JPH0791631B2 - Stabilized ultrafine particle film forming equipment - Google Patents

Stabilized ultrafine particle film forming equipment

Info

Publication number
JPH0791631B2
JPH0791631B2 JP63219143A JP21914388A JPH0791631B2 JP H0791631 B2 JPH0791631 B2 JP H0791631B2 JP 63219143 A JP63219143 A JP 63219143A JP 21914388 A JP21914388 A JP 21914388A JP H0791631 B2 JPH0791631 B2 JP H0791631B2
Authority
JP
Japan
Prior art keywords
film forming
chamber
ultrafine particle
ultrafine
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63219143A
Other languages
Japanese (ja)
Other versions
JPH0270058A (en
Inventor
桂 塚田
智 岡田
和仁 小倉
英樹 豊玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP63219143A priority Critical patent/JPH0791631B2/en
Publication of JPH0270058A publication Critical patent/JPH0270058A/en
Publication of JPH0791631B2 publication Critical patent/JPH0791631B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、対象物の表面に超微粒子の被膜等を形成する
超微粒子膜形成装置に関し、特に超微粒子生成室から膜
形成室に圧力差を用いて超微粒子を搬送する超微粒子膜
形成装置に関する。
Description: TECHNICAL FIELD The present invention relates to an ultrafine particle film forming apparatus for forming a film of ultrafine particles on the surface of an object, and particularly to a pressure difference from the ultrafine particle generating chamber to the film forming chamber. The present invention relates to an ultrafine particle film forming apparatus that conveys ultrafine particles by using.

[従来の技術] ガラス板や金属板のような被吸着物の表面に超微粒子膜
を形成するための装置として、たとえば特開昭60−1069
64号公報に開示されているものを挙げることができる。
[Prior Art] An apparatus for forming an ultrafine particle film on the surface of an object to be adsorbed such as a glass plate or a metal plate is disclosed in, for example, JP-A-60-1069.
Those disclosed in Japanese Patent No. 64 can be mentioned.

第3図にこの種の従来技術による超微粒子膜形成装置を
示す。超微粒子膜形成装置は超微粒子生成室31と膜形成
室32を備える。
FIG. 3 shows an ultrafine particle film forming apparatus according to this type of prior art. The ultrafine particle film forming apparatus includes an ultrafine particle generating chamber 31 and a film forming chamber 32.

超微粒子生成室31には、不活性ガス等の搬送(キャリ
ア)ガス兼雰囲気ガスを提供するガス源33がバルブ36を
介して接続され、加熱用電源34に接続された蒸発原料を
収容するるつぼ35が配設されている。
A gas source 33 for supplying a carrier (carrier) gas such as an inert gas and an atmospheric gas is connected to the ultrafine particle generation chamber 31 via a valve 36, and a crucible for containing an evaporation material connected to a heating power source 34. 35 are provided.

膜形成室32には表面に超微粒子膜42が形成される基板37
が移動ステージ38上に収容されている。移動ステージ38
はモータ等の駆動系39によって駆動される。
The film forming chamber 32 has a substrate 37 on which an ultrafine particle film 42 is formed.
Are housed on the moving stage 38. Moving stage 38
Is driven by a drive system 39 such as a motor.

超微粒子生成室31と膜形成室32には高真空(10-5Torr程
度以上)に排気する排気系46,47が真空バルブ48,49を介
して接続されている。
The ultrafine particle generation chamber 31 and the film formation chamber 32 are connected to exhaust systems 46 and 47 for exhausting to high vacuum (10 −5 Torr or more) via vacuum valves 48 and 49.

この超微粒子生成室31と膜形成室32はガス搬送管構造40
を介して連通されている。ガス搬送管構造40は、二方コ
ックのようなバルブ43で接続されたパイプ44パイプ45と
を有する。膜形成室32内のパイプ45の端部には基板に向
けて超微粒子を吹き付けるスプレーノズル41が接続され
ている。
The ultrafine particle generation chamber 31 and the film formation chamber 32 are provided with a gas transfer pipe structure 40.
Are communicated via. The gas transfer pipe structure 40 has a pipe 44 and a pipe 45 connected by a valve 43 such as a two-way cock. A spray nozzle 41 for spraying ultrafine particles toward the substrate is connected to the end of the pipe 45 in the film forming chamber 32.

上述の超微粒子膜形成装置において、超微粒子生成室31
と膜形成室32とを高真空に排気し、その後超微粒子生成
室31内に雰囲気ガスとして不活性ガス(ヘリウムHe、ア
ルゴンAr等)を数十ないし数百Torr導入する。
In the above ultrafine particle film forming apparatus, the ultrafine particle generating chamber 31
The film forming chamber 32 and the film forming chamber 32 are evacuated to a high vacuum, and then several tens to several hundreds Torr of an inert gas (helium He, argon Ar, etc.) is introduced into the ultrafine particle generation chamber 31 as an atmospheric gas.

この雰囲気ガスはバルブ43を開けることによって膜形成
室32にも流入する。膜形成室32の真空度(圧力)は真空
排気系46によって0.1〜十数Torrに保たれる。
This atmosphere gas also flows into the film forming chamber 32 by opening the valve 43. The vacuum degree (pressure) of the film forming chamber 32 is maintained at 0.1 to several tens Torr by the vacuum exhaust system 46.

雰囲気ガス導入後、るつぼ35内に収容された原料を抵抗
加熱等によって加熱し、雰囲気ガス中に蒸発させる。る
つぼ35から蒸発した原料原子が雰囲気ガス分子と衝突し
つつ次第に成長し、超微粒子が形成される。バルブ43が
開いていると、数十ないし数百Torrの比較的高圧力(低
真空)に保たれた超微粒子生成室31から0.1〜十数Torr
の比較的低圧力(高真空)に保たれた膜形成室32に雰囲
気ガスが圧力差によってガス搬送管構造40を通って送給
される。
After introducing the atmospheric gas, the raw material contained in the crucible 35 is heated by resistance heating or the like to be evaporated into the atmospheric gas. The source atoms evaporated from the crucible 35 gradually grow while colliding with the atmospheric gas molecules to form ultrafine particles. When the valve 43 is opened, the ultrafine particle generation chamber 31 kept at a relatively high pressure (low vacuum) of several tens to several hundreds Torr can provide 0.1 to several tens of Torr.
Atmospheric gas is supplied to the film forming chamber 32 kept at a relatively low pressure (high vacuum) through the gas transfer pipe structure 40 due to the pressure difference.

成長した超微粒子は雰囲気ガスとともに膜形成室32に流
れ込み、スプレーノズル41から基板37に向けて吹き付け
られる。このようにして基板37表面に超微粒子膜42が形
成される。
The grown ultrafine particles flow into the film forming chamber 32 together with the atmospheric gas and are sprayed from the spray nozzle 41 toward the substrate 37. In this way, the ultrafine particle film 42 is formed on the surface of the substrate 37.

[発明が解決しようとする課題] 上記の如き、超微粒子膜形成装置によれば、以下の如き
解決が望まれる課題があった。
[Problems to be Solved by the Invention] According to the ultrafine particle film forming apparatus as described above, there are problems to be solved as described below.

超微粒子生成室と膜形成室が搬送管により直接接続され
ているので、蒸発源の蒸発速度が不均一になった場合、
ただちに搬送速度も不均一となり、形成される超微粒子
膜の膜厚が一定にならない。
Since the ultrafine particle generation chamber and the film formation chamber are directly connected by the transfer pipe, if the evaporation rate of the evaporation source becomes uneven,
Immediately, the transport speed also becomes non-uniform, and the formed ultrafine particle film does not have a uniform thickness.

超微粒子生成室と膜形成室を接続している搬送管の曲が
った部分には一時的な詰まりが生じやすい。一時的な詰
まりが生じると搬送速度が不均一となり、形成される超
微粒子膜の膜厚が一定にならない。
Temporary clogging easily occurs in the bent portion of the transfer pipe that connects the ultrafine particle generation chamber and the film formation chamber. If temporary clogging occurs, the transport speed becomes non-uniform, and the formed ultrafine particle film does not have a uniform thickness.

また、搬送中に凝集した超微粒子集団がそのまま成膜さ
れると、大きな粒子が混じることになり、膜の表面が滑
らかにならない。
Further, if a group of ultrafine particles aggregated during transportation is directly formed into a film, large particles are mixed and the surface of the film is not smooth.

本発明の目的は、一定の膜厚の超微粒子膜を形成できる
超微粒子膜形成装置を提供することである。
An object of the present invention is to provide an ultrafine particle film forming apparatus capable of forming an ultrafine particle film having a constant film thickness.

本発明の他の目的は、滑らかな表面を有する超微粒子膜
を形成できる超微粒子膜形成装置を提供することであ
る。
Another object of the present invention is to provide an ultrafine particle film forming apparatus capable of forming an ultrafine particle film having a smooth surface.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の超微粒子膜形成装置は、超微粒子生成室と膜形
成室とこれらを連通するガス搬送管構造とを有する超微
粒子膜形成装置において、ガス搬送管構造が超微粒子生
成室から運ばれてくる超微粒子を搬送する雰囲気ガスを
導入するための導入パイプと、超微粒子を搬送する雰囲
気ガスを膜形成室に送出するための送出パイプと、該導
入パイプおよび送出パイプが接続され、両パイプの体積
より十分大きな体積を有する緩衝室とを備え、前記導入
パイプの開口端が緩衝室下方に設けられると共に前記送
出パイプの開口端が緩衝室上方かつ導入パイプの開口端
から離れた位置に設けられている搬送速度安定化装置を
含む。
The ultrafine particle film forming apparatus of the present invention is an ultrafine particle film forming apparatus having an ultrafine particle generating chamber, a film forming chamber, and a gas conveying pipe structure communicating these, and the gas conveying pipe structure is conveyed from the ultrafine particle generating chamber. Introducing pipe for introducing an atmospheric gas for conveying ultra-fine particles, a delivery pipe for delivering the atmospheric gas for transporting ultra-fine particles to the film forming chamber, the introduction pipe and the delivery pipe are connected, and both pipes are connected. A buffer chamber having a volume sufficiently larger than the volume, the opening end of the introduction pipe is provided below the buffer chamber, and the opening end of the delivery pipe is provided above the buffer chamber and at a position apart from the opening end of the introduction pipe. Including a conveying speed stabilizing device.

また、緩衝室内で、導入パイプと排出パイプとの間に所
定径のメッシュを設ける。
In addition, a mesh having a predetermined diameter is provided between the introduction pipe and the discharge pipe in the buffer chamber.

[作用] 超微粒子生成室と膜形成室とが直接搬送管によって接続
されると、超微粒子生成室の蒸発源の蒸発速度のバラツ
キや、超微粒子生成室と膜形成室を接続している搬送管
の設置の都合等によって生じた屈曲部での一時的なつま
り等により超微粒子搬送速度が不均一になった時、ただ
ちに膜形成室内での超微粒子搬送速度の不均一となって
表れるが、中間に緩衝室を有する搬送速度安定化装置が
あると、上記のような不均一が生じても、搬送速度安定
化装置内に一度搬送ガスを溜めているので、不均一を緩
和させることができ、超微粒子搬送速度が安定する。
[Operation] When the ultrafine particle generation chamber and the film forming chamber are directly connected by a transfer pipe, variations in the evaporation rate of the evaporation source of the ultrafine particle generation chamber and transfer that connects the ultrafine particle generation chamber and the film forming chamber When the ultrafine particle transport speed becomes non-uniform due to temporary clogging at the bent portion caused by the installation of the tube, etc., the ultrafine particle transport speed in the film forming chamber immediately appears to be non-uniform. If there is a transfer speed stabilizer with a buffer chamber in the middle, even if the above non-uniformity occurs, the carrier gas is stored once in the transfer speed stabilizer, so the non-uniformity can be alleviated. The ultrafine particle conveying speed becomes stable.

また超微粒子の生成中や搬送中に超微粒子が凝集して大
きな2次粒子ができても送出パイプは導入パイプより上
方に一定距離以上離れているので膜形成室には供給され
にくい。
Further, even if the ultrafine particles agglomerate to form large secondary particles during the generation or transportation of the ultrafine particles, the delivery pipe is separated from the introduction pipe by a certain distance or more, and thus it is difficult to supply the ultrafine particles to the film forming chamber.

さらに、緩衝室内に所定径のメッシュを設けることによ
って一定の径以上の2次粒子は通過しないようにでき
る。
Further, by providing a mesh having a predetermined diameter in the buffer chamber, it is possible to prevent secondary particles having a diameter larger than a certain value from passing through.

[実施例] 第1図は本発明の実施例による超微粒子膜形成装置を示
す。超微粒子膜形成装置は超微粒子生成室1と膜形成室
2とガス搬送管構造10とを備える。
[Embodiment] FIG. 1 shows an ultrafine particle film forming apparatus according to an embodiment of the present invention. The ultrafine particle film forming apparatus includes an ultrafine particle generating chamber 1, a film forming chamber 2, and a gas transfer pipe structure 10.

超微粒子生成室1は、不活性ガス等のキャリアガス兼雰
囲気ガスを提供するガス源3にバルブ6を介して接続さ
れ、加熱用電源4に接続され、蒸発原料を収容するるつ
ぼ5が配設されている。
The ultrafine particle generation chamber 1 is connected to a gas source 3 for supplying an atmosphere gas that also serves as a carrier gas such as an inert gas through a valve 6, a heating power source 4, and a crucible 5 for containing an evaporation material. Has been done.

膜形成室2には移動ステージ8が配設されている。この
移動ステージ8は電動モータの如き駆動源9によって駆
動されるようになっている。この移動ステージ8の上面
には、ガラス板や金属板の如き基板7が載置される。
A moving stage 8 is arranged in the film forming chamber 2. The moving stage 8 is driven by a driving source 9 such as an electric motor. A substrate 7 such as a glass plate or a metal plate is placed on the upper surface of the moving stage 8.

超微粒子生成室1と膜形成室2には高真空(10-5Torr程
度以上)の真空排気装置22,24が真空バルブ26,28を介し
て接続されている。
High-vacuum (about 10 −5 Torr or more) vacuum exhaust devices 22, 24 are connected to the ultrafine particle generation chamber 1 and the film formation chamber 2 via vacuum valves 26, 28.

この超微粒子生成室1と膜形成室2はガス搬送管構造10
を介して連通されている。ガス搬送管構造10は搬送速度
を安定化させるための気密容器から成る緩衝室17を有す
る。超微粒子生成室1と緩衝室17の間は二方コックのよ
うなバルブ13で接続されたパイプ14と12とで連通されて
いる。超微粒子生成室1内のパイプ14の端部はるつぼ5
の上に配置され、超微粒子を導入し、緩衝室17内へ供給
する。緩衝室17と膜形成室2との間はパイプ15で連通さ
れている。膜形成室2内のパイプ15の端部には、基板に
向けて超微粒子を吹き付けるスプレーノズル11が備えら
れている。
The ultrafine particle generating chamber 1 and the film forming chamber 2 are provided with a gas transfer pipe structure 10
Are communicated via. The gas transfer pipe structure 10 has a buffer chamber 17 formed of an airtight container for stabilizing the transfer speed. The ultrafine particle generating chamber 1 and the buffer chamber 17 are connected by pipes 14 and 12 connected by a valve 13 such as a two-way cock. The end of the pipe 14 in the ultrafine particle generation chamber 1 has a crucible 5
Placed on the upper part of the column, ultrafine particles are introduced and supplied into the buffer chamber 17. A pipe 15 communicates between the buffer chamber 17 and the film forming chamber 2. A spray nozzle 11 for spraying ultrafine particles toward the substrate is provided at the end of the pipe 15 in the film forming chamber 2.

第2図(A),(B)を参照して、緩衝室17の構成につ
いて、より詳細な説明をする。
The configuration of the buffer chamber 17 will be described in more detail with reference to FIGS. 2 (A) and 2 (B).

第2図(A)において、気密容器から成る緩衝室17には
導入パイプ12と送出パイプ15とが接続されている。導入
パイプ12の開口端は緩衝室17の下方に設定されている。
送出パイプ15の開口端は、導入パイプ12の開口端から所
定距離以上離れ、上方に設定されている。緩衝室17の体
積は導入パイプ12、送出パイプ15の体積と比べて十分大
きく設定されている。蒸発源の蒸発速度の変動や、パイ
プ内の一時的な詰まりなどにより、超微粒子の搬送速度
が不均一になっても、緩衝室17の体積が十分大きいので
変動が吸収され搬送速度が安定化するようにする。
In FIG. 2 (A), an introduction pipe 12 and a delivery pipe 15 are connected to a buffer chamber 17 formed of an airtight container. The open end of the introduction pipe 12 is set below the buffer chamber 17.
The open end of the delivery pipe 15 is set above the open end of the introduction pipe 12 by a predetermined distance or more. The volume of the buffer chamber 17 is set sufficiently larger than the volumes of the introduction pipe 12 and the delivery pipe 15. Even if the transport speed of ultrafine particles becomes uneven due to fluctuations in the evaporation rate of the evaporation source or temporary clogging of the pipe, the volume is sufficiently large in the buffer chamber 17 to absorb the fluctuations and stabilize the transportation speed. To do so.

また、超微粒子が凝集して大きな2次粒子ができても送
出パイプ15は導入パイプ12より上方に一定距離以上離れ
ているので膜形成室2には供給されにくい。
Further, even if the ultrafine particles aggregate to form large secondary particles, the delivery pipe 15 is separated from the introduction pipe 12 by a certain distance or more, so that it is difficult to supply the delivery pipe 15 to the film forming chamber 2.

第2図(B)は、この様な大径の2次粒子をより効果的
に防止する構造を示す。導入パイプ12と送出パイプ15の
間に所定メッシュ径のメッシュ18を設け、導入パイプ12
から大径の超微粒子集合が排出されても、その通過を防
止して、送出パイプ15には導入されないようにしてい
る。
FIG. 2 (B) shows a structure that more effectively prevents such large secondary particles. A mesh 18 having a predetermined mesh diameter is provided between the introduction pipe 12 and the delivery pipe 15, and the introduction pipe 12
Even if a large-diameter aggregate of ultrafine particles is discharged from the above, it is prevented from passing through and is not introduced into the delivery pipe 15.

以下、超微粒子の形成を説明する。The formation of ultrafine particles will be described below.

上述の超微粒子膜形成装置において、超微粒子生成室1
と膜形成室2とを高真空に排気し、その後超微粒子生成
室1に雰囲気ガスとして不活性ガス(ヘリウムHe、アル
ゴンAr等)を数十ないし数百Torr導入する。この雰囲気
ガスはバルブ13を開けることによって緩衝室17、膜形成
室2にも流入する。膜形成室2の真空度(圧力)は真空
排気径24によって0.1〜十数Torrに保たれる。
In the above ultrafine particle film forming apparatus, the ultrafine particle generating chamber 1
The film forming chamber 2 and the film forming chamber 2 are evacuated to a high vacuum, and then several tens to several hundreds of Torr of an inert gas (helium He, argon Ar, etc.) is introduced into the ultrafine particle generation chamber 1 as an atmospheric gas. This atmosphere gas also flows into the buffer chamber 17 and the film forming chamber 2 by opening the valve 13. The degree of vacuum (pressure) in the film forming chamber 2 is kept at 0.1 to over ten Torr by the vacuum exhaust diameter 24.

雰囲気ガス導入後、抵抗加熱等によってるつぼ5を加熱
し、るつぼ5内に収容された原料を雰囲気ガス中に蒸発
させる。このとき、るつぼ5周辺の雰囲気ガスも暖めら
れ、蒸発した蒸気と共に、るつぼ5から上方に上がる上
昇気流を作る。るつぼ5から蒸発した原料原子は上昇気
流内で雰囲気ガス分子と衝突しつつ次第に成長し、超微
粒子が形成される。
After introducing the atmospheric gas, the crucible 5 is heated by resistance heating or the like to evaporate the raw material contained in the crucible 5 into the atmospheric gas. At this time, the atmospheric gas around the crucible 5 is also warmed, and together with the vaporized vapor, an ascending air current rising upward from the crucible 5 is created. The raw material atoms evaporated from the crucible 5 gradually grow while colliding with the atmospheric gas molecules in the ascending airflow to form ultrafine particles.

成長した超微粒子は雰囲気ガスとともにガス搬送管構造
10のパイプ14に送り込まれる。超微粒子生成室1と膜形
成室2との間には圧力差が形成されているので、雰囲気
ガスは圧力(真空度)が数十ないし数百Torrの超微粒子
生成室1からガス搬送管構造10を通って圧力(真空度)
が0.1〜十数Torr程度の膜形成室2内にと送給される。
The ultrafine particles that have grown together with the atmospheric gas have a gas transfer tube structure
It is sent to 10 pipes 14. Since a pressure difference is formed between the ultrafine particle generation chamber 1 and the film formation chamber 2, the atmospheric gas has a pressure (vacuum degree) of several tens to several hundred Torr from the ultrafine particle generation chamber 1 to the gas transfer pipe structure. Pressure through 10 (vacuum degree)
Is sent to the inside of the film forming chamber 2 having a pressure of about 0.1 to several tens Torr.

この途中で体積の大きな緩衝室17を通るので、入力側に
変動を生じても送出パイプ15の搬送速度には直ちには表
れない。緩衝室17が一定時間分の搬送ガスを溜めること
により、変動を平滑化している。ガス搬送管構造10の他
端には、内部断面を絞ったスプレーノズル11が設けられ
ており、超微粒子はスプレーノズル11から基板7に向け
て吹き付けられる。このようにして基板7表面に超微粒
子膜16が形成される。
Since it passes through the buffer chamber 17 having a large volume in the middle of the process, even if a change occurs on the input side, it does not immediately appear in the transport speed of the delivery pipe 15. The buffer chamber 17 stores carrier gas for a certain period of time to smooth the fluctuation. A spray nozzle 11 having a narrowed inner cross section is provided at the other end of the gas transfer pipe structure 10, and ultrafine particles are sprayed from the spray nozzle 11 toward the substrate 7. In this way, the ultrafine particle film 16 is formed on the surface of the substrate 7.

比較例 本発明の例と従来技術の例とを比較した。第1図の構成
で第2図(B)の構成の緩衝室を用いて本発明の例と
し、緩衝室を外して直接超微粒子生成室と膜形成室とを
接続して従来技術の例とした。
Comparative Example An example of the present invention was compared with an example of the prior art. An example of the present invention using the buffer chamber having the configuration of FIG. 2 (B) in the configuration of FIG. 1 and an example of the prior art by removing the buffer chamber and directly connecting the ultrafine particle generation chamber and the film forming chamber did.

超微粒子生成室1は直径約500mm、高さ500〜600mmのベ
ルジャーで構成し、膜形成室2は直径約250mm,高さ約30
0mmのベルジャーで構成した。超微粒子生成室1と膜形
成室2との間を (a)第3図の構成にように、直接内径約6.5mm(1/4イ
ンチ)の搬送管40で接続した場合と、 (b)第1図、第2図(B)にように、直径約30mm、高
さ約30mm、内部にステンレス(SUS)製400番メッシュを
備えた緩衝室17を介して接続した場合と を比較した。
The ultrafine particle generating chamber 1 is composed of a bell jar having a diameter of about 500 mm and a height of 500 to 600 mm, and the film forming chamber 2 has a diameter of about 250 mm and a height of about 30.
It consisted of a 0 mm bell jar. The case where the ultrafine particle generation chamber 1 and the film formation chamber 2 are directly connected by a transfer pipe 40 having an inner diameter of about 6.5 mm (1/4 inch) as shown in the configuration of (a) FIG. As shown in FIG. 1 and FIG. 2 (B), a comparison was made with a case where the diameter was about 30 mm, the height was about 30 mm, and the inside was connected through a buffer chamber 17 having a stainless (SUS) No. 400 mesh.

雰囲気ガスとしてアルゴンArを用い、超微粒子生成室1
内部を約100Torr、膜形成室2内部を5〜10Torrになる
ように真空排気系のバルブを調整し、厚さ50〜100μm
の超微粒子膜を形成した。粒径は1000〜2000Å程度であ
った。
Argon Ar is used as the atmosphere gas, and the ultrafine particle generation chamber 1
Adjust the vacuum exhaust valve so that the inside is about 100 Torr and the inside of the film forming chamber 2 is 5 to 10 Torr, and the thickness is 50 to 100 μm.
An ultrafine particle film was formed. The particle size was about 1000 to 2000Å.

結果として得られた超微粒子膜の断面を第4図(A),
(B)に示す。
The cross section of the resulting ultrafine particle film is shown in FIG.
It shows in (B).

従来例の超微粒子膜形成装置によると、第4図(A)の
断面形状を持つ超微粒子膜が得られた。所々で凸部が生
じている。この凸部はスプレーノズルにより同時に吹き
付けられた部分に共通で縞状に分布した。
According to the conventional ultrafine particle film forming apparatus, an ultrafine particle film having a cross-sectional shape shown in FIG. 4 (A) was obtained. There are convex parts in some places. The convex portions were distributed in a striped pattern common to the portions simultaneously sprayed by the spray nozzle.

本発明の例の超微粒子膜形成装置によると、第4図
(B)のように、表面に滑らかな膜が形成できた。第4
図(A)と比較すると著しい平滑化の効果が認められ
た。
According to the ultrafine particle film forming apparatus of the example of the present invention, a smooth film could be formed on the surface as shown in FIG. 4 (B). Fourth
A remarkable smoothing effect was recognized as compared with FIG.

以上、本発明に従う超微粒子膜形成装置の実施例につい
て説明したが、本発明はこれら実施例に限定されるもの
ではなく、本発明の範囲を逸脱することなく種々の変形
乃至修正が可能である。
Although the embodiments of the ultrafine particle film forming apparatus according to the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and corrections can be made without departing from the scope of the present invention. .

[発明の効果] 本発明の超微粒子膜形成装置では、ガス搬送管構造が緩
衝室を含む搬送速度安定化装置を備えているので、原料
の蒸発速度や超微粒子を含む雰囲気ガスの流速に変動が
生じても、変動を緩和し、超微粒子を安定に供給するこ
とができる。
[Advantages of the Invention] In the ultrafine particle film forming apparatus of the present invention, since the gas conveying pipe structure is provided with the conveying speed stabilizing device including the buffer chamber, it varies depending on the evaporation rate of the raw material and the flow rate of the atmospheric gas containing ultrafine particles. Even if the above occurs, the fluctuation can be alleviated and the ultrafine particles can be stably supplied.

また。2次的に形成された超微粒子の集合が膜形成室へ
送給されるのを防止することができる。
Also. It is possible to prevent the aggregate of secondary particles formed secondarily from being fed to the film forming chamber.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の実施例による超微粒子膜形成装置を
示す概略断面図、 第2図(A),(B)は、第1図の超微粒子膜形成装置
に用いた搬送管構造の緩衝室の構成例を示す断面図、 第3図は、従来技術による超微粒子膜形成装置の例を示
す概略断面図、 第4図(A)、(B)は従来例と本発明の例とを用いて
形成した超微粒子を比較して示す断面図である。 符号の説明 1……超微粒子生成室 2……膜形成室 4……電源 5……るつぼ 10……ガス搬送管構造 11……スプレーノズル 12,14,15……ガス搬送管構造のパイプ 17……緩衝室 18……メッシュ
FIG. 1 is a schematic sectional view showing an ultrafine particle film forming apparatus according to an embodiment of the present invention, and FIGS. 2A and 2B show a carrier tube structure used in the ultrafine particle film forming apparatus of FIG. Sectional drawing which shows the structural example of a buffer chamber, FIG. 3 is a schematic sectional drawing which shows the example of the ultrafine particle film forming apparatus by a prior art, and FIG. 4 (A), (B) is a conventional example and the example of this invention. FIG. 3 is a cross-sectional view showing ultrafine particles formed by using the above. Explanation of code 1 …… Ultrafine particle generation chamber 2 …… Film formation chamber 4 …… Power supply 5 …… Crucible 10 …… Gas carrier pipe structure 11 …… Spray nozzle 12,14,15 …… Gas carrier pipe structure pipe 17 …… Buffer room 18 …… Mesh

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊玉 英樹 茨城県つくば市梅園2―16―1 ルンビー ニ梅園501 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideki Toyoda 2-16-1, Umezono, Tsukuba-shi, Ibaraki Lumbini Umezono 501

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】真空排気系に接続され、雰囲気ガス中で原
料を蒸発することによって超微粒子を生成する超微粒子
生成室と、 真空排気系に接続され、対象物上に超微粒子を吹き付け
て付着させる膜形成室と、 超微粒子を搬送するために超微粒子生成室と膜形成室と
を連通するガス搬送管構造と を有する超微粒子膜形成装置において、 ガス搬送管構造が超微粒子生成室から運ばれてくる超微
粒子を搬送する雰囲気ガスを導入するための導入パイプ
と、超微粒子を搬送する雰囲気ガスを膜形成室に送出す
るための送出パイプと、該導入パイプおよび送出パイプ
が接続され、両パイプの体積より十分大きな体積を有す
る緩衝室とを備え、前記導入パイプの開口端が緩衝室下
方に設けられると共に前記送出パイプの開口端が緩衝室
上方かつ導入パイプの開口端から離れた位置に設けられ
ている搬送速度安定化装置を含むことを特徴とする超微
粒子膜形成装置。
1. An ultrafine particle generation chamber which is connected to a vacuum exhaust system and generates ultrafine particles by evaporating a raw material in an atmosphere gas, and an exhaust system which is connected to a vacuum exhaust system and sprays and attaches ultrafine particles onto an object. In an ultrafine particle film forming apparatus having a film forming chamber for causing the ultrafine particles to communicate with the film forming chamber for conveying the ultrafine particles, the gas transfer tube structure is operated from the ultrafine particle generating chamber. Introducing pipes for introducing the atmospheric gas that conveys the ultrafine particles that come out, delivery pipes for delivering the atmospheric gas that conveys the ultrafine particles to the film forming chamber, and the introduction pipe and the delivery pipes are connected. A buffer chamber having a volume sufficiently larger than that of the pipe, the opening end of the introduction pipe is provided below the buffer chamber, and the opening end of the delivery pipe is above the buffer chamber and the introduction pipe. An ultrafine particle film forming apparatus including a conveying speed stabilizing device provided at a position away from the opening end of the.
【請求項2】前記緩衝室内の導入パイプと送出パイプと
の間に所定径のメッシュを備えたことを特徴とする超微
粒子膜形成装置。
2. An ultrafine particle film forming apparatus comprising a mesh having a predetermined diameter between an introduction pipe and a delivery pipe in the buffer chamber.
JP63219143A 1988-09-01 1988-09-01 Stabilized ultrafine particle film forming equipment Expired - Lifetime JPH0791631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63219143A JPH0791631B2 (en) 1988-09-01 1988-09-01 Stabilized ultrafine particle film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63219143A JPH0791631B2 (en) 1988-09-01 1988-09-01 Stabilized ultrafine particle film forming equipment

Publications (2)

Publication Number Publication Date
JPH0270058A JPH0270058A (en) 1990-03-08
JPH0791631B2 true JPH0791631B2 (en) 1995-10-04

Family

ID=16730894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63219143A Expired - Lifetime JPH0791631B2 (en) 1988-09-01 1988-09-01 Stabilized ultrafine particle film forming equipment

Country Status (1)

Country Link
JP (1) JPH0791631B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3452617B2 (en) * 1993-12-10 2003-09-29 真空冶金株式会社 Gas deposition equipment
JP5678612B2 (en) * 2010-11-26 2015-03-04 独立行政法人産業技術総合研究所 Film forming particle transfer apparatus and generating apparatus, and film forming apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106964A (en) * 1983-11-12 1985-06-12 Res Dev Corp Of Japan Method and apparatus for forming film of hyperfine particles
JPS60113369A (en) * 1983-11-22 1985-06-19 Nec Corp Positioning circuit of magnetic head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106964A (en) * 1983-11-12 1985-06-12 Res Dev Corp Of Japan Method and apparatus for forming film of hyperfine particles
JPS60113369A (en) * 1983-11-22 1985-06-19 Nec Corp Positioning circuit of magnetic head

Also Published As

Publication number Publication date
JPH0270058A (en) 1990-03-08

Similar Documents

Publication Publication Date Title
US4572842A (en) Method and apparatus for reactive vapor deposition of compounds of metal and semi-conductors
US5224202A (en) Apparatus for the evaporation of liquids
JP3452617B2 (en) Gas deposition equipment
JP4352783B2 (en) Gas supply system and processing system
EP0948664A1 (en) Liquid vaporizer system and method
US8936830B2 (en) Apparatus and method for continuous powder coating
JP2001509648A5 (en)
JP2006200013A (en) Film deposition method and film deposition system
JPH0791631B2 (en) Stabilized ultrafine particle film forming equipment
JPH04259378A (en) Recirculating high-speed convection reactor
KR950014354A (en) Evaporator for Vacuum Web Coating
JP3567831B2 (en) Vaporizer
US20050173240A1 (en) Method and device for manufacturing semiconductor or insulator/metallic laminar composite cluster
KR100916944B1 (en) Continuous desposition apparatus and method of fixing solid powder on diverse substrates
JP2009239297A (en) Processing system
JPH0273958A (en) Device for forming superfine-particle film
JPH0230752A (en) Method and apparatus for forming hyperfine particles film
JP3154213B2 (en) Method of forming fine particle film by gas deposition method and its forming apparatus
US20210108305A1 (en) Device for depositing nanometric sized particles onto a substrate
JPS6411328B2 (en)
JPH06206796A (en) Generator of raw material gas for cvd
JPH04120270A (en) Method and device for generating cluster ion beam
JP3152548B2 (en) High frequency induction plasma deposition equipment
JP6275373B2 (en) Silicon film forming method and silicon film forming apparatus
JP5764721B2 (en) Deposition equipment