JPH0791069B2 - Glass manufacturing method - Google Patents

Glass manufacturing method

Info

Publication number
JPH0791069B2
JPH0791069B2 JP61098385A JP9838586A JPH0791069B2 JP H0791069 B2 JPH0791069 B2 JP H0791069B2 JP 61098385 A JP61098385 A JP 61098385A JP 9838586 A JP9838586 A JP 9838586A JP H0791069 B2 JPH0791069 B2 JP H0791069B2
Authority
JP
Japan
Prior art keywords
och
alkoxide
gel
glass
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61098385A
Other languages
Japanese (ja)
Other versions
JPS62202831A (en
Inventor
伊知朗 ▲吉▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPS62202831A publication Critical patent/JPS62202831A/en
Publication of JPH0791069B2 publication Critical patent/JPH0791069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラスの製造方法に関するものであり、詳し
くは、金属アルコキシドを原料としてゾルゲル法により
ガラスを製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing glass, and more particularly to a method for producing glass by a sol-gel method using a metal alkoxide as a raw material.

〔従来の技術〕 現在、光フアイバーのプリフオームを作製する方法とし
ては、VAD法をはじめとする、SiCl4等を火炎中に通しガ
ラス微粒子をターゲツト上に堆積させ、得られたガラス
多孔質体を焼結しガラス塊を得る、という方法が主流に
なつている。これは高純度の多孔質ガラスを比較的安価
に得られる優れた方法である。しかしこの方法は気相反
応であるため、添加物として使える物質がガス化できる
ものに限られる、という欠点があつた。
[Prior Art] At present, as a method for producing a preform of an optical fiber, glass microparticles obtained by depositing glass fine particles on a target by passing SiCl 4, etc. through a flame, including the VAD method, are used. The method of sintering to obtain a glass gob has become the mainstream. This is an excellent method for obtaining highly pure porous glass at a relatively low cost. However, since this method is a gas phase reaction, there is a drawback in that substances usable as additives are limited to those which can be gasified.

そこで、近年、この欠点を補う方法として、Siを主体と
した金属アルコキシドを加水分解し、シリカゲルあるい
は添加元素を含むシリカゲルを得、該シリカゲルを乾燥
させた後無孔化処理等を行い透明ガラスを得る方法が盛
んに研究されている。
Therefore, in recent years, as a method of compensating for this drawback, a metal alkoxide mainly composed of Si is hydrolyzed to obtain silica gel or silica gel containing an additive element, and the silica gel is dried and then subjected to a non-porous treatment to obtain a transparent glass. The way to get is being actively researched.

一例を挙げれば、Siのアルコキシドを希釈液例えばエタ
ノールと充分に撹拌混合した後、水を加え更に撹拌して
加水分解する。この時水にはアンモニア等pH調整剤を加
えておくことが好ましい。該反応溶液を内面にシリコー
ンを塗つた容器に移し、乾燥時間を長くできるようにア
ルミ箔等で蓋をして例えば60℃程度の恒温層中にて上記
により得られたゾル液のゲル化およびゲルの乾燥を行
う。乾燥するに従つてゲルは収縮し、通常数日を経ると
ほぼ乾燥が終了する。このようにして得たゲルを取り出
し、例えば酸素を含むHe雰囲気中にて加熱する等により
無孔化処理を行い、透明ガラス化する方法がすでに知ら
れている。
As an example, an alkoxide of Si is sufficiently stirred and mixed with a diluting liquid such as ethanol, and then water is added and further stirred to hydrolyze. At this time, it is preferable to add a pH adjusting agent such as ammonia to the water. Transfer the reaction solution to a container coated with silicone on the inner surface, cover with an aluminum foil or the like so that the drying time can be extended, and gelate the sol solution obtained above in a constant temperature layer of, for example, about 60 ° C. Dry the gel. The gel shrinks as it dries, and usually finishes drying after a few days. A method is already known in which the gel thus obtained is taken out and subjected to a non-porous treatment, for example, by heating in a He atmosphere containing oxygen to form a transparent glass.

このようないわゆるゾルゲル法は、アルコキシドが金属
・非金属を問わず多くの元素について作製できるので、
各種の元素を容易に添加できるという長所がある。
Such a so-called sol-gel method allows alkoxides to be produced for many elements regardless of metal or nonmetal.
It has the advantage that various elements can be added easily.

なおこのSiのアルコキシドとしては例えばSi(OC
H3、Si(OC2H5等が用いられることが多い。
As the alkoxide of Si, for example, Si (OC
H 3 ) 4 , Si (OC 2 H 5 ) 4, etc. are often used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが原料としてSi(OCH3を用いた場合、ゲルの
焼結はゲルが発泡したり割れたりするため容易ではな
い。また、透明ガラス化に成功しても、さらに加熱する
と発泡してしまうことが多かつた。一方、Si(OCH3
より高位のアルコキシド例えばSi(OC2H5、Si(OC3
H7、Si(OC4H9、Si(OC5H11等を用いた場
合、ゲルの焼結は容易であるが、乾燥ゲルを望む形に得
ることが困難であつた。ゲルが極めてこわれやすいため
である。
However, when Si (OCH 3 ) 4 is used as the raw material, sintering of the gel is not easy because the gel foams or cracks. In addition, even if the transparent vitrification was successful, it often foamed when heated further. On the other hand, Si (OCH 3 ) 4
Higher alkoxides such as Si (OC 2 H 5 ) 4 , Si (OC 3
H 7) 4, Si (OC 4 H 9) 4, Si (OC 5 H 11) when using 4 or the like, but the sintering of the gel is easy, filed is difficult to obtain a form that wishes dry gel It was This is because the gel is extremely fragile.

本発明は上記した困難点を解決したガラスの製造方法を
提供せんとするものである。
The present invention intends to provide a glass manufacturing method which solves the above-mentioned difficulties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らが鋭意研究したところでは、上記の困難につ
いては次のように考えることができると判つた。
The inventors of the present invention have diligently studied and found that the above-mentioned difficulties can be considered as follows.

Si(OCH3を加水分解してつくつたゲルはすきま径が
小さく凝集力が大きい。従つてゲルは容易に得られる。
ところがすきまが小さいため、焼結時に発生するガスが
十分抜け切れず発泡してしたり割れたりしやすい。一
方、Si(OC2H5等のより高位のアルコキシドを加水
分解して作つたゲルは、すきま径が大きく凝集力が小さ
い。従つて、ゲルはこわれやすい。しかし焼結時のガス
は容易にゲルの外に逃げるため、焼結は容易である。そ
こで原料としてSi(OCH3とSi(OC2H5等のSi(O
CH3より高位のアルコキシドとを併用することを考
えついた。
The gel produced by hydrolyzing Si (OCH 3 ) 4 has a small clearance diameter and a large cohesive force. Therefore, gels are easily obtained.
However, since the clearance is small, the gas generated during sintering is not fully exhausted and is easily foamed or cracked. On the other hand, a gel made by hydrolyzing a higher alkoxide such as Si (OC 2 H 5 ) 4 has a large clearance diameter and a small cohesive force. Therefore, the gel is fragile. However, the gas during sintering easily escapes to the outside of the gel, so that sintering is easy. Therefore, Si (OCH 3 ) 4 and Si (O 2 H 5 ) 4 etc.
It was conceived to use it together with an alkoxide higher than CH 3 ) 4 .

すなわち、本発明はSiのアルコキシドを加水分解してゾ
ル液を得、該ゾル液をゲル化させた後乾燥ゲルとし該ゲ
ルを焼結してガラスを製造する方法において、Siのアル
コキシドとしてSi(OCH3及びSi(OC2H5以上の
高位のアルコキシドを用い、Si(OC2H5以上の高位
のアルコキシドをSi(OCH3より先に加水分解させる
ことを特徴とするガラスの製造方法である。
That is, the present invention is a method of hydrolyzing Si alkoxide to obtain a sol liquid, gelling the sol liquid, and then forming a dry gel to sinter the gel to produce glass. OCH 3 ) 4 and Si (OC 2 H 5 ) 4 or higher alkoxides are used, and Si (OC 2 H 5 ) 4 or higher alkoxides are hydrolyzed before Si (OCH 3 ) 4. It is a method of manufacturing glass.

また本発明の特に好ましい実施態様としては、Si(OC2H
5以上の高位のアルコキシドは、ゲル化前にその70
モル%以上が加水分解しており、該加水分解は温度40℃
以上、85℃以下にて行う上記方法、ならびに予め加水分
解して得たSi(OC2H5以上の高位のアルコキシドの
ゾル液をSiO2濃度が20重量%以上45重量%以下に濃縮し
た後に、Si(OCH3またはSi(OCH3のゾル液と混
合する上記方法が挙げられる。また本発明においてSi
(OC2H5以上の高位のアルコキシドとして、Si(OC2
H5を用いることは特に好ましい。
In a particularly preferred embodiment of the present invention, Si (OC 2 H
5 ) The higher alkoxide of 4 or more is 70%
More than mol% is hydrolyzed, and the hydrolysis is at a temperature of 40 ° C.
Above, the above method performed at 85 ° C or lower, and the sol liquid of the higher alkoxide of Si (OC 2 H 5 ) 4 or higher obtained by pre-hydrolysis is concentrated to a SiO 2 concentration of 20% by weight or more and 45% by weight or less. Then, the above method of mixing with Si (OCH 3 ) 4 or a sol liquid of Si (OCH 3 ) 4 can be mentioned. In the present invention, Si
(OC 2 H 5) as four or more high alkoxide, Si (OC 2
It is particularly preferred to use H 5 ) 4 .

本発明はSi(OCH3とSi(OC2H5等のSi(OCH3
より高位のSiのアルコキシドとを併用することにより
上記困難を解決するもので、ゲルのこわれにくさをSi
(OCH3を原料とするSiO2によつて得、焼結を容易と
するためのゲル中のすきまをSi(OC2H5等のSi(OCH
3より高位のSiのアルコキシドを原料とするSiO2
得るものである。
The present invention is Si (OCH 3) 4 and Si (OC 2 H 5) 4, etc. Si (OCH 3)
The above difficulty is solved by using in combination with a Si alkoxide higher than 4 in order to prevent the gel from breaking.
(OCH 3 ) 4 is used as the raw material to obtain SiO 2 , and the gap in the gel for facilitating sintering is Si (OC 2 H 5 ) 4 etc.
3 ) Obtained by SiO 2 using an alkoxide of Si higher than 4 as a raw material.

本発明者らの実験研究の結果、ゲルが実験のための取り
扱いに耐えるだけの強度を持つには、Si(OCH3及び
Si(OCH3が加水分解してできたものの和がSiO2換算
でゾル液中に1%以上含まれていることが好ましいと判
明した。
Results of our experimental studies, in having a strength to withstand handling for gel experiments, Si (OCH 3) 4 and
It was found that the sum of those formed by hydrolysis of Si (OCH 3 ) 4 is preferably 1% or more in the sol liquid in terms of SiO 2 .

またゲルの焼結が十分容易であるだけのすきまがゲル中
に存在するためには、Si(OC2H5等のSi(OCH3
より高位のSiのアルコキシドから生成したSiO2が、Si
(OCH3より生成したSiO2よりも多いことが好まし
い。
Also, in order to have a gap in the gel that allows the gel to be easily sintered, Si (OCH 3 ) 4 such as Si (OC 2 H 5 ) 4 should be used.
SiO 2 generated from the alkoxide of higher Si is
It is preferable that the amount of SiO 2 generated from (OCH 3 ) 4 is larger.

Ge,Al,Ti,B,Sn,Pb,Nd,Yb,Ce,Prなどの添加物は、化合物
を原料に加える、またはゲル化後にしみこませるなどの
方法でガラスに添加することが可能である。
Additives such as Ge, Al, Ti, B, Sn, Pb, Nd, Yb, Ce and Pr can be added to the glass by adding the compound to the raw material or by impregnating it after gelling. .

また、Si(OCH3はSi(OC2H5以上のより高位の
アルコキシドよりも加水分解速度が速い。本発明におい
ては、Si(OC2H5等のより高位のアルコキシドを先
に加水分解させてからSi(OCH3)と混合する。
Also, Si (OCH 3 ) 4 has a faster hydrolysis rate than higher alkoxides of Si (OC 2 H 5 ) 4 and above. In the present invention, the higher alkoxide such as Si (OC 2 H 5 ) 4 is first hydrolyzed and then mixed with Si (OCH 3 ).

Si(OCH3の加水分解反応が進むとゾル液はゲル化
し、ゲル化した後は加水分解反応が遅くなる。よつて収
率良く、しかも短い時間でゲルを得るためには、Si(OC
2H5等のより高位のアルコキシドは、ゲル化までに7
0モル%以上が加水分解していることが望ましい。Si(O
C2H5等のより高位のアルコキシドが70モル%以上分
解しているゾル液と、Si(OCH3のゾル液を混合すれ
ば収率向上と時間短縮してゲルを得ることが確実であ
る。
When the hydrolysis reaction of Si (OCH 3 ) 4 proceeds, the sol liquid gels, and after gelation, the hydrolysis reaction becomes slow. Therefore, to obtain a gel in good yield and in a short time, Si (OC
Higher alkoxides such as 2 H 5 ) 4 etc.
It is desirable that 0 mol% or more is hydrolyzed. Si (O
By mixing a sol solution in which higher alkoxide such as C 2 H 5 ) 4 is decomposed by 70 mol% or more with a sol solution of Si (OCH 3 ) 4 , the yield is improved and the time is shortened to obtain a gel. Is certain.

Si(OC2H5等のより高位のアルコキシドの加水分解
は40℃以上85℃以下で行うことが好ましい。これは40℃
未満の温度では加水分解速度が遅い上、粒径も小さくな
るためである。第2図に、後述の実施例3で示した本発
明例における収率(理論量に対する生成SiO2量)50%の
反応に要する時間(日数)と温度(T℃)との関係を示
す。第2図より短い期間で高い収率を得るには、40℃以
上で反応させることが好ましいことがわかる。
Hydrolysis of higher alkoxide such as Si (OC 2 H 5 ) 4 is preferably carried out at 40 ° C. or higher and 85 ° C. or lower. This is 40 ℃
This is because at a temperature below 1, the hydrolysis rate is slow and the particle size becomes small. FIG. 2 shows the relationship between the time (days) and the temperature (T ° C.) required for the reaction of yield (the amount of SiO 2 produced relative to the theoretical amount) of 50% in the present invention example shown in Example 3 described later. From FIG. 2, it can be seen that it is preferable to carry out the reaction at 40 ° C. or higher in order to obtain a high yield in a shorter period.

第3図に実施例3で示した本発明例の(収率)1/3と、B
ET法で測つた比表面積から求めた平均粒径(nm)との関
係を示した。Aは23℃でBは63℃で行つた場合である。
(Yield) 1/3 of the example of the present invention shown in FIG.
The relationship with the average particle size (nm) obtained from the specific surface area measured by the ET method is shown. A is at 23 ° C and B is at 63 ° C.

Si(OC2H5のみを原料とするゲルの場合、比表面積
が200m2/g以下(平均粒径が14nm以上)ならば焼結時発
泡しないことがすでに柴田らによつて報告されている
〔文献:昭和60年度電子通信学会半導体・材料部門全国
大会講演要旨集講演番号385、p1〜200〕。本発明におい
てもこれに準じて考えると、23℃で加水分解したゾル液
の粒径は十分に大きくはない。粒径についても40℃以上
で分解したものの方が優れている。
It has already been reported by Shibata et al. That, in the case of a gel using only Si (OC 2 H 5 ) 4 as a raw material, if the specific surface area is 200 m 2 / g or less (average particle size is 14 nm or more), it will not foam during sintering. [Reference: Proceedings of the 60th National Conference of the Institute of Electronics and Communication Engineers, Semiconductor and Materials Division, Lecture No. 385, p1-200]. According to the present invention, the particle size of the sol liquid hydrolyzed at 23 ° C. is not sufficiently large in the present invention. Regarding the particle size, those decomposed at 40 ° C or higher are superior.

一方、温度が高いとゾル液の蒸気圧が高くなり、この場
合には系を密閉しないと蒸発量が大きくなりすぎる。し
かし密閉すると内部の圧力が高くなるので、高圧に耐え
る系を作ると装置が高価なものとなつてしまう。このよ
うな点を考慮すると、40℃以上、85℃以下で加水分解す
るのが経済的でかつ安全である。
On the other hand, when the temperature is high, the vapor pressure of the sol liquid increases, and in this case, the amount of evaporation becomes too large unless the system is closed. However, if the system is sealed, the internal pressure becomes high, and if a system that can withstand high pressure is made, the device will be expensive. Considering these points, it is economical and safe to hydrolyze at 40 ° C or more and 85 ° C or less.

またSi(OC2H5等の高位のアルコキシドのゾル液を
加水分解したゾル液は濃縮してからSi(OCH3または
Si(OCH3のゾル液と混合した方が好ましい。Si(OC
2H5等の高位のアルコキシドは水とまざりにくく、
まぜるためにはエタノール等で希釈する必要があるの
で、濃度の高いゾル液をはじめから作ることは困難であ
る。一方、ゲルを乾燥する際はゲル中のSiO2分が多い方
が、SiO2 1gを得るのに必要な分散媒の蒸発量が少なく
てすむ。以上の理由から原料のゾル液は加水分解後に濃
縮して高濃度とする方が好ましい。濃縮されたゾル液の
濃度は20重量%以上45重量%以下であることが好まし
い。20重量%未満では、濃縮したことの効果が少なく、
45重量%を超える高濃度ではゾル液がゲル化しやすく、
ゲル化しない範囲で濃縮するのが難しいからである。な
お、濃縮は湯せんで行うのが安全である。しかし、ゾル
液を60℃の恒温槽に入れ、乾燥した空気をゾル液にふき
つける、など他の濃縮方法を用いても良い。
In addition, the sol solution obtained by hydrolyzing the sol solution of a high-order alkoxide such as Si (OC 2 H 5 ) 4 is concentrated after Si (OCH 3 ) 4 or
It is preferable to mix it with a sol liquid of Si (OCH 3 ) 4 . Si (OC
Higher alkoxides such as 2 H 5 ) 4 are hard to mix with water,
Since it is necessary to dilute with ethanol or the like to mix, it is difficult to prepare a sol solution having a high concentration from the beginning. On the other hand, when the gel is dried, the larger the amount of SiO 2 in the gel, the smaller the amount of evaporation of the dispersion medium required to obtain 1 g of SiO 2 is. For the above reasons, it is preferable to concentrate the sol liquid of the raw material after hydrolysis to obtain a high concentration. The concentration of the concentrated sol liquid is preferably 20% by weight or more and 45% by weight or less. If it is less than 20% by weight, the effect of concentration is small,
When the concentration is higher than 45% by weight, the sol liquid tends to gel,
This is because it is difficult to concentrate in a range that does not gel. It is safe to concentrate with a hot water bath. However, other concentration methods such as placing the sol solution in a constant temperature bath at 60 ° C. and wiping dry air onto the sol solution may be used.

Si(OCH3より高位のアルコキシドの中では一般的に
はSi(OC2H5が優れている。その理由は、加水分
解速度が速い、少ない溶媒量で水と混ざり、ゾル液の
濃度を高くできる。入手しやすくまたモル当たりの価
格も安い、などによる。
Among the higher alkoxides than Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 is generally superior. The reason is that the rate of hydrolysis is high, the amount of solvent mixed with water is small, and the concentration of the sol liquid can be increased. It is easy to obtain and the price per mole is low.

しかしSi(OC3H7、Si(OC4H9などさらに高位の
アルコキシドは、より大きな粒子のゾル液を得やすい。
このため時間がかかつても良いから大型のガラスを得た
い場合などには適している。大型のガラスを得るための
大型のゲルは焼結時にガスが抜けにくく発泡しやすい。
これを防ぐには大きな構成粒子で大きなすきまを確保す
る必要があるからである。
However, higher alkoxides such as Si (OC 3 H 7 ) 4 and Si (OC 4 H 9 ) 4 are easier to obtain a sol solution having larger particles.
For this reason, it is time-consuming and suitable for obtaining a large glass. A large gel for obtaining a large glass is difficult to release gas during sintering and is likely to foam.
This is because to prevent this, it is necessary to secure a large gap with large constituent particles.

〔実施例〕〔Example〕

以下実施例により本発明の方法を具体的に説明する。 Hereinafter, the method of the present invention will be specifically described with reference to Examples.

実験例 各原料の量を表1のa〜fに示す。a〜fの6種類の実
験を行つた。Siのアルコキシドのモル数の和、及び原料
全体の量は一定でSi(OCH3の割合をaからfまで多
くしたものである。
Experimental Example The amount of each raw material is shown in a to f of Table 1. Six types of experiments a to f were performed. The sum of the number of moles of Si alkoxide and the total amount of the raw materials are constant, and the proportion of Si (OCH 3 ) 4 is increased from a to f.

まずSi(OCH3、Si(OC2H5、エタノールを混合
する。13%アンモニア水2滴を含む水を加えさらに混合
した。これを脱気し、各3本ずつ内面にシリコーンをぬ
つた内径12mmの試験管に入れ、アルミ箔でフタをして60
℃の恒温槽に入れた。
First, Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 and ethanol are mixed. Water containing 2 drops of 13% aqueous ammonia was added and further mixed. After degassing, place 3 tubes of each in a test tube with an inner diameter of 12 mm, the inner surface of which was wiped with silicone, and cover with aluminum foil.
It was placed in a constant temperature bath at ℃.

翌日、d,e,fはゲル化していたが、a,b,cはゲル化してい
なかつた。一週間そのまま放置したところc,d,e,fにつ
いては乾燥ゲルが得られた。ただしcはこわれやすく3
つのうち2つはとりだすときにわれた。a,bはボロボロ
に割れたゲルしか得られなかつた。
The next day, d, e and f were gelled, but a, b and c were not gelled. When left for one week, dry gels were obtained for c, d, e and f. However, c is easy to break 3
Two of the two were broken when I took them out. As for a and b, only gel which was broken into pieces could be obtained.

このc,d,e,fを500℃空気中で24時間仮焼した後、He中温
度1400℃で焼結した。c,d,eはすべて割れなしに透明ガ
ラスが得られたが、fは3つとも発泡した。
The c, d, e and f were calcined in air at 500 ° C for 24 hours and then sintered in He at a temperature of 1400 ° C. Transparent glass was obtained without cracks in all of c, d, and e, but all three of f were foamed.

実施例1 各原料の量を表1g,hに示す。Example 1 The amount of each raw material is shown in Tables 1g and 1h.

まず実験例と同様の工程で乾燥ゲルを得同様に仮焼・焼
結したところ、g,h共すべて発泡した。
First, when dry gel was obtained and calcined and sintered in the same manner as in the experimental example, both g and h were foamed.

次に、まずSi(OC2H5とエタノールを混合し、13%
アンモニア水2滴を含む水を加えさらに混合した。これ
にサランラツプでフタをし、60℃恒温槽に24時間放置し
た後、Si(OCH3を加えよく混合し、脱気した。以後
実験例と同様にし、gは3つ中2つ割れなしに透明ガラ
ス化した。1つは透明ガラス化したものの小さく割れて
いた。hはすべて割れていた。
Next, first mix Si (OC 2 H 5 ) 4 and ethanol, and add 13%
Water containing 2 drops of aqueous ammonia was added and further mixed. This was capped with a Saran lap, allowed to stand in a constant temperature bath at 60 ° C. for 24 hours, Si (OCH 3 ) 4 was added and mixed well, and degassed. Thereafter, in the same manner as in the experimental example, 2 out of 3 were transparent vitrified without cracking. One was a transparent glass, but it was broken into small pieces. All h were cracked.

実施例2 <ゾル液の作製> Si(OC2H54130.2gとエタノール124.8gを混合した中
に、13%アンモニア水20滴を含む水45gを加え、さらに
撹拌した。これを密閉ビンに入れ23℃恒温室に入れこれ
を(A)とした。また同じ量の原料を60℃に加熱してか
ら混合した後、密閉ビンに入れ、60℃の恒温槽に入れた
ものを(B)とした。
Example 2 <Preparation of sol solution> While 130.2 g of Si (OC 2 H 5 ) 4 and 124.8 g of ethanol were mixed, 45 g of water containing 20 drops of 13% aqueous ammonia was added and further stirred. This was placed in a closed bottle and placed in a thermostatic chamber at 23 ° C., which was designated as (A). Further, the same amount of raw materials was heated to 60 ° C., mixed, put in a closed bottle, and put in a constant temperature bath at 60 ° C. as (B).

1/8、1/4、1/2、1、2、4、9日後に(A)及び
(B)から10gずつゾル液をとつて乾燥させ、その時点
での収率を求めた。その結果を第1図に示す。また第1
図から求めた、50%の分解に要する日数の温度依存性の
アレニウスプロツトを第2図に示す。また、乾燥させて
得た粉末の平均粒径(nm)をBET法で求め、その収率依
存性を求めた。これを第3図に示す。第3図の縦軸は平
均粒径(nm)で横軸は(収率)1/3である。なお(B)
のゾル液の1日目(収率43%)のものは、20gを別にと
り液体窒素で冷却し、そのまま保存した。
After 1/8, 1/4, 1/2, 1, 2, 4, 9 days, 10 g of each sol solution was taken from (A) and (B) and dried, and the yield at that time was obtained. The results are shown in FIG. Also the first
Fig. 2 shows the Arrhenius plot, which is obtained from the figure and shows the temperature dependence of the number of days required for 50% decomposition. Further, the average particle size (nm) of the powder obtained by drying was determined by the BET method, and its yield dependency was determined. This is shown in FIG. The vertical axis of FIG. 3 is the average particle size (nm) and the horizontal axis is (yield) 1/3. (B)
20 g of the sol solution of 1 day (yield 43%) was taken separately, cooled with liquid nitrogen, and stored as it was.

<ゲル化からガラス化−1> 9日間60℃で分解した(B)のゾル液(以下Bとする)
20gにSi(OCH34 1.2gを加え、よく混合した。この中
に、13%アンモニア水2滴を含む水5gとエタノール3.8g
を混合したものを加えよくかくはんした。これを室温で
ゾル液がふつとうするまで真空引きし、ふつとう状態に
約5秒保つた後とりだした。次に内面にシリコーンをぬ
つた試験管に入れアルミ箔でかるくフタをして60℃恒温
槽に入れた。また前記した1日間60℃で分割した後液体
窒素で冷却していたものを、室温で解凍した(これを以
下Cとする)。(C)についても(B)と同様に操作し
60℃恒温槽に入れた。(B),(C)どちらも翌日には
ゲル化しており1週間後には乾燥ゲルが得られた。これ
を500℃空気中で24時間仮焼した後He中で1400℃に昇温
し透明ガラスをクラツクなしに得た。
<Gelization to vitrification-1> Sol solution of (B) decomposed at 60 ° C for 9 days (hereinafter referred to as B)
To 20 g, 1.2 g of Si (OCH 3 ) 4 was added and mixed well. 5g of water containing 2 drops of 13% ammonia water and 3.8g of ethanol
And the mixture was stirred well. This was evacuated at room temperature until the sol solution became soft, kept in the normal state for about 5 seconds, and then taken out. Next, a test tube having silicone wiped on the inner surface was placed in a test tube which was lightly covered with aluminum foil and placed in a constant temperature bath at 60 ° C. Further, the above-mentioned one day division at 60 ° C. and cooling with liquid nitrogen was thawed at room temperature (hereinafter referred to as C). For (C), operate in the same manner as (B)
It was placed in a constant temperature bath at 60 ° C. Both (B) and (C) gelled on the next day, and a dried gel was obtained after 1 week. This was calcined in air at 500 ° C for 24 hours and then heated to 1400 ° C in He to obtain transparent glass without cracking.

Si(OCH3の収率が100%であると仮定して求めたSi
(OC2H5の収率は(B)が約90%、(C)が約40%
で、ゾル液の収率とほぼ同じであり、(C)はかなりの
Si(OC2H5がムダになつていた。
Si (OCH 3 ) 4 yield calculated assuming 100% yield
The yield of (OC 2 H 5 ) 4 is about 90% for (B) and about 40% for (C).
The yield of the sol is almost the same, and (C) is
Si (OC 2 H 5 ) 4 was wasted.

<ゾル液の濃縮> (B)のゾル液20gをとり、ドラフト中で湯せんで加熱
し濃縮したところ、ゾル液表面がゲル化した時のSiO2
度は47重量%であつた。さらに濃縮し、全体がゲル化し
た時のSiO2濃度は52重量%であつた。これらのSiO2濃度
は濃縮前のゾル液のSiO2濃度が12.2重量%であることが
わかつていたのでこれから求めた。
<Concentration of Sol Solution> When 20 g of the sol solution of (B) was taken and heated in a fume hood and concentrated, the SiO 2 concentration when the surface of the sol solution gelled was 47% by weight. When further concentrated and the whole gelled, the SiO 2 concentration was 52% by weight. These SiO 2 concentration was determined from now because SiO 2 concentration of the sol solution before concentration were divide to be 12.2 wt%.

別に(B)のゾル液を50gとり、濃縮して、SiO2濃度が2
5重量%の液を得、これをDとした。
Separately, 50 g of the sol liquid of (B) is concentrated and the SiO 2 concentration is 2
A 5% by weight liquid was obtained and designated as D.

<ゲル化からガラス化−2> 前述の(B)、(C)のかわりに(D)を用い同様にし
た。ただし、アルミ箔のフタには針穴を10個あけてお
き、3日で乾燥ゲルを割れなしに得た。また、用いた試
験管は同じだが、B、Cより大きなガラスが得られた。
<Gelization to Vitrification-2> (D) was used instead of the above (B) and (C), and the same procedure was performed. However, 10 needle holes were left in the aluminum foil lid, and a dry gel was obtained without cracking in 3 days. Also, the same test tubes were used, but glasses larger than B and C were obtained.

実施例3 Si(OC3H7440gとプロパノール100gを混合した。この
中に28%アンモニア水50gとプロパノール150gを混合し
たものを加え、さらにかくはんした。これを密閉容器に
入れ60℃恒温槽に入れ28日保つた。ゾル液をとりだし、
乾燥させSiO2濃度を測定したところ26%であり、収率は
ほぼ100%だつた。このゾル液に中性になるまで1N塩酸
を加えた。その後このゾル液をSiO2濃度25%まで濃縮し
た。このゾル液を実施例2の(B)、(C)、(D)の
かわりに用い、同様にして透明ガラスを得た。
Example 3 40 g of Si (OC 3 H 7 ) 4 and 100 g of propanol were mixed. A mixture of 50 g of 28% aqueous ammonia and 150 g of propanol was added to this, and the mixture was further stirred. This was placed in a closed container and placed in a constant temperature bath at 60 ° C. and kept for 28 days. Take out the sol liquid,
When the SiO 2 concentration was dried and measured, it was 26%, and the yield was almost 100%. 1N hydrochloric acid was added to the sol solution until it became neutral. Thereafter, this sol solution was concentrated to a SiO 2 concentration of 25%. This sol solution was used instead of (B), (C) and (D) in Example 2 to obtain a transparent glass in the same manner.

実施例4 Si(OC4H9440gとブタノール100gを混合した。この中
に28%アンモニア水50gとブタノール150gを混合したも
のを加え、さらにかくはんした。これを密閉容器に入れ
60℃恒温槽に入れ28日保つた。ゾル液をとりだし、乾燥
させSiO2濃度を測定したところ2.2%であり、収率はほ
ぼ100%だつた。このゾル液に中性になるまで1N塩酸を
加えた。その後このゾル液をSiO2濃度25%まで濃縮し
た。このゾル液を実施例2の(B)、(C)、(D)の
かわりに用い、同様にして透明ガラスを得た。
Example 4 40 g of Si (OC 4 H 9 ) 4 and 100 g of butanol were mixed. A mixture of 50 g of 28% aqueous ammonia and 150 g of butanol was added to this, and the mixture was further stirred. Put this in a closed container
It was placed in a constant temperature bath at 60 ° C and kept for 28 days. The sol solution was taken out and dried, and the SiO 2 concentration was measured to be 2.2%, and the yield was almost 100%. 1N hydrochloric acid was added to the sol solution until it became neutral. Thereafter, this sol solution was concentrated to a SiO 2 concentration of 25%. This sol solution was used instead of (B), (C) and (D) in Example 2 to obtain a transparent glass in the same manner.

〔発明の効果〕〔The invention's effect〕

本発明のガラスの製造方法は、ゾルゲル法のゲル化・乾
燥・焼結が容易となり、高品質のガラスを容易に製造で
きる優れた効果を有する。
INDUSTRIAL APPLICABILITY The method for producing glass of the present invention has an excellent effect that gelling, drying and sintering of the sol-gel method are easy and high quality glass can be easily produced.

【図面の簡単な説明】 第1図は本発明に実施例2におけるSi(OC2H5の加
水分解温度及び時間と加水分解収率の関係をグラフに示
した図、 第2図は第1図から求めた収率50%の分解に要する日数
の温度依存性をグラフに示した図、 第3図は実施例2にて得た粉末の平均粒径と収率との関
係をグラフに示した図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the relationship between the hydrolysis temperature and time of Si (OC 2 H 5 ) 4 and the hydrolysis yield in Example 2 according to the present invention. Fig. 1 is a graph showing the temperature dependence of the number of days required for the decomposition of 50% yield obtained from Fig. 1, and Fig. 3 is a graph showing the relationship between the average particle size of the powder obtained in Example 2 and the yield. FIG.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Siのアルコキシドを加水分解してゾル液を
得、該ゾル液をゲル化させた後乾燥ゲルとし、該ゲルを
焼結してガラスを製造する方法において、Siのアルコキ
シドとしてSi(OCH3及びSi(OC2H5以上の高位
のアルコキシドを用い、Si(OC2H5以上の高位のア
ルコキシドをSi(OCH3より先に加水分解させること
を特徴とするガラスの製造方法。
1. A method for producing a glass by hydrolyzing a Si alkoxide to obtain a sol liquid, gelling the sol liquid, and then sintering the gel to produce a glass. (OCH 3 ) 4 and Si (OC 2 H 5 ) 4 or higher alkoxide are used, and the Si (OC 2 H 5 ) 4 or higher alkoxide is hydrolyzed prior to Si (OCH 3 ) 4. Characteristic glass manufacturing method.
【請求項2】Si(OC2H5以上の高位のアルコキシド
は、ゲル化前にその70モル%以上が分解している特許請
求の範囲第(1)項に記載されるガラスの製造方法。
2. Production of the glass according to claim (1), wherein 70% by mole or more of the high-order alkoxide of Si (OC 2 H 5 ) 4 or more is decomposed before gelation. Method.
【請求項3】Si(OC2H5以上の高位のアルコキシド
の加水分解は、温度40℃以上、85℃以下にて行う特許請
求の範囲第(1)項または第(2)項に記載されるガラ
スの製造方法。
3. The hydrolysis of the higher alkoxide of Si (OC 2 H 5 ) 4 or more is carried out at a temperature of 40 ° C. or more and 85 ° C. or less, according to claim (1) or (2). The glass manufacturing method described.
【請求項4】予め加水分解して得た、Si(OC2H5
上の高位のアルコキシドのゾル液を濃縮した後に、Si
(OCH3またはSi(OCH3のゾル液と混合する特許
請求の範囲第(1)項ないし第(3)項のいずれかに記
載されるガラスの製造方法。
4. After concentrating a sol solution of a high-order alkoxide of Si (OC 2 H 5 ) 4 or more obtained by hydrolysis in advance, Si
The method for producing glass according to any one of claims (1) to (3), wherein the glass is mixed with a sol liquid of (OCH 3 ) 4 or Si (OCH 3 ) 4 .
【請求項5】濃縮したSi(OC2H5以上の高位のアル
コキシドのゾル液はSiO2濃度が20重量%以上45重量%以
下である特許請求の範囲第(4)項に記載されるガラス
の製造方法。
5. The concentrated sol liquid of the higher alkoxide of Si (OC 2 H 5 ) 4 or more has a SiO 2 concentration of 20% by weight or more and 45% by weight or less. Glass manufacturing method.
JP61098385A 1985-11-05 1986-04-30 Glass manufacturing method Expired - Fee Related JPH0791069B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24622685 1985-11-05
JP60-246226 1985-11-05

Publications (2)

Publication Number Publication Date
JPS62202831A JPS62202831A (en) 1987-09-07
JPH0791069B2 true JPH0791069B2 (en) 1995-10-04

Family

ID=17145387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098385A Expired - Fee Related JPH0791069B2 (en) 1985-11-05 1986-04-30 Glass manufacturing method

Country Status (1)

Country Link
JP (1) JPH0791069B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197138A (en) * 1984-10-16 1986-05-15 Hitachi Cable Ltd Preparation of optical glass body

Also Published As

Publication number Publication date
JPS62202831A (en) 1987-09-07

Similar Documents

Publication Publication Date Title
US4851150A (en) Drying control chemical additives for rapid production of large sol-gel derived silicon, boron and sodium containing monoliths
US4278632A (en) Method of conforming clear vitreous gal of silica-titania material
KR100501759B1 (en) Sol-gel process for the production of tridimensional dry gels, and silica dry gels and silica glasses produced therefrom
JPS59116135A (en) Manufacture of quartz glass
US8763430B2 (en) Method for manufacturing grin lens
JPH0791069B2 (en) Glass manufacturing method
JP2635313B2 (en) Method for producing silica glass
JPH01183421A (en) Production of quartz glass
JPH03150262A (en) Production of codierite
JP2602813B2 (en) Method for producing silica glass
JPH0328382B2 (en)
JPH01275447A (en) Production of titania-silica glass by sol-gel process
JPS61270225A (en) Production of high-silica glass
JPH0328133A (en) Production of colored quartz glass
JP3582093B2 (en) Method for producing silica glass
JPS62123030A (en) Production of glass
JPH0516375B2 (en)
JPH0776093B2 (en) Quartz glass manufacturing method
JPS643812B2 (en)
JPH0551539B2 (en)
JPH03174330A (en) Production of glass
JPH0825757B2 (en) Silica glass manufacturing method
JPH02267130A (en) Production of foam glass
JPH0825756B2 (en) Silica glass manufacturing method
JPH0986918A (en) Production of synthetic quartz glass powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees