JPS60106964A - Method and apparatus for forming film of hyperfine particles - Google Patents

Method and apparatus for forming film of hyperfine particles

Info

Publication number
JPS60106964A
JPS60106964A JP21169583A JP21169583A JPS60106964A JP S60106964 A JPS60106964 A JP S60106964A JP 21169583 A JP21169583 A JP 21169583A JP 21169583 A JP21169583 A JP 21169583A JP S60106964 A JPS60106964 A JP S60106964A
Authority
JP
Japan
Prior art keywords
container
gas
nozzle
film
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21169583A
Other languages
Japanese (ja)
Other versions
JPH0216379B2 (en
Inventor
Chikara Hayashi
林 主税
Seiichirou Gashiyuu
賀集 誠一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Research Development Corp of Japan
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Shingijutsu Kaihatsu Jigyodan filed Critical Research Development Corp of Japan
Priority to JP21169583A priority Critical patent/JPS60106964A/en
Publication of JPS60106964A publication Critical patent/JPS60106964A/en
Publication of JPH0216379B2 publication Critical patent/JPH0216379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Abstract

PURPOSE:To form a film of hyperfine particles on a member to be treated by evaporating a metallic material by heating in an atmosphere of a nonoxidizing gas, sending the gas and the evaporated fine particles to a vapor deposition chamber through a pipe by an internal pressure difference, and spouting them from a nozzle. CONSTITUTION:A vessel 1 for generating metallic vapor is filled with a nonoxidizing gas sent from a cylinder 5, and a metal (a) in the vessel 1 is evaporated by heating. The resulting vapor is sent to a vapor deposition vessel 21 through a pipe 19 by the internal pressure difference with a vacuum pump 7, and it is spouted from a nozzle 20 toward the surface of a member (b) to be treated to form a vapor-deposited film. The evaporated fine particles are efficiently deposited on the member (b) in other chamber without causing oxidation.

Description

【発明の詳細な説明】 本発明は、超微粒子膜の形成法並に装置に関する0 発明@は、先に、特願昭57−196085号により超
微粒子を基材等のベース面にスプレーノズルによシ吹付
けその膜を形成せしめる方法を提案したが、その超微粒
子膜は大気にてらされると急速に酸化し温度が上昇し、
燃焼する場合がめる。従ってその超微粒子としては、予
め徐酸化処理した超微粒子を使用し、その膜形成上行な
うことが考えられる。しかし乍ら、かかる徐酸化処理し
た超微粒子を使用し1上記の方法で膜を形成した場合、
更にその膜に加熱処理を行ない比抵抗をできるだけ小さ
くした膜とした場合でも、例えばN1超微粒子膜の比抵
抗は1.2 X 10−3Ω−αでちり、これ以下の比
抵抗の膜を得ることは困難である。従って、徐酸化しな
い新鮮な活性表面をもつ金属超微粒子を使用し、比抵抗
の著しく小さい超微粒子膜を酸化されずに形成すること
が望まれる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for forming an ultrafine particle film. We proposed a method to form the film by spraying, but when the ultrafine particle film is exposed to the atmosphere, it rapidly oxidizes and the temperature rises.
If it burns, it will burn. Therefore, it is conceivable to use ultrafine particles that have been subjected to slow oxidation treatment in advance and to form a film thereon. However, when a film is formed using the slow oxidation-treated ultrafine particles by the method described above,
Furthermore, even if the film is heat-treated to make the specific resistance as small as possible, for example, the specific resistance of the N1 ultrafine particle film is 1.2 x 10-3Ω-α, and a film with a specific resistance of less than this can be obtained. That is difficult. Therefore, it is desirable to use ultrafine metal particles with fresh active surfaces that are not subject to slow oxidation and to form an ultrafine particle film with extremely low resistivity without being oxidized.

本発明の目的は、か\る新鮮な活性表面をもつ超微粒子
でも、酸素、水蒸気により酸化されることなしに、安全
に、その超微粒子膜を形成し得る方法を提供したもので
、非酸化性ガスの雰囲気とした金属蒸気生成用容器内で
金属材料全加熱蒸発して超微粒子に生成せしめ、これを
搬送管を介して該非酸化性ガスと共に蒸着処理容器内に
導入し、該蒸着容器内で、搬送管の先端のノズルより超
微粒子をその非酸化性ガスの噴気を介してその超微粒子
を被処理ベース面に吠付は該面に超微粒子の膜を付着形
成せしめることを特徴とする。
The object of the present invention is to provide a method that allows even ultrafine particles with fresh active surfaces to form a film of ultrafine particles safely without being oxidized by oxygen or water vapor. The metal material is completely heated and evaporated in a metal vapor generation container set in an oxidizing gas atmosphere to form ultrafine particles, which are introduced into the evaporation processing container together with the non-oxidizing gas through a conveying pipe, and then The method is characterized in that the ultrafine particles are applied to the base surface to be treated through a jet of non-oxidizing gas from a nozzle at the tip of the conveying pipe, thereby forming a film of the ultrafine particles on the surface. .

更に、本発明の他の目的は、前記の方法を実施する膜形
成装置を提供するもので、内部に金属材料の加熱装置を
もち、且つ非酸化性ガスを導入されるようにし友金属蒸
気生成用容器と旭該容器よシ導出する先端にノズルをも
つ搬送管と、内部に該搬送管のノズルをもつ先端部と、
被処理部材をセットする設置部とを備え)且つ非酸化性
ガスを導入されるようにした蒸着処理容器とS該金属蒸
気生成用容器と該蒸着処理容器とに接続する排気真空装
置とから成る。
Furthermore, another object of the present invention is to provide a film forming apparatus for carrying out the above-mentioned method, which has a heating device for the metal material therein and is capable of introducing a non-oxidizing gas to produce a friendly metal vapor. a conveyor tube having a nozzle at the tip leading out from the container and the container, and a tip portion having the nozzle of the conveyor tube inside;
A vapor deposition processing container (including an installation part for setting the member to be processed) and into which a non-oxidizing gas is introduced; an exhaust vacuum device connected to the metal vapor generation container and the vapor deposition processing container. .

次に本発明の方法並に装置の1例を添付図面につき説明
する〇 図面で(1)は、金属蒸気生成用容器を示し、該容器(
1)内には、金属材料1の加熱装置としてプラズマアー
ク用電源(2)に接続するプラズマTh −チ(3)を
設け、これに対向して金属材料&を上面に収容した水冷
銅ハース(4)とを有する。該容器(11は、列部の非
酸化性ガス源(5)に供給管(6)を介し接続し1該容
器(1)内に非酸化性ガスを供給するようにする0更に
1該容器(11は一外部の真空ポンプ(7〕に排気用導
管(8)を介し接続し、容器(1)内金適宜のガス圧に
保持し得るようにした。(9)は供給管(6)に介入し
た調節弁、仕りは排気用導管(8)に介入した調節弁を
示す。該非酸化性ガス源(511′t、、Ar、 He
 などの不活性ガス源(5a)と、不活性ガスとN、な
どの活性ガスとの混合ガス源(5b)と、不活性ガスと
H8などの還元性ガス源との混合ガス源(50)との3
種から成り、供給管(6)は、その途中で分岐しfcs
つの分岐管(6aJ (6b)C60)k介して夫々の
ガス源(5a)(5b) (,5c)に接続せしめ、そ
の任意のガス源を撰択し容器(1)内に供給し得るよう
にした。 n(C21(t3は、夫々分岐管に介入した
開閉弁を示すO該不活性ガス源(5a)の分岐管(6&
)からはt−チ(2)に接続する導管Iが分岐している
。住ωは該導管Iに介入した調節弁を示す0該容器(1
)の上面には、覗き窓←Q1真閂計測定子αη、圧力計
α榎が設けられているO該容器(1)には、前記のガス
供給管(6)と反対側Ka置して搬送管部を気@に接続
して設ける。
Next, an example of the method and apparatus of the present invention will be explained with reference to the accompanying drawings. In the drawing, (1) shows a container for producing metal vapor, and the container (
1) is provided with a plasma Th-ch (3) connected to the plasma arc power source (2) as a heating device for the metal material 1, and facing this is a water-cooled copper hearth ( 4). The container (11) is connected to a non-oxidizing gas source (5) in the row section via a supply pipe (6) to supply non-oxidizing gas into the container (1). (11 is connected to an external vacuum pump (7) via an exhaust conduit (8), so that the internal pressure of the container (1) can be maintained at an appropriate gas pressure. (9) is a supply pipe (6) The control valve inserted in the exhaust gas conduit (8) is shown at the end.The non-oxidizing gas source (511't, Ar, He
an inert gas source (5a) such as, a mixed gas source (5b) of an inert gas and an active gas such as N, and a mixed gas source (50) of an inert gas and a reducing gas source such as H8. Tono 3
It consists of seeds, and the supply pipe (6) branches in the middle to form fcs.
It is connected to each gas source (5a) (5b) (, 5c) through two branch pipes (6aJ (6b)C60)k, so that any gas source can be selected and supplied into the container (1). I made it. n(C21 (t3 indicates the on-off valves inserted in the branch pipes, respectively). The branch pipes (6&
) branches off from a conduit I that connects to the t-chi (2). ω indicates the control valve inserted in the conduit I.
) is equipped with a viewing window←Q1 barometer measuring head αη and a pressure gauge αEnoki. Install the pipe by connecting it to Qi@.

該搬送管−はその先端にノズルw’e有し、その先端部
は蒸着処理容器Qv内に気密に導入し、そのノズルcA
ヲ下向きに垂直に設ける。該ノズル(イ)は、適宜の保
持具(図示しないンにより所定位置に保持し1或は遠隔
操作によシ可動に保持する。該容器C’lJ内には1そ
のノズル(至)下面にペース移動装置(24t−設け1
その上面にガラス板等の被処理部材ベースb’lノズル
(イ)に対面させて設置する。該搬送管(11には、該
容器(1)と該容器CI!υとの間の空間に延びる中間
部にmm*c!31を介入する。該容器C1υは1b部
の非醸化性ガス源Q4)に供給管(ハ)を介し接続し、
該容器(21)内に非酸化性ガスを供給するようにする
。更に該容器CI)は1b部に前記の真空ポンプ(7)
に排気用導管@を介し接続し、容器QXl内を適宜のガ
ス圧に保持するようにした。@は、供給管(ハ)に介入
した調節弁を示す。該非酸化性ガス源(24)は、Ar
5)Isなどの不活性ガス源(24aJと、不活性ガス
とN、などの活性ガスとの混合ガス源(24りと、不活
性ガスと馬などの還元性ガスとの混合ガス源(24a)
とから成シS該供給管@は1その途中で分岐した3つの
分岐管(25aJ (25b) (25c)を介して夫
々のガスfp (24aJ (24bJ (24o)に
接続せしめ、その任意のガス#tを選択し容器圓内に供
給し得るようにしたO(ハ)c2■(至)は夫々分岐管
囮介入した開閉弁を示す。
The conveyance pipe has a nozzle w'e at its tip, and its tip is hermetically introduced into the vapor deposition processing container Qv, and its nozzle cA
Place it vertically downward. The nozzle (a) is held in place by a suitable holder (not shown) or movably held by remote control. Pace movement device (24t-equipped 1
It is installed on its upper surface so as to face the base b'l nozzle (a) of a workpiece to be processed such as a glass plate. In the conveying pipe (11), mm*c!31 is inserted in the middle part extending into the space between the container (1) and the container CI!υ. Connect to the source Q4) via the supply pipe (c),
A non-oxidizing gas is supplied into the container (21). Further, the container CI) is equipped with the vacuum pump (7) in part 1b.
The inside of the container QXl was maintained at an appropriate gas pressure by connecting it to the container QXl via an exhaust conduit@. @ indicates a control valve inserted in the supply pipe (c). The non-oxidizing gas source (24) is Ar
5) An inert gas source such as Is (24a), a mixed gas source (24a) of an inert gas and an active gas such as N, and a mixed gas source (24a) of an inert gas and a reducing gas such as )
The supply pipe consists of 1 and is connected to each gas fp (24aJ (24bJ (24o)) through three branch pipes (25aJ (25b) (25c)) branched in the middle, and any of the gases #t is selected and O(c)c2■(to) is selected so that it can be supplied into the container round, and each indicates an on-off valve in which a branch pipe decoy is interposed.

該容器(2υの上面には、真空計測定子6υ及び圧力計
(ハ)が設けられている。(ハ)は、容器(ハ)内に設
けたベース5面に形成される超微粒子膜の赤外線等の加
熱装置を示す。
A vacuum gauge probe 6υ and a pressure gauge (c) are provided on the top surface of the container (2υ). This shows a heating device such as

上記の本発明装置全使用し、次のように超微粒子の膜を
ベース5面に吹付は形成する。即ち1咳金属蒸気生成用
容器(1)内に、例えば、不活性ガス源(5りより該供
給管(6)を介して不活性ガスを導入する1方真窒ポン
プ(7)全作動し、その真空パル1ao+t−適宜に調
節して排気を行ない該容器(1)内に不活性ガス圧を例
えば常圧又は常圧以上の比較的高圧の例えば1.1at
mの不活性ガス雰囲気に維持する。この状態で、プラズ
マ電源(21′(i:作動し、プラズマ[−チ(3)と
水冷銅ハース(3)との間でプラズマアーク放電を生ゼ
しめ−そのハース(2)内の所望の金属材料aを溶解す
る。
Using all of the apparatuses of the present invention described above, a film of ultrafine particles is sprayed onto the base 5 as follows. That is, a one-way nitrogen pump (7) which introduces inert gas from an inert gas source (5) through the supply pipe (6) into the metal vapor generation container (1) is fully operated. , the vacuum pulse 1ao+t- is appropriately adjusted and evacuated to maintain an inert gas pressure in the container (1), for example, normal pressure or a relatively high pressure above normal pressure, e.g. 1.1at.
Maintain an inert gas atmosphere of m. In this state, the plasma power supply (21' (i) is activated to generate a plasma arc discharge between the plasma [-chi (3)) and the water-cooled copper hearth (3). Melt the metal material a.

該金属材料aとは金属又はその合金を総称する。The metal material a is a general term for metals or alloys thereof.

加熱温度は1プラズマア一クm源(2)の圧力調整器等
を介して適宜にその金属材料の融点以上に加熱し、溶解
金属を蒸発させる。1方、真空ポンプ(71を作動し、
容器(1)内を一旦排気真空とした後・調節弁ucJ)
f、HmL、て容器(1)内を不活性ガスの圧力が常圧
又はこれより高い圧力例えば1.1atmに維持する1
方容器C〃内を排気し真空減圧下例えば0.6 atm
に維持し、容器(1)内の気圧よシ低圧に保持する。こ
の状態で、搬送管(19の弁(ハ)を開けば翫該容器(
1)内の不活性ガスの比較的高圧と該容器(2υ内の不
活性ガスの比較的低圧との圧力差によシ、該容器(1)
内の不活性ガスは生成した金属蒸気の超微粒子全件ない
該搬送管Qt内に流入しその先端のノズル(社)より勢
い良く噴出し、その担持した超微粒子をその下面に予め
置かれたベースbの上面に吹き付け、該ベース5面上に
例えば該移動装置四の移動によシ、線状の超微粒子膜を
形成せしめ、その後の両容器(1)Qυ内の圧力調節は
それぞれのガス供給量と真空排気で行なう。容器(1)
内での超微粒子の生成から容器(2υ円でのその膜形成
までの時間は10秒以内でめった。弁(21開くと、そ
の圧力差で、容器(1)内の不活性ガスは生成した金属
蒸気の超微粒子全件ない搬送管o9内に勢い良く流入し
該容器0υ内でその搬送管←1の先端のノズル(2)よ
り噴出せしめ、その担持した超微粒子をその下面にセッ
トしたベースbの面に吠き付け1移動装置(27J全一
定速度で移動するときは、所定の線状の超微粒子膜を形
成することができる0この膜は1容器(1)内の排気真
空下に加え、ノズル(7)よシ噴出する不活性ガスでの
雰囲気に包まれるので1酸化なく、その活性状態の超微
粒子の連続した膜となり、その比抵抗は著しく減少した
ものが、容易且つ円滑に得られることとなる。而して更
に比抵抗を小さくする必要がある場合−加熱装置缶によ
シその股を加熱し超微粒子の焼結を行なう。この結果、
ベース面への固着性も向上する効果をともなう。尚、そ
の加熱時等その処理容器12U内の非酸化性雰囲気が要
求される場合は〜例えば不活性ガスfi(24aJよシ
ネ活性ガスを供給管(25+を介して適宜容器(1)内
に供給するようにする。
The heating temperature is appropriately heated to a temperature higher than the melting point of the metal material via the pressure regulator of the plasma atom source (2), etc., and the molten metal is evaporated. On the other hand, operate the vacuum pump (71,
Once the inside of the container (1) is evacuated and vacuumed, control valve ucJ)
f, HmL, the pressure of the inert gas inside the container (1) is maintained at normal pressure or a higher pressure, for example, 1.1 atm.
The inside of the square container C is evacuated and the pressure is reduced to 0.6 atm, for example.
The pressure is maintained at a level lower than the atmospheric pressure inside the container (1). In this state, if you open the conveyor pipe (valve 19), the container (
Due to the pressure difference between the relatively high pressure of the inert gas in the container (1) and the relatively low pressure of the inert gas in the container (2υ),
The inert gas inside flows into the conveying pipe Qt containing all the ultrafine particles of metal vapor, and is vigorously ejected from the nozzle at its tip, carrying the ultrafine particles that have been placed on the lower surface of the pipe in advance. It is sprayed onto the upper surface of the base b to form a linear ultrafine particle film on the surface of the base 5, for example, by the movement of the moving device 4, and then the pressure inside both containers (1) Qυ is adjusted by using the respective gases. This is done with the supply amount and vacuum evacuation. Container (1)
The time from the generation of ultrafine particles in the container (2υ circle) to the formation of a film in the container (2υ circle) was less than 10 seconds. When the valve (21) was opened, the inert gas in the container (1) was generated due to the pressure difference. All the ultrafine particles of metal vapor flow into the transport pipe o9 with force and are ejected from the nozzle (2) at the tip of the transport pipe ←1 in the container 0υ, and the supported ultrafine particles are set on the bottom surface of the base. 1 Moving device (27J) When moving at a constant speed, a predetermined linear ultrafine particle film can be formed. This film is heated under an exhaust vacuum in a container (1). In addition, since the nozzle (7) is surrounded by an atmosphere of inert gas ejected from the nozzle (7), there is no oxidation, and a continuous film of ultrafine particles in the active state is formed, and although the resistivity is significantly reduced, it is easily and smoothly processed. If it is necessary to further reduce the resistivity, the crotch of the heating device can is heated to sinter the ultrafine particles.As a result,
This also has the effect of improving adhesion to the base surface. If a non-oxidizing atmosphere is required in the processing container 12U during heating, for example, an inert gas fi (24aJ) or cine active gas may be appropriately supplied into the container (1) via the supply pipe (25+). I'll do what I do.

容器+1)と容器CI!11内のガス圧の差は、容器I
2υ内も非酸化性ガスのガス圧が常圧又はそれ以上の圧
力に保つようにしてもよく1この場合は、真空ポンプ(
7)により容器シv内の空気金除去し排気tつ鵞けて1
方非酸化性ガス源(財)よシガスを容器CI!v内に供
給し1その非酸化性ガスによりその圧力が常圧又はそれ
以上に維持するように保持するようにし、1方容器(1
)内の非酸化性ガスの圧力をか−る容器c!v内の該ガ
ス圧よりも高く設足する。これは真空パルプtlQl、
−を夫々調節することにより達成される。図面では、真
空ボン7 (71’ii−共用したが1勿論島各別に設
けるようにしてもよい。非酸化性ガスのうち、不活性ガ
スとN!の混合ガス及び不活性ガスとH3との混合ガス
は夫々超微粒子の生成時に窒素ガスが存在すると高温の
超微粒子の表面との反応で窒化膜が形成される。水素ガ
スの存在では、高温の超微粒子表面の酸化を防止するに
役立つ。
Container +1) and Container CI! The difference in gas pressure in container I
The pressure of the non-oxidizing gas within 2υ may also be maintained at normal pressure or higher.1 In this case, a vacuum pump (
7) removes the air inside the container and exhausts it.
If you are a non-oxidizing gas source (foundation), put the gas in a container CI! The non-oxidizing gas is used to maintain the pressure at normal pressure or higher, and the one-way container (1
) Container for pressurizing non-oxidizing gas c! The gas pressure is set higher than the gas pressure within v. This is vacuum pulp tlQl,
- is achieved by adjusting respectively. In the drawing, the vacuum cylinder 7 (71'ii-1) is shared, but it may of course be provided separately for each island.Among the non-oxidizing gases, a mixture of inert gas and N! If nitrogen gas is present in the mixed gas during the generation of ultrafine particles, a nitride film will be formed by reaction with the surface of the high-temperature ultrafine particles.The presence of hydrogen gas will help prevent oxidation of the surface of the high-temperature ultrafine particles.

尚1図示しないが、N、などの活性ガス単独のガス源或
はN3などの還元性ガス単独のガス源を設けてもよい。
Although not shown, a gas source containing an active gas such as N or a reducing gas such as N3 may be provided.

このように形成した膜を形成したベースを外部に取9出
すには、予め、容器Qυの開閉弁(図示しない〕を徐々
に開けて膜の表面を徐酸化することが好ましい。
In order to take out the base on which the film has been formed in this way, it is preferable to slowly oxidize the surface of the film by gradually opening the on-off valve (not shown) of the container Qυ in advance.

実施例1 金属蒸気生成用容器内の水冷銅ハース内に15.39の
N1塊をチャージし1該容器内を高真空(くI Pa 
s 7−6 X 10 )−ル】に排気したのち、アル
ゴンガスを導入し、1.1 atm (0,11叶a)
の圧力に保つ。蒸着処理容器内はベース移動装置上にペ
ースをセットし、該容器内を高真空(〈I Pa、7.
6X10 )−ルンに排気後、アルゴンガスを導入して
0,6 atm (・0.06 MPa 、 456ト
ール)の圧力に保つ。直流電源に接続した19X”マト
ーチに高周波を印加し、パイロットアークを発生させた
のち、仝トーチと水冷鋼ハース間に直流電圧を印加して
例えば電圧52V@流50ムのプラズマアーク放WLヲ
移行し、水冷銅るつぼ内のN1を溶解せしめる。1方容
器(1)内には11/1nixでアルゴンガスを流入し
つ!け真空ポンプosIfi弁t−81itliシて常
時L1 *trrrのガス圧を保つようにする。放m關
始後約30秒経過するとNi溶湯面からN1蒸気が発生
し、煙状のN1超微粒子の生成が目視できる。放亀捌始
後1分後に搬送管のパルプ′t−開き、該容器からアル
ゴンガスと共に生成N1超微粒子を蒸着処理容器内に搬
送しノズルよりスライドグラスのペース上面にスプレー
する◎ペースは30■層の速度で移動し一スプレー時間
2分間で長さ60■の超微粒子膜を形成し友。その膜の
幅は041111厚さ#′14.1声謂であった◎こO
形成膜を大気中に取り出し電気抵抗を測定した所、5.
8×10 Ω・aを示した。この値は、前記特許出願の
方法で1アルゴン雰囲気中で徐酸化処理N1超微粒子の
膜を形成し1その後500°Cに加熱した膜の比抵抗値
の約りであった。
Example 1 A 15.39 ml of N1 ingot was charged into a water-cooled copper hearth in a metal vapor generation container, and the inside of the container was evacuated to a high vacuum (I Pa).
After exhausting to 1.1 atm (0,11 a), argon gas was introduced.
Keep at pressure. Inside the vapor deposition processing container, a pace is set on the base moving device, and the inside of the container is placed under a high vacuum (<I Pa, 7.
After evacuating the 6×10 )-run, argon gas was introduced to maintain the pressure at 0.6 atm (·0.06 MPa, 456 torr). After applying a high frequency to a 19X” torch connected to a DC power source to generate a pilot arc, apply a DC voltage between the torch and the water-cooled steel hearth to transfer the plasma arc discharge WL with a voltage of 52V @ current of 50m, for example. Then, N1 in the water-cooled copper crucible is dissolved.Argon gas is introduced into the one-way container (1) at a rate of 11/1nix, and the vacuum pump osIfi valve t-81itli is turned on to maintain a gas pressure of L1*trrr at all times. Approximately 30 seconds after the start of release, N1 vapor is generated from the Ni molten metal surface, and the formation of smoky N1 ultrafine particles can be visually observed. 1 minute after the start of release, the pulp in the conveying pipe ' T-open, the generated N1 ultrafine particles are transported from the container together with argon gas into the vapor deposition processing container, and sprayed from the nozzle onto the top surface of the paste on the slide glass.◎The paste moves at a speed of 30 layers, and one spray time is 2 minutes long. The width of the film was 041111 and the thickness #'14.1.
When the formed film was taken out into the atmosphere and its electrical resistance was measured, 5.
It showed 8×10 Ω・a. This value was approximately the specific resistance value of a film formed by slowly oxidizing N1 ultrafine particles in an argon atmosphere using the method disclosed in the patent application and then heated to 500°C.

実施例2 金属部材としてT1ヲ使用し1プラズマ電圧34V仝電
流50Aで加熱蒸発し1生成用呈容器内atm (0,
04MPa、 504 )−ルンとした以外は、実施例
1と同じ条件で笑施し、長さ61m5幅0.5閣厚さ3
.8戸−の膜を形成した・この比抵抗は6.5Ωαで導
通性の膜として得られた。
Example 2 T1 was used as a metal member and heated and evaporated with a plasma voltage of 34 V and a current of 50 A to create an ATM (0,
04 MPa, 504) - The test was carried out under the same conditions as in Example 1 except that it was run.
.. Eight films were formed, and the resistivity was 6.5Ωα, resulting in a conductive film.

不法は、上記の他、Mbs Ta5Zrs Hls M
o、 Wなどの高融点金属、1・、00などの遷移金属
、Aノ、Orなどの活性金属、Ags Ouなどの導電
金属、Au、Ptなどの貴金属などの種々の金属、又は
その合金等によりその超微粒子膜の形成が可能である。
In addition to the above, illegal activities include Mbs Ta5Zrs Hls M
Various metals such as high melting point metals such as O, W, transition metals such as 1,00, active metals such as A, Or, conductive metals such as Ags O, noble metals such as Au and Pt, or alloys thereof, etc. This makes it possible to form the ultrafine particle film.

尚1上記のプラズマアーク加熱以外に、加熱装置として
、アーク加熱−高周波銹導加熱、抵抗加熱、レーザー加
熱などが使用できる・このように本発明によるときは、
金属蒸発生成用容器と蒸着処理容器とこれら容器を接続
する搬送管とから成シ、該金属蒸発生成用容器内で生成
せしめた金属部材の蒸気t%該容器内に導入した非酸化
性ガスと共に該容器内と蒸着処理容器内との圧力の差を
利用して該搬送管を介して該蒸着処理容器に導入しその
搬送管の先端のノズルよシそのガスによりベース面に吠
き付けるようにしたので一ペース向には酸化されない超
微粒子の膜が形成し得られ、比抵抗の比較的低い膜が得
られる効果を有する。
Note that 1. In addition to the plasma arc heating described above, as a heating device, arc heating-high frequency induction heating, resistance heating, laser heating, etc. can be used. In this way, according to the present invention,
Consisting of a metal evaporation production container, a vapor deposition processing container, and a conveyance pipe connecting these containers, vapor t% of the metal member generated in the metal evaporation production container together with a non-oxidizing gas introduced into the container Utilizing the difference in pressure between the inside of the container and the inside of the vapor deposition processing container, the gas is introduced into the vapor deposition processing container via the transport pipe, and the gas is applied to the base surface through a nozzle at the tip of the transport pipe. Therefore, a film of ultrafine particles that is not oxidized in one direction can be formed, and a film with relatively low resistivity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は不法を実施する装置の1例の線図である0 (1)−・・金属蒸発生成用器 (3)・・・金属材料
加熱装置a・・・金属材料 (5)−・・非酸化性ガス
源 (7)・・・真空ポンプ (19−・・搬送管 翰
・・・ノズルシト・・蒸着処理容器 特許出鳳人 新手技、ツ術ミ・梶1発【事、゛業、団同
上 林 主税 同 上 賀 集 誠一部
The drawing is a diagram of an example of a device for carrying out illegal acts. Source of oxidizing gas (7)...Vacuum pump (19-...Transport pipe)...Nozzle seat...Vapor deposition processing container Patent creator Same as above.

Claims (1)

【特許請求の範囲】 を非酸化性ガスの雰囲気とした金属蒸気生成用容器内で
金属材料を加熱蒸発して超微粒子に生成せしめNこれを
搬送管を介して該非酸化性ガスと共に蒸着処理容器内に
導入し1該蒸着容器内で搬送管の先端のノズルより超微
粒子をその非酸化性ガスの噴気を介してその超微粒子を
被処理ベース面に吹付は咳面に超微粒子の膜を付着形成
せしめることを特徴とする超微粒子膜の形成法◎ 2該金属蒸気生成用容器内と蒸着処理容器内とのガス圧
の差を利用して生成金属蒸気を搬送管を介して蒸着処理
容器内に圧送又は吸引搬送すると共にノズルより噴気せ
しめるようにしたことを特徴とする特rf諸求の範囲1
項に記載の形成法。 五内部に金属材料の加熱装置をもち1且つ非酸化性ガス
を導入されるようにした金属蒸気生成用容器と、該容器
より導出する先端にノズルをもつ搬送管と1内部に該搬
送管のノズルをもつ先端部と、被処理部材をセットする
設置部とを備え、且つ非酸化性ガスを導入されるように
した蒸着処理容器と、該金属蒸気生成用容器と該蒸着処
理容器とに接続する排気真空装置とから成る超微粒子膜
の形成装置。
[Claims] A metal material is heated and evaporated to form ultrafine particles in a metal vapor generation container with a non-oxidizing gas atmosphere, and the N is transferred together with the non-oxidizing gas to a vapor deposition processing container via a conveying pipe. 1. Inside the vapor deposition container, the ultrafine particles are sprayed onto the base surface to be treated through the non-oxidizing gas fumes from the nozzle at the tip of the conveying pipe, thereby depositing a film of ultrafine particles on the surface of the base. 2. A method for forming an ultrafine particle film characterized by forming an ultrafine particle film. Scope 1 of special RF requirements, characterized in that the device is pressure-fed or suction-conveyed and emitted from a nozzle.
Formation method described in Section. (5) a metal vapor generation container having a metal material heating device inside (1) and into which a non-oxidizing gas is introduced; A vapor deposition processing container comprising a tip portion having a nozzle and an installation portion for setting a member to be processed, and into which a non-oxidizing gas is introduced, and connected to the metal vapor generation container and the vapor deposition processing container. An ultrafine particle film forming device consisting of an exhaust vacuum device.
JP21169583A 1983-11-12 1983-11-12 Method and apparatus for forming film of hyperfine particles Granted JPS60106964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21169583A JPS60106964A (en) 1983-11-12 1983-11-12 Method and apparatus for forming film of hyperfine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21169583A JPS60106964A (en) 1983-11-12 1983-11-12 Method and apparatus for forming film of hyperfine particles

Publications (2)

Publication Number Publication Date
JPS60106964A true JPS60106964A (en) 1985-06-12
JPH0216379B2 JPH0216379B2 (en) 1990-04-17

Family

ID=16610052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21169583A Granted JPS60106964A (en) 1983-11-12 1983-11-12 Method and apparatus for forming film of hyperfine particles

Country Status (1)

Country Link
JP (1) JPS60106964A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270058A (en) * 1988-09-01 1990-03-08 Stanley Electric Co Ltd Stabilized superfine particle film forming device
JPH0273958A (en) * 1988-09-09 1990-03-13 Stanley Electric Co Ltd Device for forming superfine-particle film
US5104293A (en) * 1990-07-16 1992-04-14 United Technologies Corporation Method for applying abrasive layers to blade surfaces
JPH0627329B2 (en) * 1984-02-13 1994-04-13 シュミット,ジェロウム・ジェイ・ザ・サ−ド Method and apparatus for gas jet deposition of conductive and dielectric solid thin films and products produced thereby

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07137681A (en) * 1993-11-18 1995-05-30 Toshihisa Suga Electric auxiliary driving device in bicycle
JPH07291175A (en) * 1994-04-25 1995-11-07 Kinzo Matsunaga Auxiliary driving device for bicycle
JP4828108B2 (en) * 2004-10-14 2011-11-30 タマティーエルオー株式会社 Physical vapor deposition equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627329B2 (en) * 1984-02-13 1994-04-13 シュミット,ジェロウム・ジェイ・ザ・サ−ド Method and apparatus for gas jet deposition of conductive and dielectric solid thin films and products produced thereby
JPH0270058A (en) * 1988-09-01 1990-03-08 Stanley Electric Co Ltd Stabilized superfine particle film forming device
JPH0791631B2 (en) * 1988-09-01 1995-10-04 スタンレー電気株式会社 Stabilized ultrafine particle film forming equipment
JPH0273958A (en) * 1988-09-09 1990-03-13 Stanley Electric Co Ltd Device for forming superfine-particle film
US5104293A (en) * 1990-07-16 1992-04-14 United Technologies Corporation Method for applying abrasive layers to blade surfaces

Also Published As

Publication number Publication date
JPH0216379B2 (en) 1990-04-17

Similar Documents

Publication Publication Date Title
US5070228A (en) Method for plasma spray joining active metal substrates
Nomura et al. Nanostructure of wetting triple line in a Ag–Cu–Ti/Si3N4 reactive system
US20060051950A1 (en) Apparatus and a method for forming an alloy layer over a substrate
JPS59211574A (en) Method and device for coating supporter with substance whichconverts to gas phase electrically
JP2006506519A (en) Plasma spray method
JPS60106964A (en) Method and apparatus for forming film of hyperfine particles
JP2012201986A (en) Plasma spray method for producing ion conducting membrane
JPH06116743A (en) Formation of particulate film by gas deposition method and its forming device
JPS60116785A (en) Method and apparatus for continuously manufacturing high value metal coating
Sun et al. Production of porous nanostructured zinc oxide thin films by pulsed laser deposition
KR20180130546A (en) Metal evaporation material
JP2012241284A (en) Arc spraying method for forming dense layer
JPH04297566A (en) Method for treating surface of metallic material
JPS642186B2 (en)
JP2000017427A (en) Gas deposition method and its apparatus
GB1574677A (en) Method of coating electrically conductive components
JP2004115833A (en) Mo-Si-B ALLOY
JPH03158478A (en) Method and device for coating substrate
JPH0775689B2 (en) Thermal plasma jet generator
JPH028357A (en) Thermal spraying method
JPS62103308A (en) Apparatus for producing ultrafine particles
JPH01147050A (en) Film formation
JP2779000B2 (en) Induction plasma generator
JPH02225670A (en) Formation of thin metallic film by cvd method
JPS63162573A (en) Manufacture of titanium nitride film