JPH0791622B2 - High-low anti-matrix composite superconductor manufacturing method - Google Patents

High-low anti-matrix composite superconductor manufacturing method

Info

Publication number
JPH0791622B2
JPH0791622B2 JP60205580A JP20558085A JPH0791622B2 JP H0791622 B2 JPH0791622 B2 JP H0791622B2 JP 60205580 A JP60205580 A JP 60205580A JP 20558085 A JP20558085 A JP 20558085A JP H0791622 B2 JPH0791622 B2 JP H0791622B2
Authority
JP
Japan
Prior art keywords
superconducting
base material
composite
superconductor
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60205580A
Other languages
Japanese (ja)
Other versions
JPS6267157A (en
Inventor
義光 池野
宰 河野
優 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP60205580A priority Critical patent/JPH0791622B2/en
Publication of JPS6267157A publication Critical patent/JPS6267157A/en
Publication of JPH0791622B2 publication Critical patent/JPH0791622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、永久電流スイッチに使用される高抵抗マトリ
ックス超電導体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a high resistance matrix superconductor used for a persistent current switch.

「従来の技術」 従来、超電導マグネットを永久電流状態で運転するため
の回路として第5図に示す回路が知られている。第5図
に示す回路は、超電導マグネット1と永久電流スイッチ
(抵抗線)2とを並列接続して外部電線3に接続し、更
に、超電導マグネット1に並列に外部保護抵抗4を組み
込んで構成したものである。なお、前記回路において、
超電導マグネット1と永久電流スイッチ2とは液体ヘリ
ウムにより冷却される構成になっている。
“Prior Art” Conventionally, a circuit shown in FIG. 5 is known as a circuit for operating a superconducting magnet in a permanent current state. The circuit shown in FIG. 5 is configured by connecting a superconducting magnet 1 and a permanent current switch (resistive wire) 2 in parallel to connect to an external electric wire 3, and further incorporating an external protective resistor 4 in parallel with the superconducting magnet 1. It is a thing. In the above circuit,
The superconducting magnet 1 and the permanent current switch 2 are cooled by liquid helium.

前記構成の回路を使用するには、まず、永久電流スイッ
チ2に通電して永久電流スイッチ2を加熱し、常電導状
態にした後に外部電源3により超電導マグネット1を励
磁する。この際、永久電流スイッチ2が高抵抗であるほ
ど永久電流スイッチ2への分流は少なくなるために、超
電導マグネット1へ電流を流すことが可能になる。そし
て、所定電流が流れたところで、永久電流スイッチ2へ
の通電を停止し、永久電流スイッチ2の発熱を停止し、
それに伴って永久電流スイッチ2を冷却して永久電流ス
イッチ2を超電導状態に遷移させ、永久電流スイッチ2
と超電導マグネット1間を永久電流モードで使用するの
である。
In order to use the circuit having the above-described configuration, first, the permanent current switch 2 is energized to heat the permanent current switch 2 to bring it into the normal conducting state, and then the superconducting magnet 1 is excited by the external power source 3. At this time, as the resistance of the persistent current switch 2 is higher, the shunt current to the persistent current switch 2 is smaller, so that the current can be passed to the superconducting magnet 1. Then, when a predetermined current flows, the energization of the permanent current switch 2 is stopped, the heat generation of the permanent current switch 2 is stopped,
Along with that, the permanent current switch 2 is cooled and the permanent current switch 2 is transited to the superconducting state.
The space between the superconducting magnet 1 and the superconducting magnet 1 is used in the permanent current mode.

ところで、前記永久電流スイッチにおいて、従来、超電
導線とヒータ材料とを一緒にコイル状に巻回して超電導
マグネットを構成し、ヒータ材料への通電操作によって
超電導コイルを常電導状態と超電導状態に置換できる構
成のものが知られている。そしてこの種の永久電流スイ
ッチには、従来、第6図ないし第8図に示す手順で製造
された超電導体Aが使用されていた。
By the way, in the above-mentioned permanent current switch, conventionally, a superconducting wire and a heater material are wound together in a coil to form a superconducting magnet, and the superconducting coil can be switched between a normal conducting state and a superconducting state by energizing the heater material. The composition is known. A superconductor A manufactured by the procedure shown in FIGS. 6 to 8 has been conventionally used for this type of persistent current switch.

この超電導体Aを製造するには、まず、パイプ状の安定
化母材5の内部に超電導線6を配して複合超電導線7を
形成し、この複合超電導線7の外周に非磁性の高抵抗金
属材料{Cu−Ni合金(Ni含有量2〜50%)、Cu−Ti合
金、Ni−Cr(Cr含有量10〜30%)合金等}からなる管体
8を被せて被覆複合超電導素線9を形成し、この被覆複
合超電導素線9を第7図に示すように多数本集合して銅
製の母材パイプ10の内部に挿入し、縮径加工を施して第
8図に示す所望の直径の超電導体Aを製造していた。
In order to manufacture this superconductor A, first, the superconducting wire 6 is arranged inside the pipe-shaped stabilizing base material 5 to form the composite superconducting wire 7. A composite superconductor coated with a tubular body 8 made of a resistance metal material {Cu-Ni alloy (Ni content 2-50%), Cu-Ti alloy, Ni-Cr (Cr content 10-30%) alloy, etc.}. A wire 9 is formed, and a large number of the coated composite superconducting element wires 9 are assembled as shown in FIG. 7 and inserted into a copper base material pipe 10 and subjected to diameter reduction processing to obtain the desired shape shown in FIG. Was manufactured.

前記従来の超電導体Aにおいては、内部の管体8が高抵
抗金属材料からなるために、管体8を永久電流スイッチ
として超電導線6の加熱を行うことによって目的を達成
するものである。
In the conventional superconductor A, since the inner tube body 8 is made of a high resistance metal material, the object is achieved by heating the superconducting wire 6 using the tube body 8 as a permanent current switch.

「発明が解決しようとする問題点」 ところが、前記従来の超電導体Aを製造する場合、管体
8を構成する金属材料は、安定化母材5と母材パイプ10
を構成する銅よりも加工硬化割合が大きいために、縮径
工程において何度も中間焼鈍を施す必要を生じて製造工
程が複雑化しコスト高になる問題があった。
[Problems to be Solved by the Invention] However, in the case of manufacturing the conventional superconductor A, the metal material forming the tube body 8 includes the stabilizing base material 5 and the base material pipe 10.
Since the work hardening ratio is higher than that of the copper constituting the steel, it is necessary to repeatedly perform intermediate annealing in the diameter reducing step, which complicates the manufacturing process and increases the cost.

「発明の目的」 本発明は、前記問題に鑑みてなされたもので、内部に高
抵抗の金属材料からなる部分を有し、超電導マグネット
とともに電源に並列接続される永久電流スイッチとして
使用可能な高抵抗マトリックス超電導体を製造できると
ともに、製造時の中間焼鈍回数を減少させて製造工程を
簡略化することによるコストダウンをなしうる高抵抗マ
トリックス超電導体の製造方法を提供することを目的と
する。
"Object of the Invention" The present invention has been made in view of the above problems, and has a portion made of a metal material having high resistance inside, and a high-current switch that can be used in parallel with a power supply together with a superconducting magnet. It is an object of the present invention to provide a method for producing a high resistance matrix superconductor which can produce a resistance matrix superconductor and can reduce the cost by reducing the number of intermediate annealings during production and simplifying the production process.

「問題点を解決するための手段」 本発明は、前記問題点を解決するために、安定化母材内
に超電導物質を構成する元素を配してなる複合超電導素
線を母材パイプの内部に多数本集合し、縮径して製造さ
れ、超電導マグネットとともに電源に対して並列に接続
される永久電流スイッチとして用いられる高抵抗マトリ
ックス複合超電導体の製造方法であって、前記複合超電
導素線の外周に、非磁性で、かつ銅よりも高い電気抵抗
を有するNi等の高抵抗金属材料からなるめっき層を形成
してめっき複合超電導素線を形成し、次いで、前記めっ
き複合超電導素線を母材パイプの内部に多数本集合し、
縮径するとともに、この後に熱処理を施して前記めっき
層を構成する元素を安定化母材のほぼ全域と母材パイプ
内のほぼ全域に拡散させるものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a composite superconducting element wire in which elements constituting a superconducting substance are arranged in a stabilized base material inside a base material pipe. A method for producing a high resistance matrix composite superconductor used as a permanent current switch connected in parallel with a power supply together with a superconducting magnet, the method comprising: A plating layer made of a high-resistance metal material such as Ni, which is non-magnetic and has a higher electric resistance than copper, is formed on the outer periphery to form a plating composite superconducting wire, and then the plating composite superconducting wire is formed. A large number gather inside the material pipe,
In addition to reducing the diameter, a heat treatment is performed thereafter to diffuse the elements forming the plating layer almost all over the stabilizing base material and almost all over the base material pipe.

「作用」 めっき層を構成する元素が安定化母材と母材パイプに拡
散してそれらを高抵抗化するとともに、超電導線に形成
するめっき層が超電導線の良好な加工性を維持する。
"Action" The elements forming the plating layer diffuse into the stabilizing base material and the base material pipe to increase the resistance thereof, and the plating layer formed on the superconducting wire maintains good workability of the superconducting wire.

「実施例」 第1図ないし第4図は、Nb−Ti系超電導体の製造方法に
本発明を適用した一実施例を説明するためのもので、Nb
−Ti超電導線Bを製造するには、まず、Nb−Ti超電導線
20を銅管あるいは銅合金管(安定化母材)21の内部に挿
入し、縮径加工を施して複合超電導素線22を作成する。
次に、この複合超電導素線22の表面にNiからなるめっき
層23を形成して第1図に示すめっき複合超電導素線24を
作製する。
"Embodiment" FIGS. 1 to 4 are for explaining one embodiment in which the present invention is applied to a method for producing an Nb-Ti based superconductor.
In order to manufacture -Ti superconducting wire B, first, Nb-Ti superconducting wire
20 is inserted into a copper tube or a copper alloy tube (stabilized base material) 21 and subjected to diameter reduction processing to form a composite superconducting element wire 22.
Next, a plating layer 23 made of Ni is formed on the surface of the composite superconducting element wire 22 to produce the plated composite superconducting element wire 24 shown in FIG.

次いで、前記めっき複合超電導素線24を数百本集合して
束ね、銅からなる母材パイプ25の内部に、第2図に示す
ように挿入して縮径加工を施し、第3図に示す所望の直
径の多心超電導体Bを製造する。この縮径加工によっ
て、母材パイプ25の内部のNb−Ti超電導線20の周囲に
は、網目状に変形したNiめっき層が存在している。な
お、以上の如く行った縮径加工等の緒加工においては、
Niがめっき層状態で存在しているために、加工を容易に
なしえ、中間焼鈍の処理回数を従来より少なくできる効
果がある。
Then, several hundreds of the plated composite superconducting element wires 24 are assembled and bundled, and inserted into a base material pipe 25 made of copper as shown in FIG. 2 to reduce the diameter, and shown in FIG. A multi-core superconductor B having a desired diameter is manufactured. As a result of this diameter reduction processing, a Ni-plated layer deformed in a mesh shape is present around the Nb-Ti superconducting wire 20 inside the base material pipe 25. In addition, in the processing such as diameter reduction processing performed as described above,
Since Ni exists in the state of the plating layer, it has an effect that the processing can be easily performed and the number of times of the intermediate annealing can be reduced as compared with the conventional case.

この後に、前記多心超電導体Bを100〜500℃に所要時間
加熱する拡散処理を施してめっき層23中のNiを銅管21と
母材パイプ25内に拡散させ、第4図に示す高抵抗マトリ
ックス多心複合超電導体Cを製造する。
After that, the multi-core superconductor B is subjected to a diffusion treatment of heating the multi-core superconductor B to 100 to 500 ° C. for a required time to diffuse Ni in the plating layer 23 into the copper pipe 21 and the base metal pipe 25. A resistance matrix multi-core composite superconductor C is manufactured.

以上のように製造された多心複合超電導体Cは、例えば
第5図に示す回路と同様の回路に組み込まれて使用され
る。そして、外部電源3により銅管21と母材パイプ25に
通電することによって前記Niの拡散により高抵抗化され
た銅管21と母材パイプ25に発熱を生じさせ、多心複合超
電導体Cを常電導状態とする。このことにより、多心複
合超電導体Cは高抵抗状態になるので、並列接続された
超電導マグネット1と多心複合超電導体Cのうち、電気
抵抗の生じない超電導マグネット1側に主に電源3から
の電流が流れるようになる。そして、所定の電流が超電
導マグネット1に流れた時点において前記銅管21と母材
パイプ25への通電を停止し、これらの発熱を無くし、多
心複合超電導体20を冷却すると、多心複合超電導体Cの
内部の多数のNb−Ti超電導線20が超電導状態になるの
で、電源3からの通電を停止しても超電導マグネット1
と多心複合超電導体Cの超電導線20…との間で永久電流
が流れる永久電流モードとなる。
The multi-core composite superconductor C manufactured as described above is used by being incorporated in a circuit similar to the circuit shown in FIG. 5, for example. Then, the copper pipe 21 and the base material pipe 25 are energized by the external power source 3 to generate heat in the copper pipe 21 and the base material pipe 25 whose resistance has been increased due to the diffusion of Ni, and the multi-core composite superconductor C is formed. Set to normal conduction state. As a result, the multi-core composite superconductor C is brought into a high resistance state, so that of the superconducting magnet 1 and the multi-core composite superconductor C connected in parallel, the power source 3 is mainly connected to the superconducting magnet 1 side where no electric resistance occurs. The current will start to flow. Then, when a predetermined current flows through the superconducting magnet 1, the copper tube 21 and the base material pipe 25 are de-energized to eliminate the heat generation and cool the multi-core composite superconductor 20. Since many Nb-Ti superconducting wires 20 inside the body C are in a superconducting state, the superconducting magnet 1 can be used even if the power supply 3 is stopped.
It becomes a permanent current mode in which a persistent current flows between the superconducting wire 20 of the multi-core composite superconductor C.

ところで、前記実施例においては、Nb−Ti系超電導線を
用いた高抵抗マトリックス多心複合超電導体の製造に本
発明を適用したが、本発明は、Nb−Ti系以外の合金系超
電導素線を用いた高抵抗マトリックス多心複合超電導体
の製造に、または、Nb3Sn系等の化合物系超電導素線を
用いた高抵抗マトリックス多心複合超電導体の製造にも
適用できるのは勿論である。なおここで、化合物系高抵
抗マトリックス多心複合超電導体を製造する場合には、
超電導物質を構成する2種以上の元素を未だ超電導物質
となっていない状態で複合した加工性に富む状態の複合
超電導素線を作製し、これを多数本集合して母材パイプ
の内部に収納し、縮径し、更に、化合物系超電導物質を
生成させるための拡散熱処理を施して多心複合超電導体
を製造するといった工程を経る関係から、化合物系高抵
抗マトリックス多心複合超電導体の製造に本発明を適用
する場合には、前記超電導物質を生成させるための熱処
理をめっき層の拡散に利用することもできる。また、Nb
3Sn系などの化合物系超電導線を製造する他の方法とし
て、公知のインサイチュ法を本発明に適用することもで
きる。インサイチュ法とは、NbとCuを同時に溶解し、イ
ンゴット状に鋳造した後、縮径加工を施し、銅基地中に
樹脂状晶として析出しているNbを縮径加工でフィラメン
ト状に加工して線材を形成し、この線材の外周部にSnめ
っき層を形成して素線を形成し、この後熱処理して銅基
地中に分散状態でNb3Snフィラメントを生成させて超電
導線を得る方法である。
By the way, in the above examples, the present invention was applied to the production of a high-resistance matrix multi-core composite superconductor using Nb-Ti-based superconducting wires, but the present invention is an alloy-based superconducting element wire other than Nb-Ti-based superconducting wires. It is needless to say that it can be applied to the production of a high-resistance matrix multi-core composite superconductor using Nd, or to the production of a high-resistance matrix multi-core composite superconductor using a compound-based superconducting element wire such as Nb 3 Sn . Here, in the case of producing a compound-based high resistance matrix multi-core composite superconductor,
A composite superconducting element wire with a high workability is prepared by combining two or more elements that make up the superconducting material in a state where it is not yet a superconducting material, and a large number of these are assembled and stored inside the base metal pipe. In order to manufacture a compound-based high-resistance matrix multi-core composite superconductor, it is necessary to reduce the diameter, and then to perform a diffusion heat treatment to produce a compound-based superconducting substance to manufacture a multi-core composite superconductor. When the present invention is applied, the heat treatment for producing the superconducting substance can be used for diffusion of the plating layer. Also, Nb
As another method for producing a compound-based superconducting wire such as 3 Sn-based material, a known in-situ method can be applied to the present invention. The in-situ method is that Nb and Cu are simultaneously melted, cast in an ingot shape, and then subjected to a diameter reduction process, and Nb precipitated as a resinous crystal in the copper matrix is processed into a filament shape by a diameter reduction process. A wire is formed, a Sn plating layer is formed on the outer periphery of the wire to form a strand, and then heat treatment is performed to generate Nb 3 Sn filaments in a dispersed state in a copper matrix to obtain a superconducting wire. is there.

従って、前記熱処理前の素線に高電気抵抗金属材料から
なるめっき層を形成してめっき複合素線を形成し、これ
を多数本母材パイプの内部に集合して縮径し、その後に
熱処理を施して本発明に係る遮蔽層を形成することもで
きる。
Therefore, a plated layer made of a high electric resistance metal material is formed on the strand before the heat treatment to form a plated composite strand, and a large number of these are gathered inside the base metal pipe to be reduced in diameter, and then heat treated. Can also be applied to form the shielding layer according to the present invention.

「発明の効果」 以上説明したように本発明は、非磁性の高抵抗金属材料
からなるめっき層を形成しためっき複合超電導素縁を多
数本集合して縮径し、その後に前記めっき層中の高抵抗
金属元素を拡散させるものであるため、永久電流スイッ
チに使用して好適な超電導体を得ることができる。従っ
て、高抵抗化された安定化母材と母材パイプに通電して
発熱を生じさせ、多心複合超電導体を常電導状態とする
ことにより、多心複合超電導体の全体を高抵抗状態にで
きるので、並列接続された超電導マグネットと多心複合
超電導体のうち、電気抵抗の生じない超電導マグネット
側に電源からの電流を主に流すことができる。そして、
所定の電流が超電流マグネットに流れた時点において前
記安定化母材と母材パイプへの通電を停止し、これらの
発熱を無くし、多心複合超電導体を冷却すると、多心複
合超電導体の内部の多数の超電導線を超電導状態にでき
るので、電源からの通電を停止しても、超電導マグネッ
トと多心複合超電導体との間で永久電流が流れる永久電
流モード運転ができる特徴がある。また、めっき複合素
線は加工性に富むために、中間焼鈍処理の実施回数を少
なくすることができ、製造コストを低減できる効果があ
る。
"Effects of the Invention" As described above, the present invention is to collect a large number of plated composite superconducting element edges on which a plating layer made of a non-magnetic high resistance metal material is formed, and then reduce the diameter, Since it diffuses a high resistance metal element, it can be used for a permanent current switch to obtain a suitable superconductor. Therefore, by energizing the highly resistant stabilized base material and the base material pipe to generate heat, and putting the multicore composite superconductor in the normal conducting state, the entire multicore composite superconductor is brought into a high resistance state. Therefore, of the superconducting magnet and the multi-core composite superconductor connected in parallel, the current from the power source can be mainly passed to the superconducting magnet side where no electric resistance is generated. And
When a predetermined current flows through the supercurrent magnet, the stabilization base material and the base material pipe are de-energized to eliminate the heat generation and cool the multi-core composite superconductor. Since a large number of superconducting wires can be put into a superconducting state, there is a feature that even when the power supply from the power source is stopped, a persistent current mode operation in which a persistent current flows between the superconducting magnet and the multi-core composite superconductor can be performed. In addition, since the plated composite element wire is rich in workability, the number of times of the intermediate annealing treatment can be reduced, and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第4図は、本発明の一実施例を説明するた
めのもので、第1図はめっき複合超電導素線の横断面
図、第2図は母材パイプ内にめっき複合超電導素線を集
合した状態を示す横断面図、第3図は縮径により作製さ
れた多心超電導素線の横断面図、第4図は高抵抗マトリ
ックス超電導体の横断面図、第5図は永久電流スイッチ
が組み込まれた回路の構成図、第6図ないし第8図は従
来の高抵抗多心超電導体を製造方法を示すもので、第6
図は被覆超電導素線の横断面図、第7図は母材パイプ内
に被覆超電導線を集合した状態を示す横断面図、第8図
は高抵抗多心超電導体の横断面図である。 20……超電導線、 21……(銅管)安定化母材、 22……複合超電導素線、 23……めっき層、 24……めっき複合超電導素線、 25……母材パイプ、 B……多心超電導体、 C……高抵抗マトリックス多心複合超電導体、
FIGS. 1 to 4 are for explaining one embodiment of the present invention. FIG. 1 is a cross-sectional view of a plated composite superconducting wire, and FIG. 2 is a plated composite superconducting element in a base metal pipe. Fig. 3 is a cross-sectional view of a multi-core superconducting element wire produced by diameter reduction, Fig. 4 is a cross-sectional view of a high-resistance matrix superconductor, and Fig. 5 is permanent. 6 to 8 show the construction of a circuit in which a current switch is incorporated, which show a method of manufacturing a conventional high resistance multi-core superconductor.
FIG. 7 is a cross-sectional view of the coated superconducting wire, FIG. 7 is a cross-sectional view showing a state in which the coated superconducting wires are assembled in a base material pipe, and FIG. 8 is a cross-sectional view of a high-resistance multicore superconductor. 20 …… Superconducting wire, 21 …… (Copper tube) stabilizing base material, 22 …… Composite superconducting element wire, 23 …… Plating layer, 24 …… Plating composite superconducting element wire, 25 …… Base material pipe, B… … Multi-core superconductor, C …… High resistance matrix multi-core composite superconductor,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】安定化母材内に超電導物質を構成する元素
を配してなる複合超電導素線を母材パイプの内部に多数
本集合し、縮径して製造され、超電導マグネットととも
に電源に対して並列に接続される永久電流スイッチとし
て用いられる高抵抗マトリックス複合超電導体の製造方
法であって、 前記複合超電導素線の外周に、非磁性で、かつ銅よりも
高い電気抵抗を有するNi等の高抵抗金属材料からなるめ
っき層を形成してめっき複合超電導素線を形成し、次い
で、前記めっき複合超電導素線を母材パイプの内部に多
数本集合し、縮径するとともに、この後に熱処理を施し
て前記めっき層を構成する元素を安定化母材内のほぼ全
域と母材パイプ内のほぼ全域に拡散させることを特徴と
する高抵抗マトリックス複合超電導体の製造方法。
1. A composite base material comprising a plurality of composite superconducting element wires, each of which comprises an element constituting a superconducting substance in a stabilized base material, is assembled into a base material pipe, and the diameter is reduced to produce a superconducting magnet and a power source. A method for producing a high-resistance matrix composite superconductor used as a permanent current switch connected in parallel to the outer periphery of the composite superconducting element wire, which is non-magnetic and has a higher electrical resistance than copper, etc. Of the high resistance metal material to form a plated composite superconducting element wire, and then a large number of the plated composite superconducting element wires are gathered inside the base material pipe to reduce the diameter and then heat treated. The method for producing a high-resistance matrix composite superconductor, characterized in that the element constituting the plating layer is diffused to almost the entire area of the stabilizing base material and the entire area of the base material pipe.
JP60205580A 1985-09-18 1985-09-18 High-low anti-matrix composite superconductor manufacturing method Expired - Lifetime JPH0791622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60205580A JPH0791622B2 (en) 1985-09-18 1985-09-18 High-low anti-matrix composite superconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205580A JPH0791622B2 (en) 1985-09-18 1985-09-18 High-low anti-matrix composite superconductor manufacturing method

Publications (2)

Publication Number Publication Date
JPS6267157A JPS6267157A (en) 1987-03-26
JPH0791622B2 true JPH0791622B2 (en) 1995-10-04

Family

ID=16509231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205580A Expired - Lifetime JPH0791622B2 (en) 1985-09-18 1985-09-18 High-low anti-matrix composite superconductor manufacturing method

Country Status (1)

Country Link
JP (1) JPH0791622B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297809A (en) * 1989-05-11 1990-12-10 Sumitomo Electric Ind Ltd Superconductive wire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104012U (en) * 1980-01-11 1981-08-14
JPS60101815A (en) * 1983-11-08 1985-06-05 工業技術院長 Method of producing nb3sn superconductive wire material

Also Published As

Publication number Publication date
JPS6267157A (en) 1987-03-26

Similar Documents

Publication Publication Date Title
US3699647A (en) Method of manufacturing long length composite superconductors
US4195199A (en) Superconducting composite conductor and method of manufacturing same
GB1576417A (en) Superconductors
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
US3836404A (en) Method of fabricating composite superconductive electrical conductors
JPH0791622B2 (en) High-low anti-matrix composite superconductor manufacturing method
JPS60218441A (en) Composite superconductive material structure
JP2916214B2 (en) Superconducting wire connection method
GB1569983A (en) Super conductor
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JPH0796698B2 (en) Manufacturing method of multi-core superconducting conductor for alternating current
JP2874132B2 (en) Method for manufacturing Nb (3) Sn superconducting wire for AC
JP2845905B2 (en) Compound conducting wire for alternating current
JPH0574508A (en) Superconductive wire connecting method
JPS58169712A (en) Method of producing composite superconductive wire
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JP2742421B2 (en) Superconducting wire and its manufacturing method
JP2023043040A (en) Connection structure for superconducting wires and connection method therefor
JP2644854B2 (en) Method of manufacturing compound superconducting wire
JPH0462767A (en) Connection of nb3sn superconductive wire
JPH0695469B2 (en) Superconducting wire connection method
JPS62243745A (en) Manufacture of superconductive electric wire containing dispersed fiber
Petrovich et al. Critical current of multifilamentary Nb 3 Sn-insert coil and long sample bend tests
JPH06223653A (en) Manufacture of nb 3 sn compound superconducting wire
JPH09330624A (en) Superconducting wire and its manufacture