JP5678612B2 - Film forming particle transfer apparatus and generating apparatus, and film forming apparatus - Google Patents
Film forming particle transfer apparatus and generating apparatus, and film forming apparatus Download PDFInfo
- Publication number
- JP5678612B2 JP5678612B2 JP2010263946A JP2010263946A JP5678612B2 JP 5678612 B2 JP5678612 B2 JP 5678612B2 JP 2010263946 A JP2010263946 A JP 2010263946A JP 2010263946 A JP2010263946 A JP 2010263946A JP 5678612 B2 JP5678612 B2 JP 5678612B2
- Authority
- JP
- Japan
- Prior art keywords
- particle
- branch point
- chamber
- valve
- generation chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Physical Vapour Deposition (AREA)
Description
本発明は、微粒子による成膜、特にガスデポジション成膜に用いられる装置に関する。 The present invention relates to an apparatus used for film formation using fine particles, particularly gas deposition film formation.
従来、ガスデポジション法による成膜のための粒子は例えば、図1に例示したように粒子生成室1にて生成され、搬送管2を通して成膜室3に供給される。粒子生成室1では、高周波加熱コイル4が外周に設けられた坩堝5内の成膜材料6から例えば金属ナノ粒子等の微粒子が作られる。成膜室3では、真空排気されている成膜室3内に粒子生成室1からの粒子が搬送管2の先端ノズル21から噴出し、ステージ7上の基板8に堆積する。ステージ7はXY駆動手段9等を用いて適宜スキャン動作される。この粒子の搬送には、キャリアガスとしてHeガスを粒子生成室1内に流入させることがしばしば行われる。また搬送管2に流入しない粒子は、搬送管2の周りに同軸上に設けられた余分粒子排出管10からの真空排気によって、キャリアガスの一部とともに粒子生成室1外に排出される(例えば特許文献1、非特許文献1参照)。 Conventionally, particles for film formation by the gas deposition method are generated in the particle generation chamber 1 as illustrated in FIG. 1 and supplied to the film formation chamber 3 through the transfer tube 2. In the particle generation chamber 1, for example, fine particles such as metal nanoparticles are made from the film forming material 6 in the crucible 5 provided with the high frequency heating coil 4 on the outer periphery. In the film formation chamber 3, particles from the particle generation chamber 1 are ejected from the tip nozzle 21 of the transfer tube 2 into the film formation chamber 3 being evacuated and are deposited on the substrate 8 on the stage 7. The stage 7 is appropriately scanned using the XY driving means 9 and the like. In order to transport the particles, He gas is often introduced into the particle generation chamber 1 as a carrier gas. Further, the particles that do not flow into the transport pipe 2 are discharged out of the particle generation chamber 1 together with a part of the carrier gas by evacuation from an extra particle discharge pipe 10 provided coaxially around the transport pipe 2 (for example, (See Patent Document 1 and Non-Patent Document 1).
ところで、粒子生成室1内で生成された粒子には、成膜に必要なナノ粒子の他に、成膜に適さない、特にガスデポジション法による成膜に適さない直径がマイクロメートルサイズにまで成長した巨大粒子が存在することがある。巨大粒子は、例えば、粒子生成室1内の対流によってナノ粒子が凝集することによって生成される。 By the way, the particles generated in the particle generation chamber 1 have a diameter that is not suitable for film formation, in particular, not suitable for film formation by the gas deposition method, in addition to the nanoparticles necessary for film formation. Growing giant particles may be present. The giant particles are generated, for example, by aggregation of nanoparticles by convection in the particle generation chamber 1.
従来の搬送管2の構造は粒子生成室1から成膜室3に至るまでが単一の管で構成されている為、搬送管2内へ巨大粒子が入り込んだ場合は成膜室3まで一気に搬送され、膜表面に付着することによる膜品質の低下や、ノズル21の詰まりの原因となる。 Since the structure of the conventional transfer tube 2 is a single tube from the particle generation chamber 1 to the film formation chamber 3, when a huge particle enters the transfer tube 2, the film formation chamber 3 is reached all at once. It becomes a cause of deterioration of the film quality due to being conveyed and adhering to the film surface and clogging of the nozzle 21.
また、従来、成膜を停止するために搬送管2への生成粒子の流入を遮断する機構(例えばシャッター機構16と呼ぶ)を粒子生成室1内に設けることがあり、図2に示す粒子生成室1内で搬送管2を坩堝5から水平方向へ遠ざける方式や、図4に示す坩堝5と搬送管2との間に仕切り板15を挿入する方式により、微粒子が搬送管2へ入り込み難い形をとっている(例えば特許文献2参照)。 Further, conventionally, a mechanism (for example, referred to as a shutter mechanism 16) for blocking the flow of generated particles into the transfer tube 2 in order to stop the film formation may be provided in the particle generation chamber 1, and the particle generation shown in FIG. Forms in which particles are difficult to enter the transport pipe 2 by a method in which the transport pipe 2 is moved away from the crucible 5 in the horizontal direction in the chamber 1 or a partition plate 15 is inserted between the crucible 5 and the transport pipe 2 shown in FIG. (See, for example, Patent Document 2).
これらの方式ではさらに、搬送管2内へ微粒子が入り込むのを防ぐ為に、搬送管2内を流れるHeガス流量を大きく超える流量(例えば、搬送管内流量1L/minに対し30L/min)のHeガスを流して、搬送管2と同軸上に形成された余分粒子排出管10の真空排気によって、生成した微粒子を全て排出している。Heガス流量を少なくした場合(例えば、搬送管内流量1L/minに対し5L/min以下)、搬送管2に吸引される気流の割合が大きくなり、微粒子がその気流に乗って搬送管2内に入り込み、基板8へ成膜されてしまうためである(図3、図5にて図示した搬送管2に流れ込む矢印を参照)。 Further, in these methods, in order to prevent fine particles from entering the transport pipe 2, the flow rate of the He gas flowing in the transport pipe 2 greatly exceeds the flow rate of the He gas (for example, 30 L / min relative to the transport pipe flow rate of 1 L / min). All the generated fine particles are discharged by evacuating the excess particle discharge pipe 10 formed coaxially with the transport pipe 2 by flowing a gas. When the He gas flow rate is reduced (for example, 5 L / min or less with respect to the flow rate in the transfer pipe of 1 L / min), the ratio of the air flow sucked into the transfer pipe 2 increases, and the fine particles ride on the air flow and enter the transfer pipe 2. This is because the film enters the substrate 8 (see the arrows flowing into the transfer pipe 2 shown in FIGS. 3 and 5).
図6に示したストレートタイプ搬送管2及び図7に示した曲線曲げタイプ搬送管2の例においても、同様にシャッター機構16を用いた場合、大量なHeガスを必要とする。 Also in the example of the straight type conveyance pipe 2 shown in FIG. 6 and the curved bending type conveyance pipe 2 shown in FIG. 7, when the shutter mechanism 16 is used in the same manner, a large amount of He gas is required.
しかし、Heガスを大量に使用する条件ではHe価格が高価なことと、余分粒子排出管10から排出された微粒子の回収が困難であることから、そのランニングコストが非常に高くなってしまっている。 However, since the He price is expensive under the condition that a large amount of He gas is used, and the recovery of the fine particles discharged from the excess particle discharge pipe 10 is difficult, the running cost is very high. .
また、図2〜図7に示す方式では粒子生成室1内の坩堝5上空に左右非対称な形状となるシャッター機構16を構成する必要があることから、成膜の開始、停止を繰り返す度に坩堝5上空の気流が乱れて乱流が起こり、巨大粒子が発生し易い状況となっている。 In addition, in the method shown in FIGS. 2 to 7, since it is necessary to configure a shutter mechanism 16 having an asymmetric shape in the sky above the crucible 5 in the particle generation chamber 1, every time the film formation is started and stopped, the crucible is repeated. 5 The airflow above 5 is turbulent and turbulent flow occurs, making it easy to generate giant particles.
本発明は、上記の事情に鑑みてなされたものであり、巨大な粒子の発生を抑制またはその除去をすることのできる成膜用粒子の搬送装置及び生成装置、並びに成膜装置を提供することを課題とする。 The present invention has been made in view of the above circumstances, and provides a film-forming particle transfer device and generation device, and a film-forming device capable of suppressing or removing the generation of huge particles. Is an issue.
本発明は、上記の課題を解決するものとして、成膜用粒子を粒子生成室から成膜室へ搬送する装置であって、
粒子生成室から伸びた搬送管の第一分岐点に設けられた巨大粒子トラップと、
第一分岐点から分岐された搬送管の第二分岐点に設けられた、成膜室内の基板に向かう搬送管の成膜用バルブ及び成膜室内の余分粒子トラップに向かう搬送管の捕集用バルブとを備え、
巨大粒子トラップは、粒子生成室から搬送管の第一分岐点を越えて流れてきた巨大粒子を捕集し、
成膜用バルブ及び捕集用バルブは、成膜時にそれぞれ開及び閉とされて第一分岐点から第二分岐点に流れてきたナノ粒子を基板に送り、成膜停止時にそれぞれ閉及び開とされて第一分岐点から第二分岐点に流れてきたナノ粒子を余分粒子トラップに送る、粒子搬送装置を提供する。
In order to solve the above-mentioned problems, the present invention is an apparatus for transporting particles for film formation from the particle generation chamber to the film formation chamber,
A giant particle trap provided at the first branch point of the transfer pipe extending from the particle generation chamber;
For collecting a film-forming valve for a transfer pipe toward the substrate in the film formation chamber and a transfer pipe toward the extra particle trap in the film formation chamber, which are provided at the second branch point of the transfer pipe branched from the first branch point. With a valve,
The giant particle trap collects giant particles that have flowed from the particle generation chamber beyond the first branch point of the transport pipe,
The film formation valve and the collection valve are opened and closed at the time of film formation, respectively, and the nanoparticles flowing from the first branch point to the second branch point are sent to the substrate. Provided is a particle transport device that sends nanoparticles that have flowed from a first branch point to a second branch point to an extra particle trap.
また、成膜用粒子を粒子生成室から成膜室へ搬送する装置であって、
粒子生成室内からその上方に伸びた搬送管の分岐点にて分岐された第一経路に巨大粒子トラップが設けられ、第二経路に成膜室内の基板に向かう管路の成膜用バルブが設けられ、第三経路に成膜室内の余分粒子トラップに向かう管路の捕集用バルブが設けられており、
巨大粒子トラップは、分岐点を越えて流れてきた巨大粒子を捕集し、
成膜用バルブ及び捕集用バルブは、成膜時にそれぞれ開及び閉とされて分岐点から流れてきたナノ粒子を基板に送り、成膜停止時にそれぞれ閉及び開とされて分岐点から流れてきたナノ粒子を余分粒子トラップに送る、粒子搬送装置を提供する。
An apparatus for transporting the film forming particles from the particle generating chamber to the film forming chamber,
A giant particle trap is provided in the first path branched from the branch point of the transfer pipe extending upward from the particle generation chamber, and a film deposition valve for the pipeline toward the substrate in the film formation chamber is provided in the second path. The third passage is provided with a valve for collecting a pipe to the extra particle trap in the film forming chamber,
The giant particle trap collects giant particles that have flowed beyond the bifurcation point,
The deposition valve and the collection valve are opened and closed at the time of film formation, respectively, and the nanoparticles flowing from the branch point are sent to the substrate. When the film formation is stopped, the nanoparticles are closed and opened to flow from the branch point. A particle transport device is provided for sending nanoparticles to an extra particle trap.
また、前記粒子搬送装置を備えた粒子生成装置を提供する。 Moreover, the particle production | generation apparatus provided with the said particle conveying apparatus is provided.
さらにまた、前記粒子搬送装置を備えたガスデポジション装置等の成膜装置、及び前記粒子生成装置を備えたガスデポジション装置等の成膜装置を提供する。 Furthermore, a film forming apparatus such as a gas deposition apparatus provided with the particle conveying apparatus and a film forming apparatus such as a gas deposition apparatus provided with the particle generating apparatus are provided.
成膜装置は、粒子生成室にて生成された粒子を用いて成膜室にて成膜を行う装置であって、
粒子生成室から伸びた搬送管の第一分岐点に設けられた巨大粒子トラップと、
第一分岐点から分岐された搬送管の第二分岐点に設けられた、成膜室内の基板に向かう搬送管の成膜用バルブ及び成膜室内の余分粒子トラップに向かう搬送管の捕集用バルブとを備え、
巨大粒子トラップは、粒子生成室から搬送管の第一分岐点を越えて流れてきた巨大粒子を捕集し、
成膜用バルブ及び捕集用バルブは、成膜時にそれぞれ開及び閉とされて第一分岐点から第二分岐点に流れてきたナノ粒子を基板に送り、成膜停止時にそれぞれ閉及び開とされて第一分岐点から第二分岐点に流れてきたナノ粒子を余分粒子トラップに送る。
The film formation apparatus is an apparatus that performs film formation in the film formation chamber using particles generated in the particle generation chamber,
A giant particle trap provided at the first branch point of the transfer pipe extending from the particle generation chamber;
For collecting a film-forming valve for a transfer pipe toward the substrate in the film formation chamber and a transfer pipe toward the extra particle trap in the film formation chamber, which are provided at the second branch point of the transfer pipe branched from the first branch point. With a valve,
The giant particle trap collects giant particles that have flowed from the particle generation chamber beyond the first branch point of the transport pipe,
The film formation valve and the collection valve are opened and closed at the time of film formation, respectively, and the nanoparticles flowing from the first branch point to the second branch point are sent to the substrate. Then, the nanoparticles flowing from the first branch point to the second branch point are sent to the extra particle trap.
また、成膜装置は、粒子生成室にて生成された粒子を用いて成膜室にて成膜を行う装置であって、
粒子生成室内からその上方に伸びた搬送管の分岐点にて分岐された第一経路に巨大粒子トラップが設けられ、第二経路に成膜室内の基板に向かう管路の成膜用バルブが設けられ、第三経路に成膜室内の余分粒子トラップに向かう管路の捕集用バルブが設けられており、
巨大粒子トラップは、分岐点を越えて流れてきた巨大粒子を捕集し、
成膜用バルブ及び捕集用バルブは、成膜時にそれぞれ開及び閉とされて分岐点から流れてきたナノ粒子を基板に送り、成膜停止時にそれぞれ閉及び開とされて分岐点から流れてきたナノ粒子を余分粒子トラップに送る。
Further, the film formation apparatus is an apparatus that performs film formation in the film formation chamber using the particles generated in the particle generation chamber,
A giant particle trap is provided in the first path branched from the branch point of the transfer pipe extending upward from the particle generation chamber, and a film deposition valve for the pipeline toward the substrate in the film formation chamber is provided in the second path. The third passage is provided with a valve for collecting a pipe to the extra particle trap in the film forming chamber,
The giant particle trap collects giant particles that have flowed beyond the bifurcation point,
The deposition valve and the collection valve are opened and closed at the time of film formation, respectively, and the nanoparticles flowing from the branch point are sent to the substrate. When the film formation is stopped, the nanoparticles are closed and opened to flow from the branch point. Send the nanoparticles to an extra particle trap.
本発明の一実施形態では図8に例示したように、まず、粒子生成室(生成チャンバとも呼ぶ)1の上方に伸びた搬送管2に第一分岐点が設定され、この第一分岐点にT字管等の分岐手段が設けられて、搬送管2を粒子生成室1からの直進方向及び該直進方向に対して角度を持つ曲げ方向に分岐し、粒子生成室1からの直進方向経路上に巨大粒子トラップ17が設けられている。巨大粒子は、粒子生成室1からの流れに沿った上方縦方向に進んでトラップ17で捕集され、成膜の為のHeガス等のキャリアガス及びナノ粒子の流れは、粒子生成室1からの流れに対してある角度を持つ方向に曲げられて、成膜室3に送られる。この角度は、第一分岐点にて、ナノ粒子より質量の大きい巨大粒子が粒子生成室1からの流れから分離する一方、ナノ粒子が成膜室3の方向に流れることを可能ならしめる角度であればよく、本実施形態では直角に設定されている。 In one embodiment of the present invention, as illustrated in FIG. 8, first, a first branch point is set in the transfer pipe 2 extending above the particle generation chamber (also referred to as a generation chamber) 1. A branching means such as a T-shaped tube is provided to branch the transport pipe 2 in a straight direction from the particle generation chamber 1 and a bending direction having an angle with respect to the straight direction. Is provided with a giant particle trap 17. The giant particles travel in the vertical direction along the flow from the particle generation chamber 1 and are collected by the trap 17, and the flow of the carrier gas such as He gas and the nanoparticles for film formation from the particle generation chamber 1. The film is bent in a direction having a certain angle with respect to the flow of the gas and sent to the film forming chamber 3. This angle is an angle at which the giant particles having a mass larger than the nanoparticles are separated from the flow from the particle generation chamber 1 while the nanoparticles can flow in the direction of the film formation chamber 3 at the first branch point. In the present embodiment, it is set at a right angle.
次に、第一分岐点から上記角度を持って横方向に伸びた搬送管2には第二分岐点が設定され、この第二分岐点にT字管等の分岐手段が設けられて、搬送管2を成膜室3内の基板8に向かう経路及び成膜室3内に設けられた余分粒子トラップ19に向かう経路に分岐し、各経路に切り替えバルブ18A,18Bが設けられている。これら切り替えバルブ18A,18Bの開閉により、後述するように従来のシャッター機構に代わる成膜の開始及び停止制御機構が実現されている。 Next, a second branch point is set in the transport pipe 2 extending in the lateral direction from the first branch point with the above angle, and a branching means such as a T-shaped pipe is provided at the second branch point. The tube 2 is branched into a path toward the substrate 8 in the film forming chamber 3 and a path toward the extra particle trap 19 provided in the film forming chamber 3, and switching valves 18A and 18B are provided in the respective paths. By opening and closing these switching valves 18A and 18B, a film formation start and stop control mechanism is realized in place of the conventional shutter mechanism as described later.
従来、粒子生成室1からの生成粒子を含むガス流路には直線状の搬送管2が用いられ(図6参照)、そのガス流方向を変更するときには搬送管2を緩やかに曲げて流路を変更することが必須と考えられ、実際にそのような設計が行われてきた(図7参照)。これに対し、本発明の発明者らは、図8の例に示すように、粒子生成室1から搬送管2内に直進導入されたガス流を、直進方向とこれに対してある角度を持つ方向、例えば直角方向とに2分岐することで(上記第一分岐点)、ナノ粒子よりも質量の大きい巨大粒子はその直進性が非常に高いことからキャリアガスの流れに乗らずに、分岐点を超えて巨大粒子トラップ17へと直進し、一方直角方向へはナノ粒子を含むガス流が成膜室3内の真空排気により吸引されて流路を曲げられて進み、且つこのガス流には粒径のほぼ揃ったナノ粒子のみが存在することを見出した。また、一度粒径のほぼ揃ったナノ粒子のみを含むことになったガス流は、更なる2分岐切り替えを行っても(上記第二分岐点)、搬送管2内に支障をきたすナノ粒子析出を認めることなく流路変更ができることをも確認した。本発明は、これら本発明の発明者らによる発見に基づき、巨大粒子の捕集機構、並びにナノ粒子生成に影響を与えない成膜停止機構を同時に提供することができる。 Conventionally, a straight transfer pipe 2 is used for the gas flow path containing the generated particles from the particle generation chamber 1 (see FIG. 6). When changing the gas flow direction, the transfer pipe 2 is gently bent to change the flow path. It is considered essential to change this, and such a design has actually been performed (see FIG. 7). On the other hand, the inventors of the present invention, as shown in the example of FIG. 8, have a gas flow introduced straight from the particle generation chamber 1 into the transfer pipe 2 to have a certain angle with respect to the straight direction. By branching in two directions, for example, at right angles (the above-mentioned first branch point), a giant particle having a mass larger than that of a nanoparticle has a very high straightness, so that it does not ride on the flow of the carrier gas. The gas flow including the nanoparticles is drawn by the vacuum evacuation in the film forming chamber 3 and bent in the flow path in the direction perpendicular to the giant particle trap 17. It was found that only nanoparticles having almost the same particle size exist. In addition, once the gas flow containing only nanoparticles having almost the same particle size is subjected to further two-branch switching (the second branch point), nanoparticle deposition that interferes in the transport pipe 2 It was also confirmed that the flow path could be changed without admission. Based on the findings of the inventors of the present invention, the present invention can simultaneously provide a trapping mechanism for large particles and a film formation stopping mechanism that does not affect the generation of nanoparticles.
成膜停止機構についてさらに説明すると、本実施形態では、直角方向に曲げられた搬送管2の成膜室3の上方における第二分岐点において、Heガスの流れを、成膜室3内の基板8に対向するように設けられたノズル21Aと成膜室3内の余分粒子トラップ19に対向するように設けられたノズル21Bとに向かう2系統へ分岐させ、それぞれの経路に成膜用バルブ18A及び捕集用バルブ18Bを設置し、基板8に向けたノズル21A側の成膜用バルブ18Aを開、余分粒子トラップ19に向けたノズル21B側の捕集用バルブ18Bを閉にすることで、ノズル21Aからのみナノ粒子を含むHeガスを吐出して成膜を行い、逆に、余分粒子トラップ19側のノズル21Bの捕集用バルブ18Bを開にするとき、基板8側のノズル21Aの成膜用バルブ18Aを閉とすることで、成膜を完全に停止する。これにより、粒子生成室1へ導入されるHeガス量に寄らずに完全な成膜停止が行えること、並びに、従来は排気せざるを得なかった成膜停止中の余分粒子を余分粒子トラップ19によって確実に捕集し、再利用することが可能になる。 The film formation stop mechanism will be further described. In the present embodiment, the flow of He gas is changed to the substrate in the film formation chamber 3 at the second branch point above the film formation chamber 3 of the transport pipe 2 bent in the perpendicular direction. 8 and a nozzle 21B provided so as to face the extra particle trap 19 in the film forming chamber 3 are branched into two systems, and a film forming valve 18A is provided in each path. And the collecting valve 18B, the film forming valve 18A on the nozzle 21A side facing the substrate 8 is opened, and the collecting valve 18B on the nozzle 21B side facing the extra particle trap 19 is closed. When forming a film by ejecting He gas containing nanoparticles only from the nozzle 21A and conversely opening the collection valve 18B of the nozzle 21B on the extra particle trap 19 side, the formation of the nozzle 21A on the substrate 8 side is performed. For membrane The film formation is completely stopped by closing the valve 18A. As a result, the complete film formation can be stopped without depending on the amount of He gas introduced into the particle generating chamber 1, and the extra particles trapping 19 that have been forced to be exhausted in the past are stopped. Can be reliably collected and reused.
また、二つの切り替えバルブ18A,18Bを同時に片一方のみが開となるように切り替えることで、搬送管2内を流れるHeガス流量は一定となり、粒子生成室1及び成膜室3内の圧力は一定に保たれ、かつ粒子生成室1内のHeガス気流も一定に保たれる。よって巨大粒子の発生も抑制することができる。 Further, by switching the two switching valves 18A and 18B so that only one of them is opened at the same time, the flow rate of He gas flowing in the transfer pipe 2 becomes constant, and the pressure in the particle generation chamber 1 and the film formation chamber 3 is The He gas flow in the particle generation chamber 1 is also kept constant. Therefore, the generation of huge particles can be suppressed.
尚、切り替えバルブ18A,18Bは、例えば、搬送管2の内径以上の内径を持つことが好ましい。これにより、更にスムーズな流路の開閉並びに切り替えを行うことができる。 Note that the switching valves 18A and 18B preferably have an inner diameter equal to or larger than the inner diameter of the transport pipe 2, for example. Thereby, the opening and closing and switching of the flow path can be performed more smoothly.
また、切り替えバルブ18は、例えば、搬送管2の第二分岐点にて三方弁等の一つのバルブで経路を切り替えられるバルブとすることも出来る。 The switching valve 18 may be a valve whose path can be switched by a single valve such as a three-way valve at the second branch point of the transport pipe 2.
また、巨大粒子トラップ17及び余分粒子トラップ19については、分岐搬送管2から吐出される粒子を捕らえることができるものであれば、その形状や寸法等は特に限定されない。 Further, the shape, size, etc. of the giant particle trap 17 and the extra particle trap 19 are not particularly limited as long as the particles ejected from the branch transport pipe 2 can be captured.
図9に示した実施形態では、搬送管2の第一分岐点を円弧形状としている。この場合、巨大粒子トラップ17は円弧の接線方向に設けることも出来る。これにより、流路の滑らかな方向変更とともに巨大粒子のさらに効果的な捕集を実現することができる。 In the embodiment shown in FIG. 9, the first branch point of the transport pipe 2 has an arc shape. In this case, the giant particle trap 17 can also be provided in the tangential direction of the arc. As a result, it is possible to realize more effective collection of giant particles together with a smooth change of direction of the flow path.
図10に示した実施形態では、第二分岐点をなくし、第一分岐点において、十字型分岐管等の分岐手段により搬送管2を3分岐しており、粒子生成室1からの直進方向に沿った第一経路には巨大粒子トラップ17を、左右直角方向の第二及び第三経路にはそれぞれ成膜室3内の基板8及び余分粒子トラップ19に向かう管路の切り替えバルブ18A,18Bを設けている。この構成により、更にコンパクトかつシンプルなガス流路分岐切り替え構造を可能にしている。 In the embodiment shown in FIG. 10, the second branch point is eliminated, and the transfer pipe 2 is branched into three at the first branch point by a branching means such as a cross-shaped branch pipe. The giant particle trap 17 is provided in the first path along the right side, and the switching valves 18A and 18B for the pipes directed to the substrate 8 and the extra particle trap 19 in the film forming chamber 3 are provided in the second and third paths in the right and left direction, respectively. Provided. This configuration enables a more compact and simple gas channel branch switching structure.
以上の各実施形態によれば、成膜停止機構を粒子生成室1外に設置することにより、坩堝5上空の気流を乱す構造物がなくなることから、粒子生成室1内に発生するHeガスの流れは均一になり、巨大粒子の発生を抑制でき、また効率の良い搬送管2への粒子導入を実現することができる。 According to each of the above-described embodiments, the structure for disturbing the airflow over the crucible 5 is eliminated by installing the film formation stop mechanism outside the particle generation chamber 1, so that the He gas generated in the particle generation chamber 1 is eliminated. The flow becomes uniform, the generation of huge particles can be suppressed, and the introduction of particles into the transport pipe 2 can be realized with high efficiency.
また、図7に示した搬送管2と同心形状に設けられた余分粒子排出管10を図8〜図10の実施形態にて同様に設けた場合でも、やはり粒子生成室1内にて搬送管2及び余分粒子排出管10の入口付近の気流を乱す構造物がないことから、図11に示すように、均一なHeガスの流れを作ることができる。 Further, even when the extra particle discharge pipe 10 provided concentrically with the transport pipe 2 shown in FIG. 7 is similarly provided in the embodiment of FIGS. Since there is no structure that disturbs the airflow in the vicinity of the inlet 2 and the extra particle discharge pipe 10, a uniform He gas flow can be created as shown in FIG.
ところで、図8〜図10並びに図12に例示するように、粒子生成室1には、キャリアガスが対流する坩堝5の上方空間を少なくとも覆うように、また上記余分粒子排出管10が設けられている場合には坩堝5の上方空間を含む余分粒子排出管10の下方周囲空間を少なくとも覆うように余分粒子捕集手段12を設けてもよい。この余分粒子捕集手段12としては、例えば図示したお椀形状の水冷ジャケット12を用いることができ、対流を促進し、坩堝5上空のナノ粒子を搬送管2へ導く効率が向上し、成膜速度が向上する。また、対流中に成長した巨大粒子は水冷ジャケット12に捕集され、水冷ジャケット12に捕まらなかった巨大粒子は、図8〜図10に示した巨大粒子トラップ17に捕集されて、結果、より一層効果的に成膜室3への巨大粒子の流入を防ぐことができる。 By the way, as illustrated in FIGS. 8 to 10 and FIG. 12, the particle generation chamber 1 is provided with the extra particle discharge pipe 10 so as to cover at least the upper space of the crucible 5 where the carrier gas convects. In such a case, the extra particle collecting means 12 may be provided so as to cover at least the lower peripheral space of the extra particle discharge pipe 10 including the upper space of the crucible 5. As this extra particle collecting means 12, for example, the bowl-shaped water-cooled jacket 12 shown in the figure can be used, the convection is promoted, the efficiency of guiding the nanoparticles over the crucible 5 to the transfer tube 2 is improved, and the film forming speed is increased. Will improve. Also, the giant particles grown during the convection are collected in the water cooling jacket 12, and the giant particles not caught in the water cooling jacket 12 are collected in the giant particle trap 17 shown in FIGS. The inflow of giant particles into the film forming chamber 3 can be prevented more effectively.
余分粒子捕集手段12についてさらに説明すると、水冷ジャケット12を構成するお椀型に湾曲した板の外側に巻きつけるように配置された水冷管121に冷却水を流し、お椀型湾曲板を冷却する。冷却されたお椀の内側面には、粒子生成室1内を対流する巨大粒子が接触し、吸着されることで、巨大粒子を粒子搬送管2内に流入させないよう積極的に捕集することができる。 The extra particle collecting means 12 will be further described. Cooling water is supplied to a water cooling pipe 121 arranged so as to be wound around a bowl-shaped curved board constituting the water-cooling jacket 12 to cool the bowl-shaped curved board. The inner surface of the cooled bowl is brought into contact with and adsorbed giant particles convection in the particle generation chamber 1 so that the giant particles can be actively collected so as not to flow into the particle transport pipe 2. it can.
また、余分粒子捕集手段12は、後述する整流手段14によって坩堝5上方に流れるキャリアガスのうち、粒子搬送管2に流入しなかったガスについて、水冷ジャケット12の内面に沿ってゆるやかに粒子生成室1の下方へと流れの向きを変えることで気流を整え、坩堝5周りの乱流の発生を抑えることができ、巨大粒子の発生を抑制できる。 Further, the extra particle collecting means 12 generates particles gently along the inner surface of the water-cooling jacket 12 for the carrier gas that flows above the crucible 5 by the rectifying means 14 described later, and that does not flow into the particle conveying pipe 2. By changing the flow direction downward of the chamber 1, the airflow can be adjusted, the generation of turbulent flow around the crucible 5 can be suppressed, and the generation of giant particles can be suppressed.
図12の余分粒子捕集手段12は、その壁面の図12の視点から見た断面形状が円弧状になっているが、例えば多角形形状でも良く、この場合でも図12の形態と同様に対流粒子の吸着及びキャリアガスの整流を効果的に実現することができる。 The extra particle collecting means 12 in FIG. 12 has an arcuate cross-sectional shape as viewed from the viewpoint of FIG. 12 on the wall surface, but may be a polygonal shape, for example. In this case as well, the convection is the same as in the form of FIG. Particle adsorption and carrier gas rectification can be effectively realized.
ここで、粒子生成室1内へのHe導入量を搬送管2に流れるHe流量に近付けた場合、図11及び図12に示した余分粒子排出管10から排気されるHeガス量は極小になるため、図13に示す通り、搬送管2と同軸上の余分粒子排出管10がなくても粒子生成室1内のHeガス気流に影響を与えない。図13の実施形態では搬送管2と同軸ではない位置に生成室排気口を設けて粒子生成室1内を真空排気し、生成室内の圧力を一定に保っている。 Here, when the amount of He introduced into the particle generation chamber 1 is brought close to the flow rate of He flowing through the transport pipe 2, the amount of He gas exhausted from the extra particle discharge pipe 10 shown in FIGS. 11 and 12 is minimized. Therefore, as shown in FIG. 13, the He gas flow in the particle generation chamber 1 is not affected even without the extra particle discharge pipe 10 coaxial with the transport pipe 2. In the embodiment of FIG. 13, the generation chamber exhaust port is provided at a position that is not coaxial with the transfer pipe 2 to evacuate the particle generation chamber 1 to keep the pressure in the generation chamber constant.
また例えば、図8〜図10並びに図14に示す通り、坩堝5と同軸上に設けたHe導入口11の外側同軸上に生成室排気口13を設けることで、水冷ジャケット12により下方に向けられた、搬送管2へ入らなかったHeガスを効率よく排出でき、坩堝5の周りを流れるHeガスは常に導入されたばかりのクリーンなガスとなり、巨大粒子やコンタミの搬送管2への吸引を避ける効果が高まり、成膜される膜の品質が向上する。 Further, for example, as shown in FIGS. 8 to 10 and FIG. 14, the generation chamber exhaust port 13 is provided on the outer coaxial side of the He introduction port 11 provided coaxially with the crucible 5, so that it is directed downward by the water cooling jacket 12. Moreover, the He gas that has not entered the transport pipe 2 can be efficiently discharged, and the He gas flowing around the crucible 5 is always a clean gas just introduced, and the effect of avoiding suction of huge particles and contaminants into the transport pipe 2 And the quality of the deposited film is improved.
さらに例えば、図8〜図10並びに図15に示す通り、坩堝5周囲の気流を整える為の整流手段14を、He導入口11と生成室排気口13との間に設けることにより、坩堝5周りへクリーンなHeガス気流を導く効率を更に向上させることができる。 Further, for example, as shown in FIGS. 8 to 10 and FIG. 15, by providing a rectifying means 14 for adjusting the airflow around the crucible 5 between the He introduction port 11 and the generation chamber exhaust port 13, The efficiency of guiding a clean He gas stream can be further improved.
整流手段14についてさらに説明すると、図示した整流手段14は、He導入口11から坩堝5を取り囲み、坩堝5上方へ延びる整流管14となっており、粒子生成室1内に供給されたHeガスを坩堝5上方の搬送管2に導いている。この整流管14は、粒子生成室1の底部から複数のHe導入口11を囲んで上方に真っ直ぐ伸びる立ち上がり部141と、立ち上がり部から坩堝5の方向へ傾斜して伸びる傾斜部142と、傾斜部142から坩堝5と高周波加熱コイル4との間を通って坩堝5を囲み、坩堝5上方へ延びる筒状の垂直部143とを有している(図15参照)。 The rectifying means 14 will be further described. The illustrated rectifying means 14 is a rectifying pipe 14 that surrounds the crucible 5 from the He inlet 11 and extends upward from the crucible 5, and allows the He gas supplied into the particle generation chamber 1 to be supplied. It leads to the transport pipe 2 above the crucible 5. The rectifying tube 14 includes a rising portion 141 that extends straight from the bottom of the particle generation chamber 1 around the plurality of He inlets 11, an inclined portion 142 that extends from the rising portion toward the crucible 5, and an inclined portion 142 has a cylindrical vertical portion 143 extending between crucible 5 and crucible 5 through crucible 5 and high-frequency heating coil 4 (see FIG. 15).
立ち上がり部141及び傾斜部142は、粒子生成室1内におけるHe導入口11からのHeガス流入空間を坩堝5下方の空間に制限し、この空間内に流入したHeガスを坩堝5方向へ導く。垂直部143は、傾斜部142により坩堝5下方に導かれたHeガスを、垂直部123と坩堝5との間に形成された空隙を通して坩堝5上方へ通す。これにより、He導入口11から粒子生成室1内に供給されて、整流管14の上部開口から流れ出るHeガスは、坩堝5の上空に局所的に流れるように拘束されることによって、拡散が抑えられ、搬送管2の入口付近のHeガス密度が増大する。 The rising portion 141 and the inclined portion 142 restrict the He gas inflow space from the He inlet 11 in the particle generation chamber 1 to a space below the crucible 5 and guide the He gas flowing into this space toward the crucible 5. The vertical portion 143 passes the He gas guided to the lower portion of the crucible 5 by the inclined portion 142 through the gap formed between the vertical portion 123 and the crucible 5 to the upper portion of the crucible 5. As a result, the He gas supplied from the He inlet 11 into the particle generation chamber 1 and flowing out from the upper opening of the rectifying tube 14 is constrained to flow locally above the crucible 5, thereby suppressing diffusion. As a result, the He gas density in the vicinity of the inlet of the transfer pipe 2 increases.
また、供給されるガス流量と搬送管2及び余分粒子排出管10により排出されるガス流量をほぼ同じとすることができ、坩堝5と搬送管2との間のHeガスの流れが整流されて、ナノ粒子の拡散をさらに防ぐことで成膜速度を上げることができる。また、Heガスの供給流量を少なくしても整流効果が出ることから、ガスの消費量を低減できる。 Further, the gas flow rate to be supplied and the gas flow rate discharged by the transport pipe 2 and the extra particle discharge pipe 10 can be made substantially the same, and the flow of He gas between the crucible 5 and the transport pipe 2 is rectified. Further, the deposition rate can be increased by further preventing the diffusion of the nanoparticles. Further, even if the He gas supply flow rate is reduced, the rectification effect can be obtained, so that the gas consumption can be reduced.
勿論、整流管14は図15の実施形態に限定されるものではなく、例えば、図15の立ち上がり部141が無い形態であって、粒子生成室1の底部から直接傾斜部142が坩堝5方向に伸びた、傾斜部142と垂直部143との2段構成となっている整流管(図示なし)や、図15の傾斜部142の代わりに、立ち上がり部141と垂直部143を繋ぐ部分が水平になっている形態(図示なし)や、立ち上がり部141及び傾斜部142の代わりに、粒子生成室1の底部から垂直部143に向かむ部分が湾曲した曲面部になっている形態(図示なし)や、曲面部と垂直部143との接合部が滑らかな曲面で形成されている形態(図示なし)や、より簡素化された、底面部から上面の開口部までが一定の傾斜を持つ形状、あるいは底面部から上面の開口部までが垂直に伸びた形状など、同様な効果を実現できる限り、様々な形態を考慮できる。 Of course, the rectifying tube 14 is not limited to the embodiment shown in FIG. 15. For example, the rectifying tube 14 does not have the rising portion 141 shown in FIG. 15, and the inclined portion 142 is directed directly from the bottom of the particle generation chamber 1 toward the crucible 5. Instead of the extended rectifier tube (not shown) having the two-stage configuration of the inclined portion 142 and the vertical portion 143, and the inclined portion 142 of FIG. 15, the portion connecting the rising portion 141 and the vertical portion 143 is horizontal. Or a form (not shown) in which a portion from the bottom of the particle generation chamber 1 toward the vertical part 143 is a curved part instead of the rising part 141 and the inclined part 142. A form in which the joint between the curved surface portion and the vertical portion 143 is formed with a smooth curved surface (not shown), a more simplified shape having a constant slope from the bottom surface to the top surface, or From bottom to top Such shape to the openings extending vertically as possible to realize the same effect can be considered various forms.
以上の各実施形態についてはHeガスを中心に説明してきたが、Heガス以外のキャリアガスを用いても良いことは言うまでもない。 Each of the above embodiments has been described centering on He gas, but it goes without saying that a carrier gas other than He gas may be used.
本発明の更なる実施形態として、図16に示すように、水冷ジャケット12を、粒子生成室1から独立した部品ではなく、粒子生成室1と一体としてもよく、例えば図16の実施形態では生成室内壁の一部構造としている。 As a further embodiment of the present invention, as shown in FIG. 16, the water cooling jacket 12 may be integrated with the particle generation chamber 1 instead of being a component independent of the particle generation chamber 1, for example, in the embodiment of FIG. 16. It is a part of the interior wall structure.
また、図17に示す実施形態では、坩堝5の加熱方法として、高周波誘導加熱に寄らず、通電加熱ヒータ20及び通電加熱ヒータ用電極22を坩堝5を囲むように設けてなる通電加熱ヒータ方式などの同軸円筒構造を用いている。これによればさらに粒子生成室1内の気流制御効率を向上出来る。従来存在した高周波誘導加熱用コイルがなくなることから、整流管14外側の気流を乱さずに、スムーズに粒子生成室1外へキャリアガスを排出できる。 In the embodiment shown in FIG. 17, the heating method of the crucible 5 is not limited to high-frequency induction heating, and an electric heating heater method in which the electric heating heater 20 and the electric heating heater electrode 22 are provided so as to surround the crucible 5. The coaxial cylindrical structure is used. According to this, the air flow control efficiency in the particle generation chamber 1 can be further improved. Since the conventional high frequency induction heating coil is eliminated, the carrier gas can be smoothly discharged out of the particle generation chamber 1 without disturbing the airflow outside the rectifying tube 14.
以上詳述した本発明は、ガスデポジション法による成膜以外にも、例えばエアロゾルデポジション法といった様々な成膜手法に適用でき、上述した各実施形態と同様に巨大粒子の発生抑制及び除去等の効果を実現することができる。 The present invention described in detail above can be applied to various film forming techniques such as an aerosol deposition method in addition to the film formation by the gas deposition method. The effect of can be realized.
1 粒子生成室
2 搬送管
21,21A,21B ノズル
3 成膜室
4 高周波加熱コイル
5 坩堝
6 成膜材料
7 ステージ
8 基板
9 XYステージ駆動手段
10 余分粒子排出管
11 He導入口
12 水冷ジャケット
121 水冷管
13 生成室排気口
14 整流管
141 立ち上がり部
142 傾斜部
143 垂直部
15 仕切板
16 シャッター機構
17 巨大粒子トラップ
18,18A,18B 切り替えバルブ
19 余分粒子トラップ
20 通電加熱式ヒータ
22 通電加熱式ヒータ用電極
DESCRIPTION OF SYMBOLS 1 Particle generation chamber 2 Conveyance pipe | tube 21,21A, 21B Nozzle 3 Film-forming chamber 4 High frequency heating coil 5 Crucible 6 Film-forming material 7 Stage 8 Substrate 9 XY stage drive means 10 Extra particle discharge pipe 11 He inlet 12 Water-cooling jacket 121 Water-cooling Pipe 13 Generation chamber exhaust port 14 Rectifier pipe 141 Rising part 142 Inclining part 143 Vertical part 15 Partition plate 16 Shutter mechanism 17 Giant particle trap 18, 18A, 18B Switching valve 19 Extra particle trap 20 Electric heating heater 22 Electric heating heater electrode
Claims (25)
粒子搬送装置は、
前記粒子生成室から伸びる搬送管の第一分岐点に設けられた巨大粒子トラップと、
前記第一分岐点から分岐する搬送管の第二分岐点に設けられた、前記成膜室内の基板に向かう搬送管の成膜用バルブ及び前記成膜室内の余分粒子トラップに向かう搬送管の捕集用バルブと、を備え、
粒子生成装置は、
前記粒子生成室内に対流する粒子を吸着して捕集する余分粒子捕集手段と、
前記粒子生成室から伸びる搬送管と同軸でない位置であってキャリアガス導入口の外側同軸上に設けられた生成室排気口と、を備え、
前記巨大粒子トラップは、前記粒子生成室から前記第一分岐点を越えて流れてきた巨大粒子を捕集し、
前記成膜用バルブ及び前記捕集用バルブは、成膜時にそれぞれ開及び閉とされて前記第一分岐点から前記第二分岐点に流れてきたナノ粒子を前記基板に送り、成膜停止時にそれぞれ閉及び開とされて前記第一分岐点から前記第二分岐点に流れてきたナノ粒子を前記余分粒子トラップに送る、
粒子生成装置。 A particle generating apparatus comprising a particle transport device for transporting particles for film formation from the particle generating chamber to the film forming chamber,
The particle transport device
A giant particle trap provided in the first branch point elongation Ru conveying pipe from the particle generation chamber,
Wherein provided in the second branch point of the transport pipe that branches from the first branch point, capturing the conveying pipe towards the film valve and extra particles trapped in the deposition chamber of the carrier tube toward the deposition chamber of the substrate includes a collection for the valve, the,
The particle generator is
Extra particle collecting means for adsorbing and collecting particles that convect in the particle generation chamber;
A generation chamber exhaust port provided at a position that is not coaxial with the carrier pipe extending from the particle generation chamber and on the outer coaxial side of the carrier gas introduction port,
The macroparticles trap, collecting the macroparticles has flowed beyond the first branching point from the particle generation chamber,
The film forming valve and the collection valve sends nanoparticles has flowed into the second branch point, respectively at the time of film formation is opened and closed from the first branch point on the substrate, at the time of stopping the film formation each Send nanoparticles flowing from being closed and opened the first branch point to the second branching point in the extra particle trap,
Particle generator .
粒子搬送装置は、 The particle transport device
前記粒子生成室から伸びる搬送管の第一分岐点に設けられた巨大粒子トラップと、 A giant particle trap provided at a first branch point of a transfer pipe extending from the particle generation chamber;
前記第一分岐点から分岐する搬送管の第二分岐点に設けられた、前記成膜室内の基板に向かう搬送管の成膜用バルブ及び前記成膜室内の余分粒子トラップに向かう搬送管の捕集用バルブと、を備え、 A film forming valve for a transfer tube directed to a substrate in the film formation chamber and a trap for the transfer tube directed to an extra particle trap in the film formation chamber provided at a second branch point of the transfer tube branched from the first branch point. And a collecting valve,
粒子生成装置は、 The particle generator is
前記粒子生成室内に対流する粒子を吸着して捕集する余分粒子捕集手段と、 Extra particle collecting means for adsorbing and collecting particles that convect in the particle generation chamber;
前記粒子生成室内の坩堝の上方に位置する搬送管への粒子キャリアガスの流れを作る整流手段と、を備え、 Rectifying means for creating a flow of particle carrier gas to a transfer pipe located above the crucible in the particle generation chamber,
前記巨大粒子トラップは、前記粒子生成室から前記第一分岐点を越えて流れてきた巨大粒子を捕集し、 The giant particle trap collects giant particles flowing from the particle generation chamber beyond the first branch point;
前記成膜用バルブ及び前記捕集用バルブは、成膜時にそれぞれ開及び閉とされて前記第一分岐点から前記第二分岐点に流れてきたナノ粒子を前記基板に送り、成膜停止時にそれぞれ閉及び開とされて前記第一分岐点から前記第二分岐点に流れてきたナノ粒子を前記余分粒子トラップに送る、 The film formation valve and the collection valve are opened and closed at the time of film formation, respectively, and the nanoparticles flowing from the first branch point to the second branch point are sent to the substrate. Sending the nanoparticles, which are closed and open, respectively, from the first branch point to the second branch point, to the extra particle trap;
粒子生成装置。Particle generator.
粒子搬送装置には、
前記粒子生成室内からその上方に伸びる搬送管の分岐点にて分岐された第一経路に巨大粒子トラップが設けられ、第二経路に前記成膜室内の基板に向かう管路の成膜用バルブが設けられ、第三経路に前記成膜室内の余分粒子トラップに向かう管路の捕集用バルブが設けられており、
前記巨大粒子トラップは、前記分岐点を越えて流れてきた巨大粒子を捕集し、
前記成膜用バルブ及び前記捕集用バルブは、成膜時にそれぞれ開及び閉とされて前記分岐点から流れてきたナノ粒子を前記基板に送り、成膜停止時にそれぞれ閉及び開とされて前記分岐点から流れてきたナノ粒子を前記余分粒子トラップに送り、
粒子生成装置には、
前記粒子生成室内に対流する粒子を吸着して補修する余分粒子捕集手段が設けられ、前記粒子生成室から伸びる搬送管と同軸でない位置であってキャリアガス導入口の外側同軸上に生成室排気口が設けられている、
粒子生成装置。 A particle generating apparatus comprising a particle transport device for transporting particles for film formation from the particle generating chamber to the film forming chamber,
In the particle transport device,
Giant particle trap is provided in the first path which is branched at the branch point of the conveying pipe Ru extending thereabove from the particle generation chamber, the film forming the valve of the conduit toward the deposition chamber of the substrate to the second path is provided, the film forming collecting valve in line towards the extra particles trapped in the room is provided in the third path,
The macroparticles trap, collecting the macroparticles has flowed beyond the branch point,
Wherein said film-forming valve and the collection valve, respectively at the time of deposition is opened and closed feed nanoparticles flowing from the branch point on the substrate, are respectively at the time of film formation and stopping closed and open Ri feed nanoparticles flowing from the branch point to the extra particle trap,
In the particle generator,
Extra particle collecting means for adsorbing and repairing convective particles in the particle generation chamber is provided, and the generation chamber exhaust is located on the outer axis of the carrier gas inlet at a position that is not coaxial with the carrier pipe extending from the particle generation chamber. Mouth is provided,
Particle generator .
粒子搬送装置には、 In the particle transport device,
前記粒子生成室内からその上方に伸びる搬送管の分岐点にて分岐された第一経路に巨大粒子トラップが設けられ、第二経路に前記成膜室内の基板に向かう管路の成膜用バルブが設けられ、第三経路に前記成膜室内の余分粒子トラップに向かう管路の捕集用バルブが設けられており、 A giant particle trap is provided in a first path branched from a branch point of a transfer pipe extending upward from the particle generation chamber, and a film formation valve for a pipe line directed to a substrate in the film formation chamber is provided in the second path. Provided, a third path is provided with a valve for collecting a pipe line toward the extra particle trap in the film forming chamber,
前記巨大粒子トラップは、前記分岐点を越えて流れてきた巨大粒子を捕集し、 The giant particle trap collects giant particles flowing over the branch point,
前記成膜用バルブ及び前記捕集用バルブは、成膜時にそれぞれ開及び閉とされて前記分岐点から流れてきたナノ粒子を前記基板に送り、成膜停止時にそれぞれ閉及び開とされて前記分岐点から流れてきたナノ粒子を前記余分粒子トラップに送り、 The deposition valve and the collection valve are opened and closed at the time of film formation, respectively, and the nanoparticles flowing from the branch point are sent to the substrate. Send the nanoparticles flowing from the branch point to the extra particle trap,
粒子生成装置には、 In the particle generator,
前記粒子生成室内に対流する粒子を吸着して補修する余分粒子捕集手段が設けられ、前記粒子生成室内の坩堝の上方に位置する搬送管への粒子キャリアガスの流れを作る整流手段が設けられている、 Extra particle collecting means for adsorbing and repairing convective particles in the particle generation chamber is provided, and rectifying means for creating a flow of the particle carrier gas to the transfer pipe located above the crucible in the particle generation chamber is provided. ing,
粒子生成装置。Particle generator.
前記粒子生成室から伸びる搬送管の第一分岐点に設けられた巨大粒子トラップと、
前記第一分岐点から分岐する搬送管の第二分岐点に設けられた、前記成膜室内の基板に向かう搬送管の成膜用バルブ及び成膜室内の余分粒子トラップに向かう搬送管の捕集用バルブと、
前記粒子生成室から伸びる搬送管と同軸でない位置であってキャリアガス導入口の外側同軸上に設けられた生成室排気口と、
を備え、
前記巨大粒子トラップは、前記粒子生成室から前記第一分岐点を越えて流れてきた巨大粒子を捕集し、
前記成膜用バルブ及び前記捕集用バルブは、成膜時にそれぞれ開及び閉とされて前記第一分岐点から前記第二分岐点に流れてきたナノ粒子を前記基板に送り、成膜停止時にそれぞれ閉及び開とされて前記第一分岐点から前記第二分岐点に流れてきたナノ粒子を前記余分粒子トラップに送る、成膜装置。 An apparatus for forming a film in a film forming chamber using particles generated in the particle generating chamber,
A giant particle trap provided in the first branch point elongation Ru conveying pipe from the particle generation chamber,
Collection of the first provided to the second branch point of the transport pipe that branches from a branch point, the transport tube towards the film valve and the deposition chamber of the extra particles trapped in the transport pipe towards the deposition chamber of the substrate Valves for ,
A generation chamber exhaust port provided on the outer axis of the carrier gas introduction port at a position that is not coaxial with the carrier pipe extending from the particle generation chamber;
With
The macroparticles trap, collecting the macroparticles has flowed beyond the first branching point from the particle generation chamber,
The film forming valve and the collection valve sends nanoparticles has flowed into the second branch point, respectively at the time of film formation is opened and closed from the first branch point on the substrate, at the time of stopping the film formation each Send nanoparticles flowing from being closed and opened the first branch point to the second branching point in the extra particle trap film forming apparatus.
前記粒子生成室から伸びる搬送管の第一分岐点に設けられた巨大粒子トラップと、 A giant particle trap provided at a first branch point of a transfer pipe extending from the particle generation chamber;
前記第一分岐点から分岐する搬送管の第二分岐点に設けられた、前記成膜室内の基板に向かう搬送管の成膜用バルブ及び前記成膜室内の余分粒子トラップに向かう搬送管の捕集用バルブと、 A film forming valve for a transfer tube directed to a substrate in the film formation chamber and a trap for the transfer tube directed to an extra particle trap in the film formation chamber provided at a second branch point of the transfer tube branched from the first branch point. A collecting valve;
前記粒子生成室内の坩堝の上方に位置する搬送管への粒子キャリアガスの流れを作る整流手段と、 Rectifying means for creating a flow of particle carrier gas to a transfer pipe located above the crucible in the particle generation chamber;
を備え、With
前記巨大粒子トラップは、前記粒子生成室から前記第一分岐点を越えて流れてきた巨大粒子を捕集し、 The giant particle trap collects giant particles flowing from the particle generation chamber beyond the first branch point;
前記成膜用バルブ及び前記捕集用バルブは、成膜時にそれぞれ開及び閉とされて前記第一分岐点から前記第二分岐点に流れてきたナノ粒子を前記基板に送り、成膜停止時にそれぞれ閉及び開とされて前記第一分岐点から前記第二分岐点に流れてきたナノ粒子を前記余分粒子トラップに送る、成膜装置。 The film formation valve and the collection valve are opened and closed at the time of film formation, respectively, and the nanoparticles flowing from the first branch point to the second branch point are sent to the substrate. A film forming apparatus for sending nanoparticles, which are closed and open, and flow from the first branch point to the second branch point, to the extra particle trap.
前記粒子生成室内からその上方に伸びる搬送管の分岐点にて分岐された第一経路に巨大粒子トラップが設けられ、第二経路に前記成膜室内の基板に向かう管路の成膜用バルブが設けられ、第三経路に前記成膜室内の余分粒子トラップに向かう管路の捕集用バルブが設けられており、
前記巨大粒子トラップは、前記分岐点を越えて流れてきた巨大粒子を捕集し、
前記成膜用バルブ及び前記捕集用バルブは、成膜時にそれぞれ開及び閉とされて前記分岐点から流れてきたナノ粒子を前記基板に送り、成膜停止時にそれぞれ閉及び開とされて前記分岐点から流れてきたナノ粒子を前記余分粒子トラップに送り、
また、前記粒子生成室から伸びる搬送管と同軸でない位置であってキャリアガス導入口の外側同軸上に生成室排気口が設けられている、
成膜装置。 An apparatus for forming a film in a film forming chamber using particles generated in the particle generating chamber,
Giant particle trap is provided in the first path which is branched at the branch point of the conveying pipe Ru extending thereabove from the particle generation chamber, the film forming the valve of the conduit toward the deposition chamber of the substrate to the second path is provided, the film forming collecting valve in line towards the extra particles trapped in the room is provided in the third path,
The macroparticles trap, collecting the macroparticles has flowed beyond the branch point,
Wherein said film-forming valve and the collection valve, respectively at the time of deposition is opened and closed feed nanoparticles flowing from the branch point on the substrate, are respectively at the time of film formation and stopping closed and open Ri feed nanoparticles flowing from the branch point to the extra particle trap,
Further, a generation chamber exhaust port is provided on the outer coaxial side of the carrier gas introduction port at a position that is not coaxial with the carrier pipe extending from the particle generation chamber,
Deposition device.
前記粒子生成室内からその上方に伸びる搬送管の分岐点にて分岐する第一経路に巨大粒子トラップが設けられ、第二経路に前記成膜室内の基板に向かう管路の成膜用バルブが設けられ、第三経路に前記成膜室内の余分粒子トラップに向かう管路の捕集用バルブが設けられており、 A giant particle trap is provided in the first path that branches at the branch point of the transfer pipe extending upward from the particle generation chamber, and a film formation valve for a pipe line that is directed to the substrate in the film formation chamber is provided in the second path. And a third passage is provided with a valve for collecting a conduit toward the extra particle trap in the film forming chamber,
前記巨大粒子トラップは、前記分岐点を越えて流れてきた巨大粒子を捕集し、 The giant particle trap collects giant particles flowing over the branch point,
前記成膜用バルブ及び前記捕集用バルブは、成膜時にそれぞれ開及び閉とされて前記分岐点から流れてきたナノ粒子を前記基板に送り、成膜停止時にそれぞれ閉及び開とされて前記分岐点から流れてきたナノ粒子を前記余分粒子トラップに送り、 The film formation valve and the collection valve are opened and closed during film formation, respectively, and the nanoparticles flowing from the branch point are sent to the substrate. Send the nanoparticles flowing from the branch point to the extra particle trap,
また、前記粒子生成室内の坩堝の上方に位置する搬送管への粒子キャリアガスの流れを作る整流手段が設けられている、 Further, a rectifying means for creating a flow of the particle carrier gas to the transport pipe located above the crucible in the particle generation chamber is provided,
成膜装置。Deposition device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010263946A JP5678612B2 (en) | 2010-11-26 | 2010-11-26 | Film forming particle transfer apparatus and generating apparatus, and film forming apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010263946A JP5678612B2 (en) | 2010-11-26 | 2010-11-26 | Film forming particle transfer apparatus and generating apparatus, and film forming apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012112018A JP2012112018A (en) | 2012-06-14 |
JP5678612B2 true JP5678612B2 (en) | 2015-03-04 |
Family
ID=46496551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010263946A Expired - Fee Related JP5678612B2 (en) | 2010-11-26 | 2010-11-26 | Film forming particle transfer apparatus and generating apparatus, and film forming apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5678612B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0791631B2 (en) * | 1988-09-01 | 1995-10-04 | スタンレー電気株式会社 | Stabilized ultrafine particle film forming equipment |
JP2000256830A (en) * | 1999-03-10 | 2000-09-19 | Canon Inc | Device and method for gas deposition |
-
2010
- 2010-11-26 JP JP2010263946A patent/JP5678612B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012112018A (en) | 2012-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9039840B2 (en) | Tools and methods for processing microelectronic workpieces using process chamber designs that easily transition between open and closed modes of operation | |
KR20150102998A (en) | Treatment device, exhaust switching device therefor, exhaust switching unit and switching valve box | |
CN203174200U (en) | Plasma enhanced atomic layer deposition equipment | |
US11306971B2 (en) | Heat exchanger with multistaged cooling | |
CN106795629B (en) | The method of apparatus for atomic layer deposition and use device processing substrate | |
JPWO2019124099A1 (en) | Film deposition equipment | |
TW201743379A (en) | Apparatus for exhaust cooling | |
JP7002315B2 (en) | Handling arm, transport device and local cleaning device | |
JP4914085B2 (en) | Substrate processing apparatus, exhaust trap apparatus, and semiconductor device manufacturing method | |
JP5678612B2 (en) | Film forming particle transfer apparatus and generating apparatus, and film forming apparatus | |
TW202115811A (en) | High efficiency trap for particle collection in a vacuum foreline | |
KR101448057B1 (en) | Manufacturing apparatus of nano-sized powder | |
JP2018515932A (en) | Load lock chamber, vacuum processing system having load lock chamber, and method for exhausting load lock chamber | |
JP5207308B2 (en) | Gas deposition apparatus and gas deposition method | |
JP2009170868A (en) | Vapor-phase processing apparatus, vapor-phase processing method, and substrate therefor | |
CN213357727U (en) | Transmission channel device for plasma transmission and coating equipment | |
JP5311503B2 (en) | Nanoparticle generator for gas deposition and gas deposition apparatus | |
US20130032030A1 (en) | Exhaust air system and method therefor | |
CN105908150A (en) | Multi-source GIS for particle-optical apparatus | |
CN101516468A (en) | System and method including a particle trap/filter for recirculating a dilution gas | |
JP7507067B2 (en) | Sputtering Equipment | |
CN117467976B (en) | Upper liner ring, lower liner ring, gas inlet liner and liner for vapor deposition process chamber | |
JP2014184358A (en) | Air introduction structure of low concentration denitration apparatus | |
CN221398033U (en) | Air inlet lining body and process chamber | |
CN214779264U (en) | Anti-oxidation material suction device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20131120 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140612 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5678612 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |