JPH0230752A - Method and apparatus for forming hyperfine particles film - Google Patents

Method and apparatus for forming hyperfine particles film

Info

Publication number
JPH0230752A
JPH0230752A JP17705288A JP17705288A JPH0230752A JP H0230752 A JPH0230752 A JP H0230752A JP 17705288 A JP17705288 A JP 17705288A JP 17705288 A JP17705288 A JP 17705288A JP H0230752 A JPH0230752 A JP H0230752A
Authority
JP
Japan
Prior art keywords
film
ultrafine particle
chamber
ultrafine
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17705288A
Other languages
Japanese (ja)
Other versions
JP2524622B2 (en
Inventor
Hidetsugu Fuchida
英嗣 渕田
Michitaka Tsuneizumi
常泉 通孝
Masaaki Oda
正明 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Original Assignee
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK filed Critical SHINKU YAKIN KK
Priority to JP63177052A priority Critical patent/JP2524622B2/en
Publication of JPH0230752A publication Critical patent/JPH0230752A/en
Application granted granted Critical
Publication of JP2524622B2 publication Critical patent/JP2524622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase the adhesive strength of a deposit film formed on a substrate by increasing a differential pressure between pressure in a hyperfine particle feeding chamber and pressure in a film forming chamber and increasing the speed of the hyperfine particles sprayed through a nozzle. CONSTITUTION:Hyperfine particles in a hyperfine particle feeding chamber are introduced into a film forming chamber together with gas. In this film forming chamber, the hyperfine particles are sprayed through a nozzle at high speed, by which a film of the hyperfine particles is formed on a substrate. At this time, the pressure in the above hyperfine particle feeding chamber is set at 1-10atm, and the differential pressure between the pressure in the above film forming chamber and the above pressure is increased, by which the spraying and deposition energy of the particles can be increased and, as a result, the adhesive strength of a deposit film formed on the substrate can be increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子材料、機能材料または構造材料等の分野
に使用できる超微粒子膜の形成方法及び装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for forming an ultrafine particle film that can be used in the fields of electronic materials, functional materials, structural materials, and the like.

[従来の技術] この種の従来技術としては特開昭60−106964号
公報に記載のものを挙げることができ、この公開公報に
は、非酸化性ガス雰囲気の金属蒸気生成用容器内で生成
した金属材料の超微粒子を非酸化性ガスと共に搬送管を
介して蒸着処理容器に導入し、この蒸着処理容器内で搬
送管の先端に装着したノズルより超微粒子を非酸化性ガ
スの噴流で被処理ベース面に吹き付け、この処理ベース
面に超微粒子の膜を形成するようにした超微粒子膜の形
成方法及び装置が開示されており、この場合超微粒子は
およそ100Torr〜約1気圧の圧力で生成され、蒸
着処理容器(約0.ITorr )との差圧(100T
orr〜1気圧)を利用してガスで蒸着処理容器へ搬送
され、ノズルより高速噴射せることにより超微′j12
子膜を形成している。この従来の方法で得られる超微粒
子及びガスの速度の一例を添付図面の第7図に示す、金
属蒸気生成用容器と蒸着処理容器との差圧が100To
rrの場合の/l超徹粒子の速度は計算によれば約35
0n/sと見積られ、その運動エネルギ(1/2 iv
2 =3/2 kT)は、約5X10−2eV/ato
+wと計算される。
[Prior Art] This type of conventional technology includes the one described in Japanese Patent Application Laid-Open No. 106964/1983, which describes the process of metal vapor generation in a container for metal vapor generation in a non-oxidizing gas atmosphere. The ultrafine particles of the metal material are introduced into a vapor deposition processing container together with a non-oxidizing gas through a transport pipe, and within this vapor deposition processing container, the ultrafine particles are exposed to a jet of non-oxidizing gas from a nozzle attached to the tip of the transport pipe. A method and apparatus for forming an ultrafine particle film are disclosed in which the ultrafine particles are sprayed onto the surface of a treated base to form a film of ultrafine particles on the surface of the treated base. and the differential pressure (100T
orr ~ 1 atm) to the vapor deposition processing container, and is sprayed at high speed from the nozzle to form ultra-fine particles.
It forms a membrane. An example of the velocity of ultrafine particles and gas obtained by this conventional method is shown in FIG. 7 of the attached drawings, where the differential pressure between the metal vapor generation container and the vapor deposition processing container is 100To.
According to calculations, the speed of /l super-particles in the case of rr is about 35
The kinetic energy (1/2 iv
2 = 3/2 kT) is approximately 5X10-2eV/ato
+w is calculated.

なお、この明細書で用語“超微粒子”は、粒径0.1μ
m以下のものを意味するものとする。
In this specification, the term "ultrafine particles" refers to particles with a particle size of 0.1μ.
shall mean less than or equal to m.

[発明が解決しようとする課題] ところで、上記の従来の超微粒子膜の形成技術では、金
属蒸気生成用容器と蒸着処理容器との差圧が100To
rr〜1気圧程度であるため、例えば差圧100Tor
rを例に採って見ると、ノズルから噴出される超微粒子
の運動エネルギは上述のように約5 x 10−2 e
 V / atonと見積られ、真空蒸着の場合(約0
.1 e V / atoII)に比べて低くなってい
た。
[Problems to be Solved by the Invention] By the way, in the conventional ultrafine particle film formation technology described above, the differential pressure between the metal vapor generation container and the vapor deposition processing container is 100 To
Since the pressure is about rr~1 atm, for example, the differential pressure is 100 Torr.
Taking r as an example, the kinetic energy of the ultrafine particles ejected from the nozzle is approximately 5 x 10-2 e as described above.
V/aton, and for vacuum evaporation (approximately 0
.. 1 eV/atoII).

そのため、形成された超微粒子膜は、基板すなわち被処
理ベース面との付着力が弱く、常温で噴射堆積させた超
微粒子膜はテープテストで剥離してしまうという同順が
ある。
Therefore, the formed ultrafine particle film has weak adhesion to the substrate, that is, the base surface to be processed, and an ultrafine particle film spray deposited at room temperature will peel off during a tape test.

本発明は、このような問題を解決して膜の付着力を大幅
に改善できしかも形成される膜の密度を制御できる超微
粒子膜の形成方法及び装置を提供することを目的として
いる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for forming an ultrafine particle film that can solve these problems and significantly improve the adhesion of the film and control the density of the formed film.

[課題を解決するための手段] 上記の目的を達成するために、本発明の第1の発明によ
れば、超微粒子供給室内の超微粒子を搬送管を介してガ
スと共に膜形成室に導入し、膜形成室内で搬送管の先端
に取り付けられたノズルから超微粒子をガスと共に高速
で噴射し、被膜形成基板に超微粒子膜を形成する超微粒
子膜の形成方法において、上記超微粒子供給室の圧力を
高くして上記膜形成室との差圧を増大させ、超微粒子の
上記ノズルからの噴射速度を高くし、超微粒子の噴射堆
積エネルギを増大させて膜形成を行うことを特徴として
いる。
[Means for Solving the Problems] In order to achieve the above object, according to the first aspect of the present invention, ultrafine particles in an ultrafine particle supply chamber are introduced into a film forming chamber together with a gas via a transport pipe. In an ultrafine particle film forming method in which ultrafine particles are injected together with gas at high speed from a nozzle attached to the tip of a conveying tube in a film forming chamber to form an ultrafine particle film on a film forming substrate, the pressure in the ultrafine particle supply chamber is The method is characterized in that film formation is performed by increasing the differential pressure with the film forming chamber by increasing the pressure, increasing the injection speed of the ultrafine particles from the nozzle, and increasing the injection deposition energy of the ultrafine particles.

また本発明の第2の発明による超微粒子膜の形成方法は
、第1の発明による方法において被膜形成基板を加熱し
ながら膜形成を行うことを特徴としている。
Furthermore, the method for forming an ultrafine particle film according to the second invention of the present invention is characterized in that film formation is performed while heating the film-forming substrate in the method according to the first invention.

上記第1または第2の発明において、好ましくは、超微
粒子供給室の圧力は1気圧〜10気圧の中圧に設定され
得、また超微粒子と共に膜形成室に導入されるガスは音
速値の高いガスであり得る。
In the first or second invention, preferably, the pressure in the ultrafine particle supply chamber can be set to a medium pressure of 1 atm to 10 atm, and the gas introduced into the film forming chamber together with the ultrafine particles has a high sonic velocity value. It can be gas.

更に、本発明の第3の発明は、上記第1または第2の発
明による方法を実施する装置にあり、この装置は、加圧
可能な超微粒子生成室と、膜形成室と、上記超微粒子生
成室から上記膜形成室内へのび、上記膜形成室内へのび
た先端部に超微粒子噴射ノズルを備えた超微粒子搬送管
と、上記超微粒子生成室内へ音速値の高いガスを供給し
、上記超微粒子生成室内で生成された超微粒子を上記超
微粒子搬送管へ加圧送出させるガス供給系と、上記膜形
成室に連結され、上記膜形成室内の圧力と上記超微粒子
生成室内の圧力との予定の圧力差を維持させる真空排気
系とを有することを特徴としている。
Furthermore, a third invention of the present invention resides in an apparatus for carrying out the method according to the first or second invention, which apparatus comprises a pressurizable ultrafine particle generation chamber, a film formation chamber, and the ultrafine particle generation chamber. An ultrafine particle transport pipe extending from the generation chamber into the film formation chamber and having an ultrafine particle injection nozzle at its tip extending into the film formation chamber, and a gas having a high sonic velocity value into the ultrafine particle generation chamber, A gas supply system that sends the ultrafine particles generated in the generation chamber under pressure to the ultrafine particle transport pipe, and a gas supply system that is connected to the film formation chamber and is configured to adjust the pressure in the membrane formation chamber and the pressure in the ultrafine particle generation chamber. It is characterized by having a vacuum exhaust system that maintains a pressure difference.

[作  用] このように構成した本発明の第1または第3の発明にお
いては、超微粒子生成室または超微粒子供給室と膜形成
室との圧力差が大きく、例えば1気圧〜10気圧と大き
くとられ、それにより超微粒子搬送管の先端部に装着さ
れたノズルからの超微粒子の噴射速度は増大し、その結
果噴射堆積エネルギが増大される。ところで、同一ポン
プ能力でほぼ同じ′aJlのガスを流す場合には、ノズ
ルの径を細くシて流速を増大させるようにされる。
[Function] In the first or third aspect of the present invention configured as described above, the pressure difference between the ultrafine particle generation chamber or the ultrafine particle supply chamber and the film formation chamber is large, for example, as large as 1 atm to 10 atm. As a result, the injection speed of ultrafine particles from the nozzle attached to the tip of the ultrafine particle transport tube increases, and as a result, the ejection deposition energy increases. By the way, when the same amount of gas is to be flowed with the same pump capacity, the diameter of the nozzle is made smaller to increase the flow rate.

また、本発明の第2の発明のように基板加熱処理を付加
すれば、噴射堆積エネルギの増大は更に助長される。
Furthermore, if a substrate heat treatment is added as in the second aspect of the present invention, the increase in the ejection deposition energy will be further promoted.

[実 施 例] 以下添付図面を参照して本発明の実施例について説明す
る。
[Examples] Examples of the present invention will be described below with reference to the accompanying drawings.

第1図には本発明の超微粒子膜の形成方法を実施してい
る装置の一例を概略的に示し、1は10気圧程度までの
圧力に耐え得る超微粒子供給室を成す超微粒子生成室で
、その内部には金属材料の蒸発源2が設けられ、この蒸
発源2は通常の構成のものであり得、そして外部電源3
により加熱される。また超微粒子生成室1にはガス供給
系4が連結され、音速値の高い、例えばHe、ト■2等
の非酸化性ガスを超微粒子生成室】内に導入する。
FIG. 1 schematically shows an example of an apparatus implementing the method for forming an ultrafine particle film of the present invention, and 1 is an ultrafine particle generation chamber forming an ultrafine particle supply chamber that can withstand pressures of up to about 10 atmospheres. , in which an evaporation source 2 of metallic material is provided, which evaporation source 2 may be of conventional construction, and an external power source 3
heated by. Further, a gas supply system 4 is connected to the ultrafine particle generation chamber 1, and a non-oxidizing gas having a high sonic velocity value, such as He, 2, etc., is introduced into the ultrafine particle generation chamber.

5は膜形成室で、搬送管6を介して超微粒子生成室1に
連通している。膜形成室5内に位置した搬送管6の先端
部には噴射ノズル7が取り付けられている。また膜形成
室5内には超微粒子の膜を形成すべき基板8が配置され
、この基板8は噴射ノズル7に対して相対的に動き得る
ようにされている。膜形成室5内は、真空排気系9によ
り通常0、1Torrの真空度に保持される。なお、図
面には示してないが、安全のため、超微粒子生成室1に
は安全弁が取り付けられる。また膜形成室5内に配置さ
れる基板8に対して基板加熱手段(図示してない)も設
けられ得る。
Reference numeral 5 denotes a film formation chamber, which communicates with the ultrafine particle generation chamber 1 via a transport pipe 6. A spray nozzle 7 is attached to the tip of the transport pipe 6 located inside the film forming chamber 5 . Further, a substrate 8 on which a film of ultrafine particles is to be formed is disposed within the film forming chamber 5, and this substrate 8 is movable relative to the injection nozzle 7. The inside of the film forming chamber 5 is normally maintained at a vacuum level of 0.1 Torr by a vacuum exhaust system 9. Although not shown in the drawings, a safety valve is attached to the ultrafine particle generation chamber 1 for safety. Further, a substrate heating means (not shown) may also be provided for the substrate 8 disposed in the film forming chamber 5.

このように構成した図示装置を用いてAg膜を形成した
例について説明する。
An example in which an Ag film is formed using the illustrated apparatus configured as described above will be described.

超微粒子生成室1内の圧力は約100TOrr〜10気
圧とし、超微粒子生成室1内の蒸発源2におけるアルミ
ナコートのWバスケットへの投入電力はおよそ180V
Aとし、基板8としてアルミナを使用した。
The pressure inside the ultrafine particle generation chamber 1 is approximately 100 TOrr to 10 atmospheres, and the power input to the W basket of the alumina coat in the evaporation source 2 within the ultrafine particle generation chamber 1 is approximately 180V.
A, and alumina was used as the substrate 8.

超微粒子生成室1と膜形成室5との圧力差を3気圧にし
た場合、A(lの超微粒子の平均粒子径を300人とし
、ガスとして1−y eガス(2,3x104Torr
−cc/5ec)を使用し、ノズル7の寸法を、口径0
.31n 、長さ130mnとした時のAg超微粒子と
Heガスの流速を第2図に示す、この場合、音速以上で
の衝撃波の影響は無視している。)reガスの音速は約
97(ln/sであり、またAgの超微粒子は1000
II/s以上と計算されるが、少なくとも音速までは加
速される考え、運動エネルギを計算すると、約0.35
 e V / atollであると見積られる。これは
、真空蒸着法(0,1eV/atoli)の場合と同じ
オーダである。 第3図には形成されたA(l膜の付着
力の測定結果を示す0図かられかるように超微粒子生成
室1の圧力の増加と共に/l膜の付着力は増大し、超微
粒子生成室1の圧力が2気圧及び3気圧では、l+WA
の付着力はそれぞれ180 kof/C112及び43
0 kOf/cm2の値を示した。
When the pressure difference between the ultrafine particle generation chamber 1 and the film formation chamber 5 is 3 atm, the average particle diameter of the ultrafine particles of A(l) is 300, and the gas is 1-y e gas (2.3 x 104 Torr).
-cc/5ec), and set the dimensions of the nozzle 7 to 0
.. 31n and a length of 130 mm, the flow velocities of Ag ultrafine particles and He gas are shown in FIG. 2. In this case, the influence of shock waves at speeds higher than the speed of sound is ignored. )re gas has a sound velocity of about 97 (ln/s), and ultrafine Ag particles have a sound velocity of about 1000 ln/s.
It is calculated to be more than II/s, but considering that it is accelerated to at least the speed of sound, the kinetic energy is approximately 0.35
It is estimated that eV/atoll. This is on the same order as in the case of vacuum evaporation (0.1 eV/atoli). As can be seen from Figure 3, which shows the measurement results of the adhesion force of the formed A(l film), as the pressure in the ultrafine particle generation chamber 1 increases, the adhesion force of the /l film increases. When the pressure in chamber 1 is 2 atm and 3 atm, l+WA
The adhesion force is 180 kof/C112 and 43 respectively.
It showed a value of 0 kOf/cm2.

またAgの超微粒子の粒子径は100Torr 、2気
圧及び3気圧共大差なく、平均600人であった。
Further, the particle size of ultrafine Ag particles was 100 Torr, and there was no significant difference between 2 and 3 atmospheres, and the average size was 600.

第4図及び第5図にはそれぞれ100Torr及び3気
圧のHeガス中で生成したAgの超微粒子の透過電子顕
微鏡写真を示す、これらの写真の倍率は、X 1350
00であり、13.51111が1000人に相当する
。また超微粒子生成室1の圧力が100Torrの場合
には、A(J膜の表面の色は黒灰色であるが、3気圧の
場合には、銀白色となり、圧力の増加と共に超微粒子の
粒成長化の傾向が見られる。
Figures 4 and 5 show transmission electron micrographs of ultrafine Ag particles produced in He gas at 100 Torr and 3 atm, respectively. The magnification of these photographs is X 1350.
00, and 13.51111 corresponds to 1000 people. In addition, when the pressure in the ultrafine particle generation chamber 1 is 100 Torr, the surface color of the A There is a tendency towards

次に基板8の加熱手段を併用した例について説明する。Next, an example in which heating means for the substrate 8 is also used will be described.

超微粒子生成室1内においてAgの超微粒子を2気圧の
Heガス中で生成し、口径0.3nn 、長さ130n
nのノズル7を用いて約0.ITOrrの膜形成室5に
おいてAgWAをアルミナセラミヴク基板に堆積させた
。堆積時の基板の温度は常温〜400°Cとした。この
場合のAg膜の基板加熱温度に対する付着力を第6図に
示す、基板加熱温度の上昇と共にAQHの付着力は増大
することが認められる。
Ultrafine particles of Ag are generated in He gas at 2 atmospheres in the ultrafine particle generation chamber 1, with a diameter of 0.3 nn and a length of 130 nm.
Using a nozzle 7 of approximately 0. AgWA was deposited on an alumina ceramic substrate in the film formation chamber 5 of ITOrr. The temperature of the substrate during deposition was between room temperature and 400°C. The adhesion force of the Ag film in this case with respect to the substrate heating temperature is shown in FIG. 6. It is recognized that the adhesion force of AQH increases as the substrate heating temperature increases.

ところで、図示実施例では、超微粒子生成室で超微粒子
を生成しながら、膜形成室へ供給して膜形成を行うよう
に構成しているが、当然本発明は、予め生成しておいた
超微粒子を非酸化性ガスと混合して膜形成室へ供給して
膜形成を行うように実施することもできる。また上記例
ではAgの超微粒子膜の形成について例示してきたが、
Ag以外の金属材料やセラミックスのような他の材料の
超微粒子膜の形成について同様に応用できる。
Incidentally, in the illustrated embodiment, the ultrafine particles are generated in the ultrafine particle generation chamber and are then supplied to the film formation chamber to form a film. It is also possible to form a film by mixing fine particles with a non-oxidizing gas and supplying the mixture to a film forming chamber. Furthermore, in the above example, the formation of an ultrafine particle film of Ag has been exemplified, but
The present invention can be similarly applied to the formation of ultrafine particle films of other materials such as metal materials other than Ag and ceramics.

[発明の効果コ 以上説明してきたように本発明の各発明によれば、超微
粒子供給室内の圧力と膜形成室内の圧力との差圧力を大
きく(10気圧程度まで)しているので、ノズルからガ
スと共に噴射される超微粒子の速度が速くなり、堆積エ
ネルギを増大させることができ、その結果、基板に対す
る超微粒子の堆積膜の付着力が大幅に増大され得る。
[Effects of the Invention] As explained above, according to each invention of the present invention, the pressure difference between the pressure inside the ultrafine particle supply chamber and the pressure inside the film formation chamber is increased (up to about 10 atmospheres), so that the nozzle The speed of the ultrafine particles that are injected together with the gas increases, and the deposition energy can be increased, and as a result, the adhesion of the deposited film of the ultrafine particles to the substrate can be greatly increased.

また、本発明の第2の発明によれば、膜形成室内に配置
された基板を加熱しながら膜形成を行っているので、堆
積エネルギの増大が助長され、層強い付着力が得られる
Furthermore, according to the second aspect of the present invention, since the film is formed while heating the substrate placed in the film forming chamber, an increase in deposition energy is facilitated and a strong adhesion force can be obtained.

更に、本発明の各発明において堆積エネルギの制御が可
能となり、その結果ポーラスな膜形成から密な膜形成ま
で自在に実施することができる。
Furthermore, in each aspect of the present invention, it is possible to control the deposition energy, and as a result, it is possible to freely form a film ranging from a porous film to a dense film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施している装置の一例を示す
概略線図、第2図は本発明の方法によって得られるガス
及びAIJ超微粒子の速度を例示するグラフ、第3図は
本発明の方法に従って形成されたA(l超微粒子膜の付
着力と超微粒子生成室の圧力との関係を例示するグラフ
、第4図及び第5図はそれぞれ本発明による方法を実施
した際の異なっな超微粒子生成室圧力でのAg超微粒子
の透過電子Hl!&In写真、第6図は本発明の方法に
従って形成したA(l超微粒子膜の付着力と基板の温度
との関係を例示するグラフ、第7図は従来の方法によっ
て得られるガス及びAg超微粒子の速度を例示するグラ
フである。 図   中 1:超微粒子生成室 2:蒸発源 3:外部電源 4:ガス供給系 5:膜形成室 6:搬送管 7:噴射ノズル 8:基板 9:真空排気系 第3図 /″′:3!;て■ 呉 頚 一
FIG. 1 is a schematic diagram showing an example of an apparatus implementing the method of the present invention, FIG. 2 is a graph illustrating the velocity of the gas and AIJ ultrafine particles obtained by the method of the present invention, and FIG. Graphs illustrating the relationship between the adhesion force of the A(l ultrafine particle film formed according to the method of the invention and the pressure of the ultrafine particle generation chamber), FIGS. 4 and 5 respectively show the differences when the method according to the invention is implemented. 6 is a graph illustrating the relationship between the adhesion force of the A(l ultrafine particle film and the substrate temperature) formed according to the method of the present invention. , FIG. 7 is a graph illustrating the velocity of gas and Ag ultrafine particles obtained by the conventional method. In the figure: 1: Ultrafine particle generation chamber 2: Evaporation source 3: External power source 4: Gas supply system 5: Film formation Chamber 6: Transfer pipe 7: Injection nozzle 8: Substrate 9: Vacuum exhaust system Figure 3/'': 3!;

Claims (1)

【特許請求の範囲】 1、超微粒子供給室内の超微粒子を搬送管を介してガス
と共に膜形成室に導入し、膜形成室内で搬送管の先端に
取り付けられたノズルから超微粒子をガスと共に高速で
噴射し、被膜形成基板に超微粒子膜を形成する超微粒子
膜の形成方法において、上記超微粒子供給室の圧力を高
くして上記膜形成室との差圧を増大させ、超微粒子の上
記ノズルからの噴射速度を高くし、超微粒子の噴射堆積
エネルギを増大させて膜形成を行うことを特徴とする超
微粒子膜の形成方法。 2、超微粒子供給室の圧力を1気圧〜10気圧の中圧に
設定した請求項1に記載の超微粒子膜の形成方法。 3、超微粒子と共に膜形成室に導入されるガスが音速値
の高い非酸化性ガスである請求項1に記載の超微粒子膜
の形成方法。 4、超微粒子供給室内の超微粒子を搬送管を介してガス
と共に膜形成室に導入し、膜形成室内で搬送管の先端に
取り付けられたノズルから超微粒子をガスと共に高速で
噴射し、被膜形成基板に超微粒子膜を形成する超微粒子
膜の形成方法において、上記超微粒子供給室の圧力を高
くして上記膜形成室との差圧を増大させ、超微粒子の上
記ノズルからの噴射速度を高くし、超微粒子の噴射堆積
エネルギを増大させると共に被膜形成基板を加熱しなが
ら膜形成を行うことを特徴とする超微粒子膜の形成方法
。 5、超微粒子供給室の圧力を1気圧〜10気圧の中圧に
設定した請求項3に記載の超微粒子膜の形成方法。 6、超微粒子と共に膜形成室に導入されるガスが音速値
の高い非酸化性ガスである請求項3に記載の超微粒子膜
の形成方法。 7、加圧可能な超微粒子生成室と、被膜形成基板を収容
した膜形成室と、上記超微粒子生成室から上記膜形成室
内へのび、上記膜形成室内へのびた先端部に超微粒子噴
射ノズルを備えた超微粒子搬送管と、上記超微粒子生成
室内へ音速値の高いガスを供給し、上記超微粒子生成室
内で生成された超微粒子を上記超微粒子搬送管へ加圧送
出させるガス供給系と、上記膜形成室に連結され、上記
膜形成室内の圧力と上記超微粒子生成室内の圧力との予
定の圧力差を維持させる真空排気系とを有することを特
徴とする超微粒子膜の形成装置。
[Claims] 1. The ultrafine particles in the ultrafine particle supply chamber are introduced into the film forming chamber along with gas through a conveyance tube, and the ultrafine particles are transported together with gas at high speed from a nozzle attached to the tip of the conveyance tube inside the film formation chamber. In the method of forming an ultrafine particle film in which an ultrafine particle film is formed on a film forming substrate, the pressure in the ultrafine particle supply chamber is increased to increase the pressure difference between the ultrafine particle supply chamber and the film forming chamber. 1. A method for forming an ultrafine particle film, which comprises forming a film by increasing the injection speed of the ultrafine particles and increasing the energy for ejecting and depositing the ultrafine particles. 2. The method for forming an ultrafine particle film according to claim 1, wherein the pressure in the ultrafine particle supply chamber is set to a medium pressure of 1 atm to 10 atm. 3. The method for forming an ultrafine particle film according to claim 1, wherein the gas introduced into the film forming chamber together with the ultrafine particles is a non-oxidizing gas with a high sonic velocity value. 4. The ultrafine particles in the ultrafine particle supply chamber are introduced into the film forming chamber along with gas via the transport pipe, and the ultrafine particles are injected together with gas at high speed from the nozzle attached to the tip of the transport pipe within the film forming chamber to form a film. In an ultrafine particle film forming method for forming an ultrafine particle film on a substrate, the pressure in the ultrafine particle supply chamber is increased to increase the differential pressure with the film forming chamber, and the injection speed of the ultrafine particles from the nozzle is increased. A method for forming an ultrafine particle film, characterized in that the film is formed while increasing the energy for ejecting and depositing the ultrafine particles and heating the film forming substrate. 5. The method for forming an ultrafine particle film according to claim 3, wherein the pressure in the ultrafine particle supply chamber is set to a medium pressure of 1 atm to 10 atm. 6. The method for forming an ultrafine particle film according to claim 3, wherein the gas introduced into the film forming chamber together with the ultrafine particles is a non-oxidizing gas with a high sonic velocity value. 7. An ultrafine particle generation chamber that can be pressurized, a film formation chamber containing a film forming substrate, an ultrafine particle injection nozzle extending from the ultrafine particle generation chamber into the film formation chamber, and an ultrafine particle injection nozzle at the tip extending into the film formation chamber. a gas supply system that supplies a gas with a high sonic velocity value into the ultrafine particle generation chamber and sends out the ultrafine particles generated in the ultrafine particle generation chamber under pressure to the ultrafine particle transfer tube; An apparatus for forming an ultrafine particle film, comprising: a vacuum evacuation system connected to the film forming chamber to maintain a predetermined pressure difference between the pressure in the film forming chamber and the pressure in the ultrafine particle generation chamber.
JP63177052A 1988-07-18 1988-07-18 Ultra fine particle film formation method Expired - Lifetime JP2524622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63177052A JP2524622B2 (en) 1988-07-18 1988-07-18 Ultra fine particle film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63177052A JP2524622B2 (en) 1988-07-18 1988-07-18 Ultra fine particle film formation method

Publications (2)

Publication Number Publication Date
JPH0230752A true JPH0230752A (en) 1990-02-01
JP2524622B2 JP2524622B2 (en) 1996-08-14

Family

ID=16024293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63177052A Expired - Lifetime JP2524622B2 (en) 1988-07-18 1988-07-18 Ultra fine particle film formation method

Country Status (1)

Country Link
JP (1) JP2524622B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403955A (en) * 2003-07-17 2005-01-19 Fuji Electric Holdings Co Organic thin film manufacturing method and apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560177B2 (en) * 2000-06-14 2010-10-13 キヤノン株式会社 Film forming apparatus and film forming method
JP2003313650A (en) 2002-04-23 2003-11-06 Canon Inc Method for forming film having cleanability
JP3826108B2 (en) 2002-04-24 2006-09-27 キヤノン株式会社 Film forming apparatus and film forming method
KR101461738B1 (en) * 2012-12-21 2014-11-14 주식회사 포스코 Apparatus for heating materials and coatting system having the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218815A (en) * 1985-05-30 1986-09-29 Canon Inc Minute particle flow control apparatus
JPS6380843A (en) * 1986-09-25 1988-04-11 Canon Inc Reaction apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218815A (en) * 1985-05-30 1986-09-29 Canon Inc Minute particle flow control apparatus
JPS6380843A (en) * 1986-09-25 1988-04-11 Canon Inc Reaction apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403955A (en) * 2003-07-17 2005-01-19 Fuji Electric Holdings Co Organic thin film manufacturing method and apparatus
GB2403955B (en) * 2003-07-17 2006-05-24 Fuji Electric Holdings Co Organic thin film manufacturing method and manufacturing apparatus

Also Published As

Publication number Publication date
JP2524622B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
EP1200200B2 (en) Kinetic spray coating method and apparatus
KR20060063639A (en) Vacuum cold spray process
CA2107242A1 (en) An Evaporation System for Gas Jet Deposition on Thin Film Materials
JP6002888B2 (en) Deposition method
CA2082432A1 (en) Microwave plasma assisted gas jet deposition of thin film materials
KR101497854B1 (en) Film forming method
US20160153082A1 (en) Apparatus and method for coating with solid-state powder
JPH0230752A (en) Method and apparatus for forming hyperfine particles film
JP4605413B2 (en) A method for conveying powder in powder coating
JPH0323218B2 (en)
KR101230241B1 (en) Method of Aerosol Deposition for Ceramic Powder
JP2808734B2 (en) Fine particle film manufacturing equipment
JP3812660B2 (en) Composite structure manufacturing method and composite structure manufacturing apparatus
JP3141166B2 (en) Method of forming film by gas devolution method and apparatus for forming film
JP4086627B2 (en) Deposition method
JPS5987077A (en) Formation of film from micro-fine particle
JPH06206796A (en) Generator of raw material gas for cvd
JP3154213B2 (en) Method of forming fine particle film by gas deposition method and its forming apparatus
JP2000256876A (en) Gas deposition apparatus and method therefor
JPS62131511A (en) Fine particle spraying device
JP2003211030A (en) Method and apparatus for manufacturing composite structure
JPH04314873A (en) Method and device for forming film of superfine particles
JPS6241409A (en) Corpuscular stream controller
MX9706524A (en) Method and apparatus for fabricating a particle-coated substrate, and such substrate.
JPH0627338B2 (en) Method for forming multi-layer film with ultrafine particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13