction angle generated from the measurement target site. And comparing the rate of change between the diffracted X-ray intensities measured for the test material at at least two points in the middle of the action of the type of cyclic stress in the use environment on the test material with the damage characteristic curve. I Method characterized by including the step of determining a degree of fatigue of the material being tested.
【請求項2】 請求項1による方法において、前記疲労
試験において曲げ、引張圧縮、捩り、衝撃などの被検材
の使用環境に予測される予め定められた種類の繰り返し
応力の少なくとも一種を前記被検材と対応する材質の基
準片に作用させることを特徴とする方法。
2. The method according to claim 1, wherein in the fatigue test, at least one of predetermined types of repetitive stresses, such as bending, tensile compression, torsion, and impact, which are expected in an environment in which the test material is used. A method comprising applying a reference piece of a material corresponding to an inspection material.
【請求項3】 請求項2による方法において、前記繰り
返し応力の積算量として応力の作用回数を用いることを
特徴とする方法。
3. The method according to claim 2, wherein the number of applied stresses is used as the integrated amount of the repeated stress.
【請求項4】 請求項1による方法において、前記繰り
返し応力を前記基準片に与え始めてから該基準片が破壊
に至るまでの間の複数の時点において前記基準片にX線
を照射して被照射部位から生じる予め定められた回折角
の回折X線の強度を計測する工程を含むことを特徴とす
る方法。
4. The method according to claim 1, wherein the reference piece is irradiated with X-rays at a plurality of times from when the repetitive stress is applied to the reference piece to when the reference piece is broken. Measuring the intensity of diffracted X-rays from the site at a predetermined diffraction angle.
【請求項5】 請求項1による方法において、前記基準
片または被検材に対する何れかの前記X線回折測定を回
折X線のピーク高さ即ち振幅の計測によって行うことを
特徴とする方法。
5. The method according to claim 1, wherein the X-ray diffraction measurement on either the reference piece or the test material is performed by measuring the peak height or amplitude of the diffracted X-ray.
【請求項6】 請求項1による方法において、前記基準
片または被検材に対する何れかの前記X線回折測定を回
折X線のピーク面積即ちエネルギーの計測によって行う
ことを特徴とする方法。
6. The method according to claim 1, wherein the X-ray diffraction measurement on either the reference piece or the test material is performed by measuring the peak area of the diffracted X-ray, that is, the energy.
JP05037291A 1992-02-05 1993-02-03 How to evaluate the fatigue of structural materials Expired - Lifetime JP3091856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05037291A JP3091856B2 (en) 1992-02-05 1993-02-03 How to evaluate the fatigue of structural materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4771092 1992-02-05
JP4-47710 1992-02-05
JP05037291A JP3091856B2 (en) 1992-02-05 1993-02-03 How to evaluate the fatigue of structural materials

Publications (2)

Publication Number Publication Date
JPH0611464A JPH0611464A (en) 1994-01-21
JP3091856B2 true JP3091856B2 (en) 2000-09-25

Family

ID=26376431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05037291A Expired - Lifetime JP3091856B2 (en) 1992-02-05 1993-02-03 How to evaluate the fatigue of structural materials

Country Status (1)

Country Link
JP (1) JP3091856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075999U (en) * 1993-06-30 1995-01-27 株式会社三ツ葉電機製作所 Opposing wiper device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078320B2 (en) 2004-02-27 2008-04-23 三菱重工業株式会社 Poppet valve device and electronically controlled fuel injection device including the same
JP5225705B2 (en) * 2008-02-21 2013-07-03 新日鐵住金株式会社 Fatigue testing machine and fatigue strength evaluation method
CN110763758B (en) * 2019-09-12 2022-06-28 中国航发北京航空材料研究院 Method for determining relation between defects and fatigue performance based on nondestructive testing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075999U (en) * 1993-06-30 1995-01-27 株式会社三ツ葉電機製作所 Opposing wiper device

Also Published As

Publication number Publication date
JPH0611464A (en) 1994-01-21

Similar Documents

Publication Publication Date Title
Ditchburn et al. NDT of welds: state of the art
EP1701157B1 (en) Eddy current inspection method and system using multifrequency excitation and multifrequency phase analysis
Komura et al. Crack detection and sizing technique by ultrasonic and electromagnetic methods
Kong et al. A review of non-destructive testing techniques for the in-situ investigation of fretting fatigue cracks
US5272746A (en) Method of evaluating a degree of fatigue in a structural material
US4265120A (en) Fatigue detection utilizing acoustic harmonics
Panetta et al. Ultrasonic backscattering measurements of grain size in metal alloys
JPH0621783B2 (en) Fatigue / remaining life evaluation method for machine parts
Livings et al. Nondestructive evaluation of additive manufactured parts using process compensated resonance testing
JP3091856B2 (en) How to evaluate the fatigue of structural materials
JPS61175554A (en) Nondestructive inspection method of metallic pipe using x-ray diffraction
Raj et al. NDE methodologies for characterisation of defects, stresses and microstructures in pressure vessels and pipes
Rokhlin et al. Nondestructive sizing and localization of internal microcracks in fatigue samples
JP3148869B2 (en) Industrial plant inspection and evaluation method and apparatus
JP2794623B2 (en) Method for evaluating the degree of fatigue damage of materials
JPH11173970A (en) System for evaluation of sensitization degree of material by accelerated stress corrosion crack test
Reverdy et al. Inspection of spot welds using an ultrasonic phased array
Kenderian et al. A general overview of some nondestructive evaluation (NDE) techniques for materials characterization
Hiser et al. Preliminary results on ultrasonic attenuation detection of neutron irradiation embrittlement of nuclear reactor steel
JP2002286702A (en) Macro-segregation evaluating method for steel material
Allen et al. FROM MICROSTRUCTURAL ASSESSMENT TO MONITORING COMPONENT PERFORMANCE–A REVIEW RELATING DIFFERENT NON-DESTRUCTIVE STUDIESFROM MICROSTRUCTURAL ASSESSMENT TO MONITORING COMPONENT PERFORMANCE–A REVIEW RELATING DIFFERENT NON-DESTRUCTIVE STUDIESFROM MICROSTRUCTURAL ASSESSMENT TO MONITORING COMPONENT PERFORMANCE–A REVIEW RELATING DIFFERENT NON-DESTRUCTIVE STUDIESFROM MICROSTRUCTURAL ASSESSMENT TO MONITORING COMPONENT PERFORMANCE–A REVIEW RELATING DIFFERENT NON-DESTRUCTIVE STUDIES
Orner Brittle Fracture Prevention Through Nondestructive Testing
Smith Evaluation of n. d. t. techniques for abrasive wheels
Duke Jr et al. Predicting Damage Development in Composite Materials Based on Acousto-Ultrasonic Evaluation
CN116380949A (en) Method for detecting depth distribution of residual stress of material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000606

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 13