JPH0273958A - Device for forming superfine-particle film - Google Patents

Device for forming superfine-particle film

Info

Publication number
JPH0273958A
JPH0273958A JP22450188A JP22450188A JPH0273958A JP H0273958 A JPH0273958 A JP H0273958A JP 22450188 A JP22450188 A JP 22450188A JP 22450188 A JP22450188 A JP 22450188A JP H0273958 A JPH0273958 A JP H0273958A
Authority
JP
Japan
Prior art keywords
ultrafine particle
chamber
ultrafine
particles
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22450188A
Other languages
Japanese (ja)
Inventor
Satoshi Okada
智 岡田
Katsura Tsukada
塚田 桂
Kazuhito Ogura
小倉 和仁
Hideki Toyotama
英樹 豊玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Stanley Electric Co Ltd
Original Assignee
Research Development Corp of Japan
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Stanley Electric Co Ltd filed Critical Research Development Corp of Japan
Priority to JP22450188A priority Critical patent/JPH0273958A/en
Publication of JPH0273958A publication Critical patent/JPH0273958A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To excellently collect superfine particles and to stably supply the particles by sending the superfine particles formed in a superfine-particle forming chamber to a film forming chamber through a transparent pipe having an expanding inlet part at its end in the particle forming chamber, and depositing the particles on an object. CONSTITUTION:The raw material in a crucible 5 is vaporized in an inert carrier gas atmosphere in the superfine particle forming chamber 1 to form superfine particles. The chamber 1 is connected to the film forming chamber 2 by the transparent pipe 10. The expanding inlet part 20 is provided at the end of the transparent pipe 10 in the forming chamber 1. The superfine particles are sent to the film forming chamber 2 from the inlet part 20, and blown against a substrate 7 as the object from a nozzle 11 to deposit a superfine-particle film 12. By this method, superfine particles can be excellently collected and stably supplied.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、対象物の表面に超微粒子の被膜等を形成する
超微粒子膜形成装置に関し、特に超微粒子生成室から膜
形成室に圧力差を用いて超微粒子を搬送する超微粒子膜
形成装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an ultrafine particle film forming apparatus that forms a film of ultrafine particles on the surface of an object, and in particular, to The present invention relates to an ultrafine particle film forming apparatus that transports ultrafine particles using.

[従来の技術] ガラス板や金属板のような被吸着物の表面に超微粒子膜
を形成するための装置として、たとえば特開昭60−1
06964号公報に開示されているものを挙げることが
できる。
[Prior Art] As an apparatus for forming an ultrafine particle film on the surface of an adsorbed object such as a glass plate or a metal plate, for example, Japanese Patent Laid-Open No. 60-1
Examples include those disclosed in Japanese Patent No. 06964.

第3図にこの種の従来技術による超微粒子膜形成装置を
示す。超微粒子膜形成装置は超微粒子生成室31と膜形
成室32を備える。
FIG. 3 shows an ultrafine particle film forming apparatus according to this type of conventional technology. The ultrafine particle film forming apparatus includes an ultrafine particle generation chamber 31 and a film formation chamber 32.

超微粒子生成室31には、不活性ガス等のキャリアガス
兼雰囲気ガスをを提供するガス源33がバルブ36を介
して接続され、加熱用電源34に接続された蒸発原料を
収容するるっぽ35が配設されている。
A gas source 33 that provides a carrier gas such as an inert gas and an atmosphere gas is connected to the ultrafine particle generation chamber 31 via a valve 36, and a gas source 33 that accommodates the evaporation raw material is connected to a heating power source 34. 35 are arranged.

また膜形成室32には、表面に超微粒子膜42が形成さ
れる基板37が移動ステージ38上に収容されている。
Further, in the film forming chamber 32, a substrate 37 on which an ultrafine particle film 42 is formed is accommodated on a moving stage 38.

移動ステージ38はモータ等の駆動系39によって駆動
される。
The moving stage 38 is driven by a drive system 39 such as a motor.

超微粒子生成室31と膜形成室32には高真空(10’
Torr程度以上)の真空排気装置45.46が真空バ
ルブ47.48を介して接続されている。
A high vacuum (10'
A vacuum evacuation device 45, 46 (about Torr or higher) is connected via a vacuum valve 47, 48.

この超微粒子生成室31と膜形成室32はガス搬送管構
造40を介して連通されている。ガス搬送管構造40は
、三方コックのようなバルブ43で接続されたパイプ4
4とパイプ45とを有する6膜形成室32内のガス搬送
管構造40のパイプ45の端部には基板に向けて超微粒
子を吹き付けるスプレーノズル41が接続されている。
The ultrafine particle generation chamber 31 and the film formation chamber 32 are communicated with each other via a gas transport pipe structure 40. The gas conveying pipe structure 40 includes pipes 4 connected by a valve 43 like a three-way cock.
A spray nozzle 41 for spraying ultrafine particles toward the substrate is connected to the end of the pipe 45 of the gas transport pipe structure 40 in the six-film forming chamber 32 having the six-layer film forming chamber 32 and the pipe 45 .

上述の超微粒子液形成装置において、超微粒子生成室3
1と膜形成室32とを高真空に排気し、その後超微粒子
生成室31内に雰囲気ガスとして不活性ガス(ヘリウム
He、アルゴン計等)を数十ないし数百Torr導入す
る。この雰囲気ガスはバルブ43を開けることによって
膜形成室32にも流入する。膜形成室32の真空度(圧
力)は真空排気系46によって0,1〜数■0「「に保
たれる。
In the ultrafine particle liquid forming apparatus described above, the ultrafine particle generation chamber 3
1 and the film forming chamber 32 are evacuated to a high vacuum, and then an inert gas (helium He, argon meter, etc.) is introduced into the ultrafine particle generating chamber 31 as an atmospheric gas at tens to hundreds of Torr. This atmospheric gas also flows into the film forming chamber 32 by opening the valve 43. The degree of vacuum (pressure) in the film forming chamber 32 is maintained at 0.1 to several 0.0 by an evacuation system 46.

雰囲気ガス導入後、るつぼ35内に収容された原料を抵
抗加熱等によって加熱し、雰囲気ガス中に蒸発させる。
After introducing the atmospheric gas, the raw material contained in the crucible 35 is heated by resistance heating or the like and evaporated into the atmospheric gas.

るつぼから蒸発した原料原子が雰囲気ガス分子と衝突し
つつ次第に成長し、超微粒子が形成される6 バルブ43が開いていると、数十ないし数百7゜r「の
比較的高圧力(低真空)に保たれた超微粒子生成室31
から0.1〜数Torrの比較的低圧力(高真空)に保
たれた膜形成室32に雰囲気ガスが圧力差によってガス
搬送管構造40を通って送給される。
The raw material atoms evaporated from the crucible collide with atmospheric gas molecules and gradually grow, forming ultrafine particles.6 When the valve 43 is open, relatively high pressure (low vacuum) of tens to hundreds of 7° ) Ultrafine particle generation chamber 31 maintained at
Atmospheric gas is fed to the film forming chamber 32 maintained at a relatively low pressure (high vacuum) of 0.1 to several Torr through the gas conveying pipe structure 40 due to the pressure difference.

成長した超微粒子は雰囲気ガスとともに膜形成室32に
流れ込み、スプレーノズル41から基板37に向けて吹
き付けられる。このようにして基板37表面に超微粒子
膜42か形成される。
The grown ultrafine particles flow into the film forming chamber 32 together with the atmospheric gas and are sprayed from the spray nozzle 41 toward the substrate 37 . In this way, an ultrafine particle film 42 is formed on the surface of the substrate 37.

[発明が解決しようとする課題] 上述のごとき従来技術によれば、以下のような解決すべ
き課題がある。
[Problems to be Solved by the Invention] According to the prior art as described above, there are the following problems to be solved.

超微粒子を導入するパイプ44か細く、超微粒子の上昇
する流れがパイプ径以上に拡がってしまうために、生成
した超微粒子を効率良く収集搬送することができない。
The pipe 44 that introduces the ultrafine particles is thin, and the upward flow of the ultrafine particles spreads beyond the diameter of the pipe, making it impossible to efficiently collect and transport the generated ultrafine particles.

不活性ガスを導入する際、超微粒子の上昇する流れにむ
らができ、パイプ44に流れ込む超微粒子の量に変動が
生じ、一定量の超微粒子を収集し、膜形成室32に搬送
することが離しい。
When inert gas is introduced, the upward flow of ultrafine particles becomes uneven, and the amount of ultrafine particles flowing into the pipe 44 fluctuates, making it impossible to collect a certain amount of ultrafine particles and transport them to the film forming chamber 32. I'm away.

本発明の目的は、生成した超微粒子を効率よく収集し、
かつ安定に供給することのできる超微粒子膜形成装置を
提供することである。
The purpose of the present invention is to efficiently collect the generated ultrafine particles,
Another object of the present invention is to provide an apparatus for forming an ultrafine particle film that can stably supply ultrafine particles.

[課題を解決するための手段] 真空排気系に接続され、雰囲気ガス中で原料を蒸発する
ことによって超微粒子を生成する超微粒子生成室と、真
空排気系に接続され、対象物上に超微粒子を吹き付けて
付着させる膜形成室と、超微粒子を搬送するために超微
粒子生成室と膜形成室とを連通ずる搬送管構造とを有す
る超微粒子膜形成装置において、超微粒子生成室内の端
部に先拡がりの導入部を備える。
[Means for solving the problem] An ultrafine particle generation chamber that is connected to a vacuum evacuation system and generates ultrafine particles by evaporating raw materials in an atmospheric gas; In an ultrafine particle film forming apparatus having a film forming chamber for spraying and depositing ultrafine particles, and a transport pipe structure for communicating the ultrafine particle generation chamber and the film forming chamber for transporting the ultrafine particles, a Equipped with a widening introduction section.

[作用] 雰囲気中で原料を蒸発すると、蒸発した原料原子は雰囲
気ガスの分子と衝突しながら成長し、拡がりつつ上昇す
る。超微粒子生成室と膜形成室との間に一定の圧力差を
保つには、両室を結ぶ搬送管構造の内径はある値以下に
抑えることが好ましい。すると、超微粒子の上昇する流
れの拡がりが搬送管構造のパイプ内径よりも大きくなっ
てしまい、効率良く収集することができない。
[Operation] When the raw material is evaporated in an atmosphere, the evaporated raw material atoms grow while colliding with the molecules of the atmospheric gas, and rise while expanding. In order to maintain a constant pressure difference between the ultrafine particle generation chamber and the film formation chamber, it is preferable to suppress the inner diameter of the transport pipe structure connecting the two chambers to a certain value or less. As a result, the spread of the upward flow of ultrafine particles becomes larger than the inner diameter of the pipe of the transport tube structure, making it impossible to collect them efficiently.

搬送管構造の超微粒子生成室内の端部に先拡がりの導入
部を設けると、搬送管本体の内径とは独立に導入部の内
径を選択できる。超微粒子の上昇する流れの拡がりに応
じた直径を有する導入部を設けることにより、生成した
超微粒子を効率良く収集し、膜形成室に搬送することが
できる。
By providing a tapering introduction section at the end of the ultrafine particle generation chamber of the transport tube structure, the inner diameter of the introduction section can be selected independently of the inner diameter of the transport tube body. By providing an introduction portion having a diameter corresponding to the spread of the upward flow of ultrafine particles, the generated ultrafine particles can be efficiently collected and transported to the film forming chamber.

また、超m粒子を生成させるなめに不活性ガスを導入す
る際、不活性ガスの流れにより超微粒子の上昇する流れ
が乱れる。この場合、超微粒子の上昇する流れの乱れに
よって、搬送管構造に収集され、膜形成室へ搬送される
超微粒子の量にむらが生じ、均一な膜が形成できなかっ
た。
Further, when an inert gas is introduced to generate ultra-m particles, the upward flow of the ultra-fine particles is disturbed by the flow of the inert gas. In this case, the turbulence of the upward flow of ultrafine particles caused unevenness in the amount of ultrafine particles collected in the transport tube structure and transported to the film forming chamber, making it impossible to form a uniform film.

しかしながら、超微粒子の上昇する流れの乱れの拡がり
に応じた直径をもつ導入部を設けることにより、常に一
定量の超微粒子を搬送することができ、均一な膜を形成
することができる。
However, by providing an introduction portion with a diameter that corresponds to the extent of the turbulence in the upward flow of ultrafine particles, a constant amount of ultrafine particles can be transported at all times, and a uniform film can be formed.

[実施例] 第1図は本発明の実施例による超微粒子膜形成装置を示
す、超微粒子膜形成装置は超微粒子生成室1と膜形成室
2を備える。
[Example] FIG. 1 shows an ultrafine particle film forming apparatus according to an example of the present invention. The ultrafine particle film forming apparatus includes an ultrafine particle generation chamber 1 and a film formation chamber 2.

超微粒子生成室1には、不活性ガス等のキャリアガス兼
雰囲気ガスを供給するガス源3がバルブ6を介して接続
され、加熱用電源4に接続され、蒸発原料を収容するる
つぼ5が配設されている。
The ultrafine particle generation chamber 1 is connected to a gas source 3 for supplying a carrier gas and an atmosphere gas such as an inert gas via a valve 6, is connected to a heating power source 4, and is provided with a crucible 5 for storing evaporation raw materials. It is set up.

また、膜形成室2内には移動ステージ8が配設され、電
動モータの如き駆動源9によって駆動されるようになっ
ている。この移動ステージ8の上面には、ガラス板や金
属板の々aき基板7がt!!置される。
Furthermore, a moving stage 8 is disposed within the film forming chamber 2 and is driven by a drive source 9 such as an electric motor. On the upper surface of this moving stage 8, a substrate 7 made of a glass plate or a metal plate is mounted. ! placed.

超微粒子膜形成装置1と膜形成室2には高真空(10’
Torr程度以上)の真空排気装置22.24が真空バ
ルブ26.28を介して接続されている。
The ultrafine particle film forming apparatus 1 and film forming chamber 2 are equipped with a high vacuum (10'
A vacuum evacuation device 22.24 (of the order of Torr or higher) is connected via a vacuum valve 26.28.

この超微粒子生成室1と膜形成室2はガス搬送管構造1
0を介して連通されている。カス搬送管構造10は三方
コックのようなバルブ13で接続されたパイプ14と1
5とを有する。超微粒子生成室1内のパイプ14の端部
には導入部20を備え、膜形成室2内のバイア15の端
部には基板に向けて超微粒子を吹き付けるスズレーノズ
ル11を備える。
The ultrafine particle generation chamber 1 and the film formation chamber 2 have a gas conveying pipe structure 1.
0. The waste conveyance pipe structure 10 has pipes 14 and 1 connected by a valve 13 like a three-way cock.
5. An introduction section 20 is provided at the end of the pipe 14 in the ultrafine particle generation chamber 1, and a Suzuley nozzle 11 for spraying ultrafine particles toward the substrate is provided at the end of the via 15 in the film forming chamber 2.

搬送管構造10の超微粒子生成室1内の端部の構造を拡
大して、第2図に示す。搬送管を楕成するパイプ14の
端部に朝顔形の導入部20がコネクタ金具16を介して
接続されている。朝顔形の大径部は蒸発源であるるつぼ
5から拡がりながら上昇する超微粒子雲の外径を収め、
かつ雰囲気ガス源3からのガスの流れによって雰囲気ガ
スが揺らいでも、そのほとんどを納めることのできる程
度の大きさに設定する。朝顔形の導入ti520におい
て、内径はしだいに拡がり、大径部は小径部の3倍以上
の径をもつことが好ましい。たとえば、1/4インチ径
のパイプ14に接続された朝顔形20の大径部は内径的
8c11である。材質は超微粒子が付着しにくいものが
好ましいが、特に限定されない、たとえば、真鍮で作る
ことができる。
FIG. 2 shows an enlarged view of the structure of the end of the transport tube structure 10 inside the ultrafine particle generation chamber 1. A morning glory-shaped introduction part 20 is connected to an end of a pipe 14 forming an oval conveying pipe via a connector fitting 16. The morning glory-shaped large diameter part accommodates the outer diameter of the ultrafine particle cloud rising while expanding from the crucible 5, which is the evaporation source.
In addition, even if the atmospheric gas fluctuates due to the flow of gas from the atmospheric gas source 3, the size is set to such an extent that most of it can be accommodated. In the morning glory-shaped introduction ti520, the inner diameter gradually widens, and it is preferable that the large diameter part has a diameter three times or more that of the small diameter part. For example, the large diameter portion of the morning glory shape 20 connected to the 1/4 inch diameter pipe 14 has an inner diameter of 8c11. The material is preferably one to which ultrafine particles do not easily adhere, but is not particularly limited. For example, it can be made of brass.

例えば、径450〜5001I、高さ500〜600u
のベルジャで超微粒子生成室1を楕成し、径約250m
m、高さ約300tpriのベルジャで膜形成室2を形
成し、1/4インチ径のパイプ14.15を用いて両者
を接続した。
For example, diameter 450-5001I, height 500-600u
The ultrafine particle generation chamber 1 is formed into an oval shape with a bell jar of approximately 250 m in diameter.
The film forming chamber 2 was formed using a bell jar with a height of approximately 300 tpri, and the two were connected using pipes 14 and 15 with a diameter of 1/4 inch.

以下、超微粒子の形成を説明する。The formation of ultrafine particles will be explained below.

上述の超微粒子膜形成装置において、超微粒子生成室1
と膜形成室2とを高真空に排気し、その後超微粒子生成
室1に雰囲気ガスとして不活性ガス(ヘリウムHe、ア
ルゴンへr等)を数十ないし数百Torr導入する。こ
の雰囲気ガスはバルブ13を開けることによって膜形成
室2にも流入する。膜形成室2の真空度(圧力)は真空
排気系24によって0,1〜数Torrに保たれる。
In the ultrafine particle film forming apparatus described above, the ultrafine particle generation chamber 1
and the film forming chamber 2 are evacuated to a high vacuum, and then an inert gas (helium, He, argon, r, etc.) is introduced into the ultrafine particle generating chamber 1 as an atmospheric gas at tens to hundreds of Torr. This atmospheric gas also flows into the film forming chamber 2 by opening the valve 13. The degree of vacuum (pressure) in the film forming chamber 2 is maintained at 0.1 to several Torr by an evacuation system 24.

雰囲気ガス導入後、抵抗加熱等によってるつぼ5を加熱
し、るつぼ5内に収容された原料を雰囲気ガス中に蒸発
させる。このとき、るつぼ5周辺の雰囲気ガスも暖めら
れ、蒸発した蒸気と共に、るつぼ5から上方に上がる上
昇気流を作る。るっぽ5から蒸発した原料原子は上昇気
流内で雰囲気ガス分子と衝突しつつ次第に成長し、超微
粒子が形成される。
After introducing the atmospheric gas, the crucible 5 is heated by resistance heating or the like, and the raw material contained in the crucible 5 is evaporated into the atmospheric gas. At this time, the atmospheric gas around the crucible 5 is also warmed, and together with the evaporated steam, an upward air current rising from the crucible 5 is created. The raw material atoms evaporated from Ruppo 5 gradually grow while colliding with atmospheric gas molecules in the updraft, forming ultrafine particles.

この上昇気流を納めるように上方に朝顔形の導入部20
が配置されている。成長した超微粒子は雰囲気ガスとと
もに朝顔形の導入部20に送り込まれる。超微粒子生成
室1と膜形成室2との間には圧力差が形成されているの
で、雰囲気ガスは圧力(真空度)が数十ないし数百To
rrの超微粒子生成室1からガス搬送管構造10を通っ
て圧力(真空度)が0.1〜数■0「「程度の膜形成室
2内にと送給される。
A morning glory-shaped introduction section 20 is placed upward to accommodate this rising airflow.
is located. The grown ultrafine particles are sent into the morning glory-shaped introduction section 20 together with the atmospheric gas. Since a pressure difference is created between the ultrafine particle generation chamber 1 and the film formation chamber 2, the pressure (degree of vacuum) of the atmospheric gas is several tens to hundreds of To
The ultrafine particle generation chamber 1 of RR is fed through the gas transport pipe structure 10 into the film formation chamber 2 at a pressure (degree of vacuum) of 0.1 to several 0.0 mm.

例えば、るつぼ5と導入部20との間の距離を20〜3
00cnとし、径約数百ないし数千人の超微粒子を作製
した。この程度の粒径では、超微粒子はタバコの煙のよ
うに上昇し、朝顔形の導入部20に収まった。
For example, the distance between the crucible 5 and the introduction part 20 is set to 20 to 3
00cn, and ultrafine particles with a diameter of approximately several hundred to several thousand particles were produced. With a particle size of this size, the ultrafine particles rose like cigarette smoke and settled in the morning glory-shaped introduction section 20.

搬送管構造10の他端には、内部断面を絞ったスプレー
ノズル11が設けられており、超微粒子はスプレーノズ
ル11から基板7に向けて吹き付けられる。このように
して基板7表面に超微粒子膜12が形成される。
A spray nozzle 11 with a narrowed internal cross section is provided at the other end of the transport tube structure 10, and the ultrafine particles are sprayed toward the substrate 7 from the spray nozzle 11. In this way, the ultrafine particle film 12 is formed on the surface of the substrate 7.

以上、本発明に従う超微粒子膜形成装置の実施例につい
て説明したが、本発明はこれら実施例に限定されるもの
ではなく、本発明の範囲を逸脱することなく種々の変形
乃至修正が可能である。
Although the embodiments of the ultrafine particle film forming apparatus according to the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes can be made without departing from the scope of the present invention. .

[発明の効果] 本発明の超微粒子膜形成装置では、搬送管構造の超微粒
子を収集する端部に先拡がりの導入部を設けているので
、超微粒子を含む上昇気流が拡がっても、また雰囲気ガ
スの導入によって揺らいでも超微粒子を効率良く収集し
、安定に供給することができる。
[Effects of the Invention] In the ultrafine particle film forming apparatus of the present invention, since the introduction part with a widening tip is provided at the end of the conveying tube structure that collects the ultrafine particles, even if the upward air current containing the ultrafine particles expands, By introducing atmospheric gas, ultrafine particles can be collected efficiently and stably supplied even with fluctuations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例による超微粒子膜形成装置を
示す概略断面図、 第2図は、第1図の超微粒子膜形成装置に用いた搬送管
構造の導入部を拡大して示す正面図、第3図は、従来技
術による超微粒子膜形成装置の例を示す概略断面図であ
る。 超微粒子生成室 膜形成室 電源 るつぼ 搬送管構造 ノズル 】 2 搬送管構造のパイプ コネクタ金具 搬送管構造の導入部
FIG. 1 is a schematic cross-sectional view showing an ultrafine particle film forming apparatus according to an embodiment of the present invention, and FIG. 2 is an enlarged view of the introduction part of the conveying tube structure used in the ultrafine particle film forming apparatus of FIG. The front view and FIG. 3 are schematic cross-sectional views showing an example of an ultrafine particle film forming apparatus according to the prior art. Ultrafine particle generation chamber Film formation chamber Power source Crucible Transport pipe structure Nozzle] 2 Pipe connector metal fittings of transport pipe structure Introduction part of transport pipe structure

Claims (2)

【特許請求の範囲】[Claims] (1)、真空排気系に接続され、雰囲気ガス中で原料を
蒸発することによって超微粒子を生成する超微粒子生成
室と、 真空排気系に接続され、対象物上に超微粒子を吹き付け
て付着させる膜形成室と、 超微粒子生成室と膜形成室とを連通し、超微粒子生成室
で生成した超微粒子を膜形成室に搬送するための搬送管
構造であつて、超微粒子生成室と膜形成室とを連通する
搬送管部と、超微粒子生成室内の搬送管部の端部に備え
られた先拡がりの導入部を有する搬送管構造と を有することを特徴とする超微粒子膜形成装置。
(1) An ultrafine particle generation chamber that is connected to the vacuum evacuation system and generates ultrafine particles by evaporating raw materials in an atmospheric gas, and an ultrafine particle generation chamber that is connected to the vacuum evacuation system and sprays and adheres the ultrafine particles onto the target object. A transport pipe structure for communicating the film formation chamber, the ultrafine particle generation chamber, and the film formation chamber, and for transporting the ultrafine particles generated in the ultrafine particle generation chamber to the film formation chamber, wherein the ultrafine particle generation chamber and the film formation chamber An apparatus for forming an ultrafine particle film, comprising: a transport pipe section that communicates with the ultrafine particle production chamber; and a transport pipe structure having a divergent introduction section provided at an end of the transport pipe section within the ultrafine particle generation chamber.
(2)、前記導入部がコネクタ部材によって搬送管に接
続されていることを特徴とする請求項1記載の超微粒子
膜形成装置。
(2) The ultrafine particle film forming apparatus according to claim 1, wherein the introduction section is connected to a conveyance pipe by a connector member.
JP22450188A 1988-09-09 1988-09-09 Device for forming superfine-particle film Pending JPH0273958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22450188A JPH0273958A (en) 1988-09-09 1988-09-09 Device for forming superfine-particle film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22450188A JPH0273958A (en) 1988-09-09 1988-09-09 Device for forming superfine-particle film

Publications (1)

Publication Number Publication Date
JPH0273958A true JPH0273958A (en) 1990-03-13

Family

ID=16814789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22450188A Pending JPH0273958A (en) 1988-09-09 1988-09-09 Device for forming superfine-particle film

Country Status (1)

Country Link
JP (1) JPH0273958A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150332A (en) * 1978-05-18 1979-11-26 Matsushita Electric Ind Co Ltd Ultra fine granules evaporator
JPS60106964A (en) * 1983-11-12 1985-06-12 Res Dev Corp Of Japan Method and apparatus for forming film of hyperfine particles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150332A (en) * 1978-05-18 1979-11-26 Matsushita Electric Ind Co Ltd Ultra fine granules evaporator
JPS60106964A (en) * 1983-11-12 1985-06-12 Res Dev Corp Of Japan Method and apparatus for forming film of hyperfine particles

Similar Documents

Publication Publication Date Title
US5736073A (en) Production of nanometer particles by directed vapor deposition of electron beam evaporant
US5534314A (en) Directed vapor deposition of electron beam evaporant
US6471782B1 (en) Precursor deposition using ultrasonic nebulizer
US7155115B2 (en) Method and device for vacuum sputtering
JP3910466B2 (en) Manufacturing method and manufacturing apparatus of semiconductor or insulator / metal / layered composite cluster
JPH0273958A (en) Device for forming superfine-particle film
KR100916944B1 (en) Continuous desposition apparatus and method of fixing solid powder on diverse substrates
US4466876A (en) Thin layer depositing apparatus
KR101230241B1 (en) Method of Aerosol Deposition for Ceramic Powder
JP2003328138A (en) Micro-plasma cvd apparatus
JPH0270058A (en) Stabilized superfine particle film forming device
JPH04120270A (en) Method and device for generating cluster ion beam
JPS5925884Y2 (en) sputtering device
JPH04120271A (en) Method and device for generating cluster ion beam
US20030148027A1 (en) Method and apparatus for forming coated units
JP2000256829A (en) Device and method for gas deposition
JPH11152582A (en) Gas deposition method and device therefor
KR101230242B1 (en) Method of Aerosol Deposition for Ceramic Powder
JP2005211730A (en) Method for manufacturing nanoparticle and nanoparticle manufacturing apparatus
JP3647653B2 (en) Cluster generator
JPS62155934A (en) Vapor phase exciter
JP2002285323A (en) Forming equipment and forming method for superfine particle film
JPS6046372A (en) Thin film forming method
JP3154213B2 (en) Method of forming fine particle film by gas deposition method and its forming apparatus
JPH0361359A (en) Plasma vapor deposition device