JP3141166B2 - Method of forming film by gas devolution method and apparatus for forming film - Google Patents

Method of forming film by gas devolution method and apparatus for forming film

Info

Publication number
JP3141166B2
JP3141166B2 JP03197833A JP19783391A JP3141166B2 JP 3141166 B2 JP3141166 B2 JP 3141166B2 JP 03197833 A JP03197833 A JP 03197833A JP 19783391 A JP19783391 A JP 19783391A JP 3141166 B2 JP3141166 B2 JP 3141166B2
Authority
JP
Japan
Prior art keywords
film
gas
shutter
particles
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03197833A
Other languages
Japanese (ja)
Other versions
JPH0544019A (en
Inventor
英嗣 渕田
Original Assignee
真空冶金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 真空冶金株式会社 filed Critical 真空冶金株式会社
Priority to JP03197833A priority Critical patent/JP3141166B2/en
Publication of JPH0544019A publication Critical patent/JPH0544019A/en
Application granted granted Critical
Publication of JP3141166B2 publication Critical patent/JP3141166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガス・デボジション法
による膜の形成法およびその形成装置に関し、更に詳細
にはスポット状或いはライン状のパターンニングのよう
な膜の形成法およびその形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a film by a gas devolution method and an apparatus for forming the film, and more particularly to a method for forming a film such as spot-shaped or line-shaped patterning and an apparatus for forming the film. .

【0002】[0002]

【従来の技術】従来、この種の膜の形成法としては、例
えば図5に示すような膜材料の粒子aの供給部bと、膜
形成装置cを用い、先ず、供給部b内にガス導入管dよ
りキャリヤガス(例えばヘリウムガスのような不活性ガ
ス)を導入して供給部b内を所定の加圧状態とした後、
例えばAgのような膜材料eを蒸発源fで加熱しながら
その粒子aを生成せしめ、供給部b内に粒子aをキャリ
ヤガス中に浮遊状態とし、これを搬送管gで膜形成装置
c側に搬送し、キャリヤガスと共に粒子aを搬送管gの
先端側に接続されたノズルhより膜形成装置c内の基板
i上に噴射してAg膜を付着形成せしめる。また、キャ
リヤガスと共に粒子aの供給部bから膜形成装置cへの
搬送開始或いは搬送停止はガス導入管dに接続せるバル
ブj、または搬送管gの途中に配置せる開閉自在のシャ
ッターk(例えばボールバルブ、図5中に仮想線で示
す)の開閉操作で行う。図中、mはバルブnを備えた排
気管oを介して接続された真空ポンプ、pは基板gを保
持してこれを水平方向に移動させる基板保持装置を夫々
示す。
2. Description of the Related Art Conventionally, as a method of forming this kind of film, for example, a supply part b of particles a of a film material and a film forming apparatus c as shown in FIG. After introducing a carrier gas (for example, an inert gas such as helium gas) from the introduction pipe d to bring the inside of the supply section b into a predetermined pressurized state,
For example, a film material e such as Ag is heated by an evaporation source f to generate the particles a, and the particles a are suspended in a carrier gas in a supply part b. Then, the particles a together with the carrier gas are jetted from the nozzle h connected to the tip side of the conveying pipe g onto the substrate i in the film forming apparatus c to deposit and form an Ag film. In addition, the start or stop of the transfer of the particles a together with the carrier gas from the supply section b to the film forming apparatus c can be started or stopped by a valve j connected to the gas introduction pipe d or an openable shutter k arranged in the middle of the transfer pipe g (for example, The opening and closing operation of a ball valve (indicated by a virtual line in FIG. 5) is performed. In the figure, m denotes a vacuum pump connected via an exhaust pipe o provided with a valve n, and p denotes a substrate holding device for holding and moving the substrate g in the horizontal direction.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来の膜形成法は、粒子aの供給部bから膜形成装置cへ
の搬送開始或いは搬送停止はガス導入管dに接続せるバ
ルブj、または搬送管gの途中に配置せるシャッターk
の開閉操作で行うため、バルブjまたはシャッターkを
閉鎖すると搬送管g内の圧力差がなくなり、その結果搬
送途中の粒子aは搬送管g内に沈降物として沈降する。
その後再びバルブjまたはシャッターkを開いて搬送を
再開すると搬送管g内の沈降物は凝集体となって搬送管
g或いは搬送管にシャッターが設けられている場合はシ
ャッターk内に付着してこれらを閉塞したり、或いはノ
ズルhより噴射されて基板i上に堆積して不均一な厚さ
の膜が形成されたり、または基板i上に不要な膜の形
成、或いは膜に裾引きが生じる等の問題がある。
However, in the above-mentioned conventional film forming method, the start or stop of the transfer of the particles a from the supply section b to the film forming apparatus c is determined by the valve j connected to the gas introduction pipe d or the transfer. Shutter k to be placed in the middle of tube g
When the valve j or the shutter k is closed, the pressure difference in the transport pipe g disappears, and as a result, the particles a during transport are settled down in the transport pipe g as sediment.
After that, when the valve j or the shutter k is opened again and the conveyance is resumed, the sediment in the conveyance pipe g becomes an aggregate and adheres to the inside of the shutter k when the shutter is provided in the conveyance pipe g or the conveyance pipe. Or is sprayed from the nozzle h and deposited on the substrate i to form a film having an uneven thickness, or an unnecessary film is formed on the substrate i, or the film is skirted. There is a problem.

【0004】本発明は、かかる問題点を解消したガス・
デボジション法による膜の形成法と、その形成法を実施
するに適した形成装置を提供することを目的とする。
[0004] The present invention provides a gas
An object of the present invention is to provide a method for forming a film by a devotion method and a forming apparatus suitable for performing the method.

【0005】[0005]

【課題を解決するための手段】本発明は、前記目的を達
成する膜の形成法を提案するもので、キャリヤガスと共
に膜材料の粒子を搬送管で搬送し、ノズルより噴射して
基板上に膜を形成するガス・デボジション法による膜の
形成法において、粒子の搬送を開閉自在のシャッターの
閉鎖で停止した後、シャッターより上流側で搬送管とは
異なる回送管内に粒子とキャリヤガスとを回送すると共
に、シャッターより下流側で搬送管内にガスを導入する
ことを特徴とする。更に本発明は、前記形成法を実施す
るための形成装置を提案するもので、キャリヤガスと共
に粒子を搬送する搬送管と、基板と、該基板上にガスと
共に粒子を噴射するノズルとから成るガス・デボジショ
ン法による膜の形成装置において、前記搬送管の一部に
開閉自在のシャッターを配置し、該シャッターの上流側
の搬送管に粒子の回送管を接続し、シャッターの下流側
の搬送管にガス導入管を接続したことを特徴とする。ま
た、前記ノズルはその後端側に粒子の排出管を接続する
ようにしてもよい。
SUMMARY OF THE INVENTION The present invention proposes a method for forming a film which achieves the above-mentioned object. The present invention proposes a method for forming a film, in which particles of a film material are transported together with a carrier gas by a transport tube, and are ejected from a nozzle onto a substrate. In the film formation method by gas devotion method to form the film, after stopping the transportation of the particles by closing the shutter that can be opened and closed, the particles and the carrier gas are circulated upstream from the shutter into a transportation pipe different from the transportation pipe. In addition, a gas is introduced into the transport pipe downstream of the shutter. Furthermore, the present invention proposes a forming apparatus for carrying out the above forming method, wherein a gas comprising a transfer pipe for transferring particles together with a carrier gas, a substrate, and a nozzle for spraying particles together with the gas onto the substrate. In the film forming apparatus by the devotion method, an openable and closable shutter is arranged in a part of the transfer pipe, a particle transfer pipe is connected to the transfer pipe on the upstream side of the shutter, and the shutter is connected to the transfer pipe on the downstream side of the shutter. A gas inlet pipe is connected. Further, the nozzle may be connected to a particle discharge pipe at the rear end side.

【0006】[0006]

【作用】キャリヤガス中に浮遊した粒子はキャリヤガス
と共にシャッターが開放された搬送管内を搬送され、ノ
ズルより基板上に噴射されて堆積し、膜を形成する。ま
た、シャッターを閉鎖すればシャッターより上流側の搬
送管内を通過中の粒子はキャリヤガスと共に回送管を経
て外方に排出され、また、シャッターより下流側の搬送
管内の粒子は搬送管内に導入されたガスにより搬送管の
外方に排出される。
The particles suspended in the carrier gas are transported together with the carrier gas in a transport pipe having an open shutter, and are sprayed from a nozzle onto the substrate to deposit and form a film. When the shutter is closed, particles passing through the transport pipe upstream of the shutter are discharged to the outside through the transport pipe together with the carrier gas, and particles in the transport pipe downstream of the shutter are introduced into the transport pipe. The gas is discharged to the outside of the transport pipe.

【0007】[0007]

【実施例】本発明の実施の1例を添付図面に基づき説明
する。図1は本発明法を実施する形成装置の1例を示す
もので、図中、1はキャリヤガスと粒子の供給部、2は
膜を形成する膜形成装置、3は搬送管を示す。供給部1
の粒子生成室4はその室内下方に膜材料5を加熱して粒
子G状に蒸発させる例えばアルミナコートのタングステ
ン製の蒸発源6を備え、またキャリヤガスのガス導入管
7を粒子生成室4内の上方に気密に接続し、該ガス導入
管7はその一端をキャリヤガス供給源のヘリウムガス、
アルゴンガス等の不活性ガスボンベ8に調節弁9を介し
て接続した。また、粒子生成室4の上方に材料の粒子G
をキャリヤガスと共に搬送するステンレス製の内径1.
6mmの搬送管3の一端を粒子生成室4内に気密に挿入し
て接続し、更に、搬送管3はその他端の先端側にステン
レス製の内径0.8mmのノズル10を備える。膜形成装
置2の膜形成室11は真空ポンプ12に調節弁13を備
えた排気管14を介して接続した。また膜形成室11は
その下方に例えば幅20mm長さ50mm長方形で厚さ1.
0mmのバイコールガラス、シリコンウェハー等の基板1
5を保持し、該基板15を水平方向に移動させる基板保
持装置16を配置した。また、粒子生成室4に接続され
ている搬送管3の先端側に設けられているノズル10を
膜形成室11の内部に気密に挿入し、ノズル10の先端
を膜形成室11内の基板15と0.7mmの間隔を存して
配置した。
An embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows an example of a forming apparatus for carrying out the method of the present invention. In the figure, reference numeral 1 denotes a carrier gas and particle supply section, 2 denotes a film forming apparatus for forming a film, and 3 denotes a transport pipe. Supply unit 1
Is provided with an evaporation source 6 made of, for example, alumina-coated tungsten for heating and evaporating the film material 5 into particles G in the lower part of the chamber, and a gas introduction pipe 7 for a carrier gas inside the particle generation chamber 4. , And one end of the gas introduction pipe 7 is connected to helium gas as a carrier gas supply source.
It was connected to an inert gas cylinder 8 such as an argon gas via a control valve 9. The material particles G are located above the particle generation chamber 4.
Inner diameter made of stainless steel which transports together with carrier gas
One end of a 6 mm transfer tube 3 is hermetically inserted into and connected to the particle generation chamber 4, and the transfer tube 3 has a stainless steel 0.8 mm inner diameter nozzle 10 at the other end. The film forming chamber 11 of the film forming apparatus 2 was connected to a vacuum pump 12 via an exhaust pipe 14 having a control valve 13. The film forming chamber 11 has a rectangular shape of, for example, a width of 20 mm, a length of 50 mm, and a thickness of 1.times.
Substrate 1 of 0 mm Vycor glass, silicon wafer, etc.
5, a substrate holding device 16 for horizontally moving the substrate 15 was provided. Further, a nozzle 10 provided on the tip side of the transfer pipe 3 connected to the particle generation chamber 4 is hermetically inserted into the film formation chamber 11, and the tip of the nozzle 10 is inserted into the substrate 15 in the film formation chamber 11. And an interval of 0.7 mm.

【0008】そして、ガス導入管7から不活性ガスをキ
ャリヤガスとして導入して粒子生成室4内に一定の加圧
状態とし、蒸発源6で膜材料5を加熱して粒子G状に蒸
発させ、これら粒子Gとキャリヤガスを搬送管3を介し
て膜形成装置2に搬送し、ノズル10の先端より噴射さ
せて基板15上に膜を形成するようにした。
[0008] Then, an inert gas is introduced as a carrier gas from a gas introduction pipe 7 to a certain pressurized state in the particle generation chamber 4, and the film material 5 is heated by an evaporation source 6 to evaporate into particles G. The particles G and the carrier gas are conveyed to the film forming apparatus 2 via the conveying pipe 3 and are ejected from the tip of the nozzle 10 to form a film on the substrate 15.

【0009】かかる構成は従来のものと特に変わるとこ
ろはないが、本実施例では本発明の特徴に従って、搬送
管3の一部に例えばボールバルブから成るシャッター1
7を配設し、シャッター17の上流側の搬送管3に電磁
弁18を備え、一端が真空ポンプ等(図示せず)に連な
る回送管19を接続し、またシャッター16の下流側の
搬送管3に電磁弁20を備え、一端がヘリウムガス、ア
ルゴンガス等の不活性ガスのガスボンベ(図示せず)に
連なるガス導入管21を接続した。尚、搬送管3に配置
されたシャッター17と、回送管19の電磁弁18と、
ガス導入管21の電磁弁20の開閉操作は相互に連動と
なるようにした。また、前記回送管19およびガス導入
管21はシャッター3の閉鎖後、搬送管3内に残存せる
粒子を迅速に外方に排出させる点を考慮して、搬送管3
のシャッター17に近接した位置に接続するようにし
た。
Although this configuration is not particularly different from the conventional one, in this embodiment, according to the features of the present invention, a shutter 1 composed of, for example, a ball valve is provided in a part of the transport pipe 3.
7, an electromagnetic valve 18 is provided on the transport pipe 3 on the upstream side of the shutter 17, a feed pipe 19 having one end connected to a vacuum pump or the like (not shown) is connected, and a transport pipe on the downstream side of the shutter 16 is connected. 3 was provided with a solenoid valve 20, and one end was connected to a gas introduction pipe 21 connected to a gas cylinder (not shown) of an inert gas such as helium gas or argon gas. Note that a shutter 17 disposed on the transport pipe 3, a solenoid valve 18 of the transport pipe 19,
The opening and closing operations of the solenoid valve 20 of the gas introduction pipe 21 are interlocked with each other. In addition, the transfer pipe 19 and the gas introduction pipe 21 take into consideration that the particles remaining in the transfer pipe 3 are quickly discharged outward after the shutter 3 is closed.
Is connected to a position close to the shutter 17.

【0010】次に、前記図1に示す形成装置を用い、ス
ポット状膜としてAg膜の形成例について説明する。先
ず、搬送管3のシャッター17、回送管19の電磁弁1
8およびガス導入管21の電磁弁20を夫々閉鎖する。
続いて、供給部1の粒子生成室4内の蒸発源6に膜材料
5のAgを充填した後、ガス導入管7よりヘリウムガス
を導入して粒子形成室4内を常時2気圧に維持しなが
ら、蒸発源6に400Wの電力を加えて、膜材料5を蒸
発させてAgの粒子Gを生成させた。次に、粒子生成室
4内に所定の粒子Gが生成された後、搬送管3のシャッ
ター17のみを開放(回送管19の電磁弁18と、ガス
導入管21の電磁弁20は閉鎖状態を維持)すると共
に、膜形成装置3の膜形成室11に接続せる真空ポンプ
12を一切作動させずに該膜形成室11内を開放状態に
して大気圧に維持すると、粒子生成室4と膜形成室11
との差圧で粒子生成室4で生成されたAgの粒子Gが粒
子生成室4内に導入されているキャリヤガス中に浮遊状
態に維持され、該粒子Gはキャリヤガスと共に搬送管3
に圧送されて搬送管3を通過して膜形成室11内に搬送
(矢印A方向)される。
Next, an example of forming an Ag film as a spot-like film using the forming apparatus shown in FIG. 1 will be described. First, the shutter 17 of the transport pipe 3 and the solenoid valve 1 of the transport pipe 19
8 and the solenoid valve 20 of the gas introduction pipe 21 are closed respectively.
Subsequently, after filling the evaporation source 6 in the particle generation chamber 4 of the supply unit 1 with Ag of the film material 5, helium gas is introduced from the gas introduction pipe 7 to constantly maintain the inside of the particle formation chamber 4 at 2 atm. Meanwhile, 400 W of electric power was applied to the evaporation source 6 to evaporate the film material 5 to generate Ag particles G. Next, after predetermined particles G are generated in the particle generation chamber 4, only the shutter 17 of the transport pipe 3 is opened (the electromagnetic valve 18 of the recirculation pipe 19 and the electromagnetic valve 20 of the gas introduction pipe 21 are closed). (Maintenance), and when the inside of the film formation chamber 11 is kept open at atmospheric pressure without operating the vacuum pump 12 connected to the film formation chamber 11 of the film formation apparatus 3, the particle generation chamber 4 and the film formation Room 11
Ag particles G generated in the particle generation chamber 4 due to the pressure difference between the particles are maintained in a floating state in the carrier gas introduced into the particle generation chamber 4, and the particles G are transported together with the carrier gas into the transport pipe 3.
And transported through the transport pipe 3 into the film forming chamber 11 (in the direction of arrow A).

【0011】そして予め基板保持装置16に保持された
バイコールガラス製の基板15上にキャリヤガスと粒子
Gをノズル10より流量10Torr・l/secで噴射し
て基板15上にAg膜を形成した後、搬送管3のシャッ
ター17を閉鎖すると同時に、基板15を基板保持装置
16で7.5mm/minの速度で所定間隔を移動(図1の
矢印X方向)させ、更に基板15の移動中に回送管19
の電磁弁18およびガス導入管21の電磁弁20を開
き、シャッター17より上流側の搬送管3内の粒子Gを
粒子形成室4からの加圧状のキャリヤガスと共に回送管
19に圧送して該回送管19より排出(矢印B方向)
し、また同時にシャッター17より下流側の搬送管3内
にガス導入管19から圧力2気圧に加圧されたヘリウム
ガスをキャリヤガスとして導入(矢印C方向)し、搬送
管3内の粒子Gをキャリヤガスと共にノズル10の先端
より排出した。
Then, a carrier gas and particles G are sprayed from the nozzle 10 at a flow rate of 10 Torr · l / sec onto the Vycor glass substrate 15 previously held in the substrate holding device 16 to form an Ag film on the substrate 15. At the same time as closing the shutter 17 of the transfer pipe 3, the substrate 15 is moved at a predetermined interval by the substrate holding device 16 at a speed of 7.5 mm / min (in the direction of the arrow X in FIG. 1), and further forwarded while the substrate 15 is moving. Tube 19
The electromagnetic valve 18 of the gas introducing pipe 21 and the electromagnetic valve 20 of the gas introducing pipe 21 are opened, and the particles G in the conveying pipe 3 on the upstream side of the shutter 17 are pressure-fed to the circulation pipe 19 together with the pressurized carrier gas from the particle forming chamber 4. Discharged from the transfer pipe 19 (arrow B direction)
At the same time, helium gas pressurized to a pressure of 2 atm from the gas introduction pipe 19 is introduced into the transport pipe 3 downstream of the shutter 17 as a carrier gas (in the direction of arrow C), and the particles G in the transport pipe 3 are removed. The gas was discharged from the tip of the nozzle 10 together with the carrier gas.

【0012】続いて、回送管19の電磁弁18およびガ
ス導入管21の電磁弁20を閉鎖すると同時に、搬送管
3のシャッター17を再び開放し、粒子生成室4から粒
子Gをキャリヤガスと共に搬送管3を経てノズル10か
ら噴射させて基板15上にAg膜を形成させた。そし
て、基板15上での膜の形成時間は3秒、膜形成後の基
板15の移動時間は8秒とし、これを繰り返し行って基
板15上にスポット状のAg膜を一定間隔に連続的に形
成した。Ag膜の形成後、光学顕微鏡(倍率25倍)で
観察したところ図2に示す如く移動方向に裾引きのない
Ag膜が形成されていることが確認された。尚、基板1
5上へのAg膜の堆積速度は基板を停止させた状態でノ
ズルを通過させるガス流量が流量10Torr・l/sec
の時、堆積厚さが5μm/sec以上となるようにし
た。また、シャッター17の開閉応答時間を調べたとこ
ろ0.1秒であり、ノズル10への粒子Gの搬送の開
始、停止を適確に行えることが確認された。
Subsequently, the electromagnetic valve 18 of the transfer pipe 19 and the electromagnetic valve 20 of the gas introduction pipe 21 are closed, and at the same time, the shutter 17 of the transport pipe 3 is opened again to transport the particles G from the particle generation chamber 4 together with the carrier gas. The Ag film was formed on the substrate 15 by spraying from the nozzle 10 through the tube 3. The formation time of the film on the substrate 15 is 3 seconds, and the movement time of the substrate 15 after the film is formed is 8 seconds. This is repeated to continuously form spot-like Ag films on the substrate 15 at a constant interval. Formed. Observation with an optical microscope (magnification: 25) after the formation of the Ag film confirmed that the Ag film was formed without footing in the moving direction as shown in FIG. In addition, the substrate 1
The deposition rate of the Ag film on the substrate 5 is such that the gas flow rate passing through the nozzle with the substrate stopped is 10 Torr · l / sec.
At this time, the deposition thickness was adjusted to 5 μm / sec or more. In addition, when the opening / closing response time of the shutter 17 was examined, it was 0.1 second, and it was confirmed that the transfer of the particles G to the nozzle 10 could be started and stopped accurately.

【0013】図3は本発明の形成装置の他の実施例であ
って、前記図1に示す装置ではシャッター16の閉鎖時
にシャッター16より下流側の搬送管3内の粒子Gの排
出をノズル10の先端より行うようにしたが、図3装置
では該粒子Gの排出をノズル10の後端側で行うように
する装置である。図3に示す装置について前記図1に示
す装置との相違点を説明する。搬送管3の先端部3a
と、ノズル10の後端部10aとの間に、調節弁22を
備え、一端が真空ポンプ等の排気系23に接続された排
出管24を接続した。また、他の符号については前記図
1に示す形成装置と同一構成のため省略する。
FIG. 3 shows another embodiment of the forming apparatus of the present invention. In the apparatus shown in FIG. 1, when the shutter 16 is closed, the discharge of the particles G in the transport pipe 3 downstream of the shutter 16 is performed by a nozzle 10. In the apparatus shown in FIG. 3, the discharge of the particles G is performed at the rear end side of the nozzle 10. The difference between the apparatus shown in FIG. 3 and the apparatus shown in FIG. 1 will be described. Tip 3a of transfer tube 3
And a rear end 10 a of the nozzle 10, a control valve 22 was provided, and one end was connected to a discharge pipe 24 connected to an exhaust system 23 such as a vacuum pump. The other reference numerals are the same as those of the forming apparatus shown in FIG.

【0014】次に、前記図3に示す装置を用い、スポッ
ト状膜としてAg膜の形成例について説明する。ノズル
10は内径0.1mmを使用し、キャリヤガスと粒子のノ
ズル10内の流量を0.88Torr・l/secとし、ま
た、搬送管3のシャッター16を閉鎖してシャッター1
6より下流側の搬送管3内の粒子排出の際は、膜形成室
11に接続せる排気管14の調節弁13を閉鎖すると共
に、搬送管3の先端部3aと、ノズル10の後端部10
a間に接続せる排出管24の調節弁22を開き、排気系
23を作動せしめて排出管24を介して行う(矢印D方
向)ようにし、また、基板15上での膜の形成時間を5
秒、膜形成後の基板15の移動時間を2秒とした以外は
前記図1実施例と同様の方法で基板15上にAg膜をス
ポット状に一定間隔に形成した。また、Ag膜の形成
後、光学顕微鏡(倍率150倍)で観察したところ図4
に示す如く移動方向に裾引きのないAg膜が形成されて
いることが確認された。
Next, an example of forming an Ag film as a spot-like film using the apparatus shown in FIG. 3 will be described. The nozzle 10 has an inner diameter of 0.1 mm, the flow rate of carrier gas and particles in the nozzle 10 is 0.88 Torr · l / sec, and the shutter 16 of the transfer pipe 3 is closed to close the shutter 1.
At the time of discharging particles in the transport pipe 3 downstream of the nozzle 6, the control valve 13 of the exhaust pipe 14 connected to the film forming chamber 11 is closed, and the front end 3 a of the transport pipe 3 and the rear end of the nozzle 10 are closed. 10
Then, the control valve 22 of the discharge pipe 24 connected between a and a is opened, and the exhaust system 23 is operated so that the discharge is performed via the discharge pipe 24 (in the direction of arrow D).
An Ag film was formed on the substrate 15 at a constant interval in the same manner as in the embodiment of FIG. 1 except that the movement time of the substrate 15 after forming the film was set to 2 seconds. After the formation of the Ag film, it was observed with an optical microscope (magnification: 150).
It was confirmed that an Ag film having no footing in the moving direction was formed as shown in FIG.

【0015】そこで、ノズル10の後端部に配置された
排出管24を全く用いずに、前記図3実施例と同一方法
で基板15上にAg膜をスポット状に形成し、これを光
学顕微鏡で観察したところ裾引きが認められた。これは
シャッターからノズルの先端までの容積およびガス圧力
と、ノズルを通過するガス流量によって予測されること
である。これらの関係を式で表せば次の通りとなる。 容積×ガス圧力/ガス流量=ガスの置換時間(秒) 前記図3実施例におけるシャッターからノズルの先端ま
での容積を0.6ccとし、また圧力を2atm×76
0Torr/atmとし、また流量を880Torr・cc/s
ec(cc換算値)とした場合、これらの数値からガス
の置換時間つまり基板移動の遅延時間を計算すると次の
ようになる。
Therefore, an Ag film is formed in a spot shape on the substrate 15 by using the same method as that of the embodiment shown in FIG. 3 without using the discharge pipe 24 arranged at the rear end of the nozzle 10 at all. As a result, the tailing was observed. This is to be expected from the volume and gas pressure from the shutter to the tip of the nozzle, and the gas flow through the nozzle. These relationships can be expressed as follows. Volume × gas pressure / gas flow rate = gas replacement time (sec) The volume from the shutter to the tip of the nozzle in the embodiment of FIG. 3 was 0.6 cc, and the pressure was 2 atm × 76.
0 Torr / atm and the flow rate is 880 Torr · cc / s
When ec (cc converted value) is used, the gas replacement time, that is, the delay time of the substrate movement, is calculated from these numerical values as follows.

【0016】[0016]

【数1】 (Equation 1)

【0017】つまりシャッターの開閉後、1秒以上経過
してから基板を移動させれば、裾引きのない膜が形成さ
れるわけである。ちなみに、シャッターの閉鎖後1.5
秒経過すれば裾引きのない膜が形成されていることが種
々の実験結果で確認された。
That is, if the substrate is moved after a lapse of one second or more after the opening and closing of the shutter, a film without footing is formed. By the way, after closing the shutter 1.5
Various experimental results confirmed that a film without tailing was formed after a lapse of seconds.

【0018】図3に示す装置のようにノズル10の後端
部に排出管24を配置することによりシャッター閉鎖後
のシャッターより下流側の搬送管内の粒子をノズルを介
すことなく排出管の外方に迅速に排出することが出来る
から、小径のノズル10を使用することが出来て、径の
小さい膜を容易に形成でき、また膜形成室11内に粒子
を滞留させることがないから、膜形成室内を常時清潔状
態に維持出来る。
By arranging the discharge pipe 24 at the rear end of the nozzle 10 as in the apparatus shown in FIG. 3, particles in the transport pipe downstream of the shutter after the shutter is closed can be removed from the discharge pipe without passing through the nozzle. The nozzle can be used quickly, a small-diameter nozzle 10 can be used, a small-diameter film can be easily formed, and particles do not stay in the film-forming chamber 11. The formation chamber can always be kept clean.

【0019】前記実施例では形成すべき膜の粒子Gをガ
ス中蒸発法で膜材料を直接蒸発生成するようにしたが、
予め膜材料の粒子を作成しておき、この粒子を例えばガ
ラス製のビン形状容器内に収容し、容器に接続せるガス
導入管の末端部より容器内にキャリヤガスを導入して粒
子をキャリヤガス中に浮遊させ、これを搬送管に圧送す
るようにしてもよい。また、前記実施例では基板上に形
成される膜としてAg膜について説明したが、これに限
定されるものではなく、例えばCu膜、Au膜、Ni膜
等の金属単独膜、或いはNi−Cr膜、Pb−Sn膜、
Ag−Pd膜等の合金膜を形成にも広く応用出来る。ま
た、前記実施例では基板をバイコールガラス製とした
が、これに限定されるものではなく、例えばアルミナ製
基板、シリコンウェハー製基板等の基板にも適用するこ
とが出来る。また、前記実施例では基板上にスポット状
の膜を形成するようにしたが、これに限定されるもので
はなく、基板の移動とシャッターの開放および閉鎖時間
を調整することにより、長く連続した膜、或いは長短の
混在した膜等も形成することが出来る。
In the above-mentioned embodiment, the film material to be formed is formed by directly evaporating the film material by the in-gas evaporation method.
Particles of the film material are prepared in advance, and the particles are accommodated in, for example, a glass bottle-shaped container, and a carrier gas is introduced into the container from the end of a gas introduction pipe connected to the container, and the particles are transferred to the carrier gas. It may be made to float inside, and this may be pressure-fed to a conveyance pipe. In the above-described embodiment, the Ag film is described as the film formed on the substrate. However, the present invention is not limited to this. For example, a metal film such as a Cu film, an Au film, or a Ni film, or a Ni—Cr film may be used. , Pb-Sn film,
It can be widely applied to formation of an alloy film such as an Ag-Pd film. In the above-described embodiment, the substrate is made of Vycor glass. However, the present invention is not limited to this. For example, the present invention can be applied to substrates such as an alumina substrate and a silicon wafer substrate. In the above embodiment, the spot-like film is formed on the substrate. However, the present invention is not limited to this. By adjusting the movement of the substrate and the opening and closing times of the shutter, a long continuous film is formed. Alternatively, a mixed film having a long length and a short length can be formed.

【0020】[0020]

【発明の効果】このように本発明の形成法によるとき
は、シャッターの閉鎖時にシャッターより上流側の搬送
管内の粒子をキャリヤガスと共に回送管に回送し、シャ
ッターより下流側の搬送管内にガスを導入するようにし
たので、粒子は搬送管の外方に迅速に排出されて搬送管
内およびノズル内に残存しないから、従来装置のような
搬送管やシャッター内に粒子の沈降物の凝集体が付着し
て、これらを閉塞することがなく、シャッターを再度開
放した際、搬送管内を粒子が円滑に搬送されて均一で裾
引きのない膜を形成することが出来る効果がある。ま
た、本発明の形成装置によるときは、搬送管に配置され
たシャッターの上流側の搬送管に粒子の回送管を接続
し、またシャッターの下流側の搬送管にガス導入管を接
続するようにしたので、シャッターの閉鎖時に搬送管内
の粒子を搬送管の外方に迅速に排出出来て、搬送管内お
よびノズル内に粒子が残存しない形成装置を提供するこ
とが出来る効果がある。また、ノズルの後端側に粒子の
排出管を接続せるときは、シャッターより下流側の搬送
管内の粒子は基板を載置せる膜形成装置内を通過するこ
となく該排出管から直接排出することが出来て、膜形成
装置内に粒子が残存或いは飛散させないから膜形成装置
内を汚染させることがなく、また内径の小さなノズルを
用いることが出来る等の効果がある。
As described above, according to the forming method of the present invention, when the shutter is closed, the particles in the transport pipe upstream of the shutter are sent to the transport pipe together with the carrier gas, and the gas is introduced into the transport pipe downstream of the shutter. Since the particles are introduced, the particles are quickly discharged to the outside of the transfer tube and do not remain in the transfer tube and nozzle, so that aggregates of sediment of particles adhere to the transfer tube and shutter as in the conventional device. Thus, there is an effect that when the shutter is opened again without closing these particles, the particles are smoothly transported in the transport pipe to form a uniform film without footing. Further, when using the forming apparatus of the present invention, a transport pipe for particles is connected to a transport pipe on the upstream side of a shutter arranged in the transport pipe, and a gas introduction pipe is connected to a transport pipe on the downstream side of the shutter. Therefore, there is an effect that it is possible to provide a forming apparatus in which particles in the transport pipe can be quickly discharged to the outside of the transport pipe when the shutter is closed, and no particles remain in the transport pipe and the nozzle. When a discharge pipe for particles is connected to the rear end of the nozzle, particles in the transfer pipe downstream of the shutter should be discharged directly from the discharge pipe without passing through the film forming apparatus on which the substrate is placed. Therefore, there is an effect that the particles do not remain or scatter in the film forming apparatus, so that the inside of the film forming apparatus is not contaminated, and a nozzle having a small inner diameter can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明膜の形成装置の1実施例の説明線図FIG. 1 is an explanatory diagram of one embodiment of a film forming apparatus of the present invention.

【図2】 図1装置を用いて基板上に形成したスポット
状膜の粒子構造の顕微鏡写真
FIG. 2 is a micrograph of the particle structure of a spot-like film formed on a substrate using the apparatus of FIG.

【図3】 本発明膜の形成装置の他の実施例の説明線図FIG. 3 is an explanatory diagram of another embodiment of the film forming apparatus of the present invention.

【図4】 図3装置を用いて基板上に形成したスポット
状膜の粒子構造の顕微鏡写真
FIG. 4 is a micrograph of the particle structure of a spot-like film formed on a substrate using the apparatus of FIG.

【図5】 従来膜の形成装置の説明線図FIG. 5 is an explanatory diagram of a conventional film forming apparatus.

【符号の説明】[Explanation of symbols]

3 搬送管 7 ガス導入管 10 ノズル 15 基板 17 シャッター 19 回送管 21 ガス導入管 24 排出管 G 粒子 Reference Signs List 3 transport pipe 7 gas introduction pipe 10 nozzle 15 substrate 17 shutter 19 forward pipe 21 gas introduction pipe 24 discharge pipe G particles

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 キャリヤガスと共に膜材料の粒子を搬送
管で搬送し、ノズルより噴射して基板上に膜を形成する
ガス・デボジション法による膜の形成法において、粒子
の搬送を開閉自在のシャッターの閉鎖で停止した後、シ
ャッターより上流側で搬送管とは異なる回送管内に粒子
とキャリヤガスとを回送すると共に、シャッターより下
流側で搬送管内にガスを導入することを特徴とするガス
・デボジション法による膜の形成法。
In a method of forming a film by a gas devotion method in which particles of a film material are conveyed together with a carrier gas by a conveying tube and ejected from a nozzle to form a film on a substrate, a shutter capable of opening and closing the particles is provided. After stopping at the closing of the gas, the particles and the carrier gas are circulated into a transport pipe different from the transport pipe upstream of the shutter, and gas is introduced into the transport pipe downstream of the shutter. A method of forming a film by a method.
【請求項2】 キャリヤガスと共に粒子を搬送する搬送
管と、基板と、該基板上にガスと共に粒子を噴射するノ
ズルとから成るガス・デボジション法による膜の形成装
置において、前記搬送管の一部に開閉自在のシャッター
を配置し、該シャッターの上流側の搬送管に粒子の回送
管を接続し、シャッターの下流側の搬送管にガス導入管
を接続したことを特徴とするガス・デボジション法によ
る膜の形成装置。
2. An apparatus for forming a film by a gas devolution method, comprising: a transfer pipe for transferring particles together with a carrier gas; a substrate; and a nozzle for spraying particles together with the gas onto the substrate. A gas devotion method characterized in that an openable and closable shutter is disposed at the shutter, a transport pipe for particles is connected to a transport pipe on the upstream side of the shutter, and a gas introduction pipe is connected to a transport pipe on the downstream side of the shutter. Film forming equipment.
【請求項3】 前記ノズルはその後端側に粒子の排出管
が接続されていることを特徴とする請求項2に記載のガ
ス・デボジション法による膜の形成装置。
3. The film forming apparatus according to claim 2, wherein a discharge pipe for particles is connected to a rear end of the nozzle.
JP03197833A 1991-08-07 1991-08-07 Method of forming film by gas devolution method and apparatus for forming film Expired - Fee Related JP3141166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03197833A JP3141166B2 (en) 1991-08-07 1991-08-07 Method of forming film by gas devolution method and apparatus for forming film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03197833A JP3141166B2 (en) 1991-08-07 1991-08-07 Method of forming film by gas devolution method and apparatus for forming film

Publications (2)

Publication Number Publication Date
JPH0544019A JPH0544019A (en) 1993-02-23
JP3141166B2 true JP3141166B2 (en) 2001-03-05

Family

ID=16381105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03197833A Expired - Fee Related JP3141166B2 (en) 1991-08-07 1991-08-07 Method of forming film by gas devolution method and apparatus for forming film

Country Status (1)

Country Link
JP (1) JP3141166B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3452617B2 (en) * 1993-12-10 2003-09-29 真空冶金株式会社 Gas deposition equipment
JP5207308B2 (en) * 2009-03-10 2013-06-12 有限会社 渕田ナノ技研 Gas deposition apparatus and gas deposition method

Also Published As

Publication number Publication date
JPH0544019A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
CA2082432A1 (en) Microwave plasma assisted gas jet deposition of thin film materials
KR101497854B1 (en) Film forming method
JP2014009368A (en) Film deposition method
JP3141166B2 (en) Method of forming film by gas devolution method and apparatus for forming film
JPH11207214A (en) Method and apparatus for powder spray coating
US20030175422A1 (en) Method and device for vacuum sputtering
JP5207308B2 (en) Gas deposition apparatus and gas deposition method
NL8201093A (en) DEVICE FOR APPLYING THIN LAYERS.
JPH0230752A (en) Method and apparatus for forming hyperfine particles film
JP2808734B2 (en) Fine particle film manufacturing equipment
JP2000256876A (en) Gas deposition apparatus and method therefor
JP3154213B2 (en) Method of forming fine particle film by gas deposition method and its forming apparatus
JP4633336B2 (en) Gas deposition apparatus and gas deposition method
JPH05311388A (en) Method and device for continuous hot-dip metal coating of metallic sheet
JPH05179417A (en) Plasma thermal spraying device
JP3010394B2 (en) Particle gas transfer control method and its transfer control device
JP2000256834A (en) Device and method for gas deposition
JPS61223311A (en) Minute particle transferring apparatus
JPH10504605A (en) Improvements in and related to the production of printing plates
JP3812660B2 (en) Composite structure manufacturing method and composite structure manufacturing apparatus
JP3210405B2 (en) Gas deposition equipment
JP2000256828A (en) Device and method for gas deposition
JP2000256821A (en) Gas deposition device and gas deposition method
JP2000256829A (en) Device and method for gas deposition
JPS61223309A (en) Minute particle flow controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees