JPS6197138A - Preparation of optical glass body - Google Patents

Preparation of optical glass body

Info

Publication number
JPS6197138A
JPS6197138A JP21677384A JP21677384A JPS6197138A JP S6197138 A JPS6197138 A JP S6197138A JP 21677384 A JP21677384 A JP 21677384A JP 21677384 A JP21677384 A JP 21677384A JP S6197138 A JPS6197138 A JP S6197138A
Authority
JP
Japan
Prior art keywords
glass body
optical glass
gel
producing
bulk density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21677384A
Other languages
Japanese (ja)
Other versions
JPH039046B2 (en
Inventor
Toshihide Tokunaga
徳永 利秀
Junkichi Nakagawa
中川 順吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP21677384A priority Critical patent/JPS6197138A/en
Publication of JPS6197138A publication Critical patent/JPS6197138A/en
Publication of JPH039046B2 publication Critical patent/JPH039046B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To prepare an optical glass body prevented from generation of bubbles by heating and sintering a porous gel having a low bulk density obtd. by hydrolyzing specified >=two kinds of silicon alkoxide. CONSTITUTION:A liquid mixture 1 of starting materials prepd. by mixing 1mol of at least two kinds of silicon alkoxides having different hydrolyzing velocity to each other but consisting of >=2 molar ratio of Si(OCH3)4 and Si(OC2H5)4, etc., with 3-6mol aq. ammonia having 0.01-0.1mol/l NH3 concn., and 3-6mol alcoholic solvent (e.g. ethanol), is charged in a vessel 2. The vessel is closed tightly and the content is allowed to stand to cause gelation to obtain wet gel 4. A porous gel 5 having a low bulk density is obtd. by hydrolyzing the gel 4, which is then vitrified by heating and sintering. Thus, a block body 6 of an oxide of an optical glass body is obtd. The generation of bubbles in the block body is inhibited even if the block body is heated to >=2,000 deg.C.

Description

【発明の詳細な説明】 [発明の背景と目的] 本発明は、光学ガラス体のI!造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Background and Objects of the Invention] The present invention provides an I! It is related to the manufacturing method.

最近、シリコンアルコキシドを加水分解して得られる多
孔質ゲヘルを焼結し、透明なシリカガラス体を作成する
方法(以下ゾル、ゲル法と称す)が提案され、このゾル
、ゲル法による光フアイバ作製の試みも、[j7ect
ronics  1−et−ters  18[12]
、499(1982)により報告されている。
Recently, a method of creating a transparent silica glass body by sintering porous gel obtained by hydrolyzing silicon alkoxide (hereinafter referred to as the sol or gel method) has been proposed, and optical fibers can be fabricated using this sol or gel method. The attempt of [j7ect
ronics 1-et-ters 18[12]
, 499 (1982).

上記ゾル、ゲル法で得られるシリカ乾燥ゲルは作成条件
にも依存するが、S!0CzH5)4の原料を使う場合
には、乾燥ゲルのかさ密度が、0、7c+/cm3であ
り、Si(OCH3)4の原料を使う場合にはより低か
さ密度のゲルができ、0.6q/cm3の低かさ密度が
得られ、この低かさ密度乾燥ゲルより光ファイバの作製
が可能と上記文献に報告されている。
The dry silica gel obtained by the above sol/gel method depends on the preparation conditions, but S! When using the raw material of 0CzH5)4, the bulk density of the dry gel is 0.7c+/cm3, and when using the raw material of Si(OCH3)4, a gel with a lower bulk density of 0.6q is produced. It is reported in the above-mentioned literature that a low bulk density of /cm3 can be obtained, and that an optical fiber can be manufactured from this low bulk density dried gel.

一般には、乾燥ゲルのかさ密度が小さい程、高温におけ
る焼結ガラス体の発泡が少なくなる。従って、無発泡ガ
ラスを作るためにはなるべく低かさ密度のゲル作成が要
求される。シリコンアルコキシドの原料を1種類単独に
使用する従来のゲル作成法では、約0.60/C13の
かさ密度のゲルが限界であり、このゲルより作製したガ
ラスは、1.300℃で発泡しないものでも約2.00
0℃の高温で加熱するとガラス体に気泡が発生すると言
う発泡現象がしばしば生じている。
Generally, the lower the bulk density of the dry gel, the less foaming the sintered glass body will have at high temperatures. Therefore, in order to produce non-foamed glass, it is required to produce a gel with as low a bulk density as possible. In the conventional gel making method that uses only one type of silicon alkoxide raw material, the limit is a gel with a bulk density of approximately 0.60/C13, and the glass made from this gel does not foam at 1.300°C. But about 2.00
When heated at a high temperature of 0° C., a foaming phenomenon in which air bubbles are generated in a glass body often occurs.

本発明゛は、上記の状況に鑑みなされたものであり、約
2.000℃で加熱しても気泡の発生を防止できる光学
ガラス体の製造方法を提供することを目的としたもので
ある。
The present invention was made in view of the above-mentioned situation, and an object of the present invention is to provide a method for manufacturing an optical glass body that can prevent the generation of bubbles even when heated at about 2,000°C.

[発明の概要] 本発明の光学ガラス体の製造方法は、金属アルコキシド
を加水分解して得られた多孔質ゲルを加熱焼結し光学ガ
ラス体の酸化物ブロック体を製造する場合に、上記金属
アルコキシドの原料に、加水分解速度の異なる少なくと
も2種類のシリコンアルコキシドを用い、加水分解を行
ない低かさ密度の上記多孔質ゲルを製造する方法である
[Summary of the Invention] The method for producing an optical glass body of the present invention provides a method for producing an oxide block of an optical glass body by heating and sintering a porous gel obtained by hydrolyzing a metal alkoxide. In this method, at least two types of silicon alkoxide having different hydrolysis rates are used as raw materials for the alkoxide, and hydrolysis is performed to produce the above-mentioned porous gel having a low bulk density.

〔実施例〕〔Example〕

以下、本発明の光学ガラス体の製造方法を実施例を用い
図面により説明する。図はゾル、ゲル法のプロセスの概
要図である。シリコンアルコキシドを原料とし、アルコ
ール及びHzOを混合撹拌して得られた原料混合液1を
適宜のガラス容器2に移し、ガラス容器2をアルミホイ
ル3によりほぼ密閉、放置してゲル化させる。ゲル化完
了後の溶媒及び水を多重に含んでいるウェット(Wet
)ゲル4を乾燥工程で乾燥し溶媒のアルコールや水を蒸
発させ、焼結用の多孔質の乾燥(Pry)ゲル5を作る
。次に、乾燥ゲル5を約1,300℃で焼結、ガラス化
し透明ガラス体6を作る。そして、光ファイバを作る場
合には、透明ガラス体6から従来の光ファイバのロッド
インチューブ法などにより約2.000℃で光ファイバ
が製造される。
Hereinafter, the method for manufacturing an optical glass body of the present invention will be explained using examples and drawings. The figure is a schematic diagram of the sol/gel process. A raw material mixture 1 obtained by mixing and stirring alcohol and HzO using silicon alkoxide as a raw material is transferred to a suitable glass container 2, the glass container 2 is almost sealed with aluminum foil 3, and left to gel. Wet (wet) containing multiple solvents and water after gelation is completed
) The gel 4 is dried in a drying process to evaporate the solvent alcohol and water to produce a porous dry (Pry) gel 5 for sintering. Next, the dried gel 5 is sintered and vitrified at about 1,300° C. to produce a transparent glass body 6. When producing an optical fiber, the optical fiber is produced from the transparent glass body 6 at about 2,000° C. by a conventional optical fiber rod-in-tube method.

実施例1 加水分解速度の遅いS ! (0,Cz Hs ) a
と加水分解速度の速いS i (OCH3→4の混合液
に、溶媒としてのエタノールを加え撹拌しなが゛ら、0
.05モル/1のNH38度のアンモニヤ水を加えて均
一な混合液とした。そして、5i(QCzHa)aとS
 f (OCH3)4の合計1モルに対して、エタノー
ルが4モルとアンモニヤ水が4モルの組成になるように
混合液を速成した。また、S i (OCz Hs )
/S i (OCH3)4のモル比率が、O/1.O,
0,210,8,0,410,6,0,610,4,0
,810,2になるように5種類の組成の混合液を調整
作成した。
Example 1 S with slow hydrolysis rate! (0, Cz Hs) a
and S i (OCH3 → 4), which has a high hydrolysis rate, while adding ethanol as a solvent and stirring it.
.. 05 mole/1 NH 38 degree aqueous ammonia was added to make a homogeneous mixed solution. And 5i(QCzHa)a and S
A mixed solution was quickly prepared to have a composition of 4 moles of ethanol and 4 moles of aqueous ammonia per 1 mole of f (OCH3)4 in total. Also, S i (OCz Hs )
/S i (OCH3)4 molar ratio is O/1. O,
0,210,8,0,410,6,0,610,4,0
, 810, 2, and prepared mixed liquids with five different compositions.

このようにして、得られた均一な混合液を、内径10M
×長さ200のガラス容器2に入れアルミホイル3によ
り上端部をほぼ密閉したあと室温で約1日放置してゲル
化させた。次に、ガラス容器2を覆うアルミホイル3の
部分にピンホールを数個あけ、70℃の恒温槽(図示せ
ず)内に10日間、120℃の恒FAN内に1日間、そ
れぞれ保持しゲルに残留している水及びエタノールを蒸
発させ乾燥した。上記のようにして得られた5種類の乾
燥ゲルのかさ密度は、縦軸にゲルのかさ密度をとり、横
軸に、S i (OC2Ha )4 /S t(OCH
3)4のモル比をとって示した第2図の曲線Aに示す如
くである。即ち、加水分解速度の速いSi(OCH3)
4を単独に使用した場合には、かさ密度は0.600/
cm3であり、また、加水分解速度の遅いS t (O
C2HIS )aを単独に使用する場合にはゲル化に要
する時間は著しく長く、しかも、ゲルの作成は良好にで
きなかった。
In this way, the obtained homogeneous mixed liquid was
The mixture was placed in a glass container 2 having a length of 200 mm, the upper end of which was almost sealed with aluminum foil 3, and then left at room temperature for about 1 day to gel. Next, several pinholes were made in the aluminum foil 3 covering the glass container 2, and the gel was kept in a constant temperature bath at 70°C (not shown) for 10 days and in a constant fan at 120°C for 1 day. The remaining water and ethanol were evaporated and dried. The bulk densities of the five types of dry gels obtained as described above are calculated by plotting the bulk density of the gel on the vertical axis and Si (OC2Ha )4 /S t (OCH
3) as shown in curve A of FIG. 2, which is shown by taking the molar ratio of 4. That is, Si(OCH3) has a high hydrolysis rate.
When 4 is used alone, the bulk density is 0.600/
cm3, and S t (O
When C2HIS)a was used alone, the time required for gelation was extremely long, and the gel could not be formed well.

これに対し、S i (OC2Ha )a /S i 
(QCH3)4のモル比が、0.810.2の組成では
、0.400/ca+3の最小の低かさ密度のゲルが得
られた。
On the other hand, S i (OC2Ha )a /S i
With a composition in which the molar ratio of (QCH3)4 was 0.810.2, a gel with a minimum low bulk density of 0.400/ca+3 was obtained.

上記5種類のゲルを同じ条件で焼結したガラスには気泡
が全くなかったが、約2,000℃の高温で加熱すると
、かさ密度の小さい程ガラスの発泡が少なく、P=0.
4g/c+a3のゲルから作成したガラスには発泡がな
く、きれいな無孔透明ガラス体であった。上記5種類の
組成で作成したガラスの発泡の比較は第2図のO印肉の
黒塗り量の大小で示してあり、黒塗り囚の大きい程発泡
が多く○印肉の黒塗り部分の全くないものは無発泡を示
す。上記の無発泡のシリカガラスロンドを、公知の技術
でプリフォームしたあとファイバ化して光ファイバを作
成した。ファイバの線引温度は約1.900℃であるが
発泡がなく、光ファイバに利用できるガラスであること
が確認された。
Glass obtained by sintering the five types of gels mentioned above under the same conditions had no bubbles, but when heated at a high temperature of about 2,000°C, the smaller the bulk density, the less foaming the glass had, and P = 0.
The glass made from the 4g/c+a3 gel had no foaming and was a clean, non-porous, transparent glass body. A comparison of the foaming of glasses made with the above five compositions is shown in Figure 2 by the amount of black coating on the O stamp pad.The larger the black coating amount, the more foaming occurs. Those without foam indicate no foaming. The above-mentioned non-foamed silica glass rond was preformed using a known technique and then made into a fiber to create an optical fiber. Although the drawing temperature of the fiber was approximately 1.900° C., there was no foaming, and it was confirmed that the glass could be used for optical fibers.

このように、本実施例の光学ガラス体の製造方法によれ
ば、酸化物の原料として同一元素で、加水分解速度が異
なる2種類のシリコンアルコキシドを用い加水分解を行
ないゲル作成を行なう方法(以下累加水分解速度法と称
す)を用いることにより、従来のゲル作成法よりさらに
低いかさ密度のゲルが作成でき、ゾル、ゲル法のガラス
によく起こる高温発泡現象の防止が可能であることが明
らかとなった。即ち、約2.000℃で加熱しても気泡
の発生を防止できる。そして、本実施例の異加水分解速
度法のゲルが、原料1元素に対し1種類の金属アルコキ
シドのみを用いる従来方法により作成したゲルよりもざ
らにがさ密度が低くなる理由は、加水分解速度の遅いア
ルコキシド原料によるゲルの強化効果によると考えられ
る。加水分解速度の速いアルコキシド原料は先に反応し
てゲルの網目構造を形成するが、加水分解速度の遅いも
のはあとに反応して既に形成された網目構造の表面に堆
積し、ゲルの構造全体を強化する結果となると思われる
。従って、同じ溶媒の表面張力にJ:る収縮力に対して
、強いゲル程ゲルの収縮が小さくその結果、低かさ密度
のゲルが実現できるのである。
As described above, according to the method for manufacturing an optical glass body of this example, two types of silicon alkoxides, which are the same element but have different hydrolysis rates, are used as raw materials for the oxide, and are hydrolyzed to create a gel (hereinafter referred to as It is clear that by using the cumulative hydrolysis rate method (referred to as the cumulative hydrolysis rate method), it is possible to create a gel with a lower bulk density than the conventional gel creation method, and it is possible to prevent the high-temperature foaming phenomenon that often occurs with glasses produced by the sol and gel methods. It became. That is, generation of bubbles can be prevented even when heated at about 2,000°C. The reason why the gel made using the different hydrolysis rate method of this example has a lower roughness density than the gel made by the conventional method using only one type of metal alkoxide for one raw material element is because of the hydrolysis rate. This is thought to be due to the gel strengthening effect of the slow alkoxide raw material. Alkoxide raw materials with a fast hydrolysis rate react first and form a gel network structure, while those with a slow hydrolysis rate react later and deposit on the surface of the already formed network structure, destroying the entire gel structure. This is expected to result in the strengthening of Therefore, the stronger the gel, the smaller the shrinkage of the gel with respect to the shrinkage force caused by the surface tension of the same solvent, and as a result, a gel with a lower bulk density can be realized.

本実施例では、St (OCH3)aと5i(OCZ 
H6)の2種類のシリコンアルコキシドの場合を説明し
たが、St (OR)a  (R:アルキル基)の3種
類以上の混合の場合も当然この異加水分解速度法の適用
が可能であると考えられる。
In this example, St (OCH3)a and 5i (OCZ
Although we have explained the case of two types of silicon alkoxides in H6), it is of course possible to apply this heterohydrolysis rate method to the case of a mixture of three or more types of St (OR) a (R: alkyl group). It will be done.

[発明の効果] 以上記述した如く、本発明の光学ガラス体の製造方法に
よれば、約2,000℃のに高温で加熱しても気泡の発
生を防止できる効果を有するものである。
[Effects of the Invention] As described above, the method for manufacturing an optical glass body of the present invention has the effect of preventing the generation of bubbles even when heated at a high temperature of about 2,000°C.

また、シリコンアルコキシドの他に、ゾル、ゲル法に使
用できる例えば、Ge (OR)a 、 T 1(OR
)s 、Ta (OR)s等の金属アルコキシトモ上記
5i(OR)aの場合と同じく異加水分解速度法の効果
が期待できると考えられる。
In addition to silicon alkoxide, for example, Ge (OR) a, T 1 (OR
)s, Ta(OR)s, etc. It is thought that the effect of the differential hydrolysis rate method can be expected as in the case of the above-mentioned 5i(OR)a.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のガラス体の製造方法を実施するプロ
セス概要図、第2図は第1図の方法を実施する加水分解
速度の速いシリコンアルコキシドと遅いシリコンアルコ
キシドのモル比及び乾燥ゲルのかさ密度との関係を示す
ブラフである。 1・・・混合液、4・・・ウエツゲル、5・・・乾燥ゲ
ル。 6・・・透明ガラス体。 第 1 目 第 2 目 SL(’CzHd、15b(””a)4 (モルb51
事件の表示 昭和59年特 許M 216773号 2発明の名称 光学ガラス体の製造方法 3 補正をする者 名称(512)   日立電線株式会社代表者    
 rl 羅li 5、補  正  の  対  象 用細店の特許請求の範囲の欄 6、 補  正  の  内  容 別紙の通り 7、添付書類の目録 別紙(特許請求の範l!ll)    1通以  上 特許請求の範囲 (1)金属アルコキシドを加水分解して得られた多孔質
ゲルを加熱焼結し光学ガラス体の酸化物ブロック体を製
造する方法において、上記金属アルコキシドの原料に、
加水分解速度の異なる少なくとも2種類のシリコンアル
コキシドを用い、加水分解を行ない底かさ密度の上記多
孔質ゲルを製造することを特徴とする光学ガラス体の製
造方法。 (2上記の加水分解速度の異なる2種類のアルコキシド
は、シリコンアルコキシドS i (OCHa )4及
びS i (OCz Ha )4であり、シリカガラス
の上記光学ガラス体を製造する特許請求の範囲第1項記
載の光学ガラス体の製造方法。 (3上記シリコンアルコキシドS f (OCZ H6
)&/上記シリコンアルコキシドS i (OCH3)
4のモル比が2以上である特許請求の範囲第2項記載の
光学ガラス体の製造方法。 上記シリコンアルコキシドS i (OCz Hs )
4及び上記シリコンアルコキシドS i (C)CH3
)番原料の合計1モルに対して使用する水とアルコ−ル
溶媒はそれぞれ3〜6モルである特許請求の範囲第1項
記載の光学ガラス体の製造方法。 (5)上記アルコール溶媒はエタノールである特許請求
の範囲第4項記載の光学ガラス体の製造方法。 (6)上記加水分解に使用する水は、0.01〜0.1
モル/1のアンモニヤ濃度を持つアンモニヤ水である特
許請求の範囲第1項記載の光学ガラス体の製造方法。 以  上
Figure 1 is a schematic diagram of the process for carrying out the method of manufacturing a glass body of the present invention, and Figure 2 is a diagram showing the molar ratio of silicon alkoxide with a fast hydrolysis rate and silicon alkoxide with a slow rate of hydrolysis and the dry gel ratio when carrying out the method of the present invention. This is a bluff showing the relationship with density. 1... Mixed liquid, 4... Wet gel, 5... Dry gel. 6...Transparent glass body. 1st eye 2nd eye SL('CzHd, 15b(""a)4 (mol b51
Display of the case 1982 Patent No. M 216773 2 Name of the invention Method for manufacturing optical glass bodies 3 Name of the person making the amendment (512) Representative of Hitachi Cable Co., Ltd.
rl Luo li 5, Column 6 of the scope of patent claims of the subject of the amendment, Contents of the amendment as shown in the attached sheet 7, Attachment with a list of attached documents (Claims l!ll) 1 or more copies Claims (1) A method for producing an oxide block body of an optical glass body by heating and sintering a porous gel obtained by hydrolyzing a metal alkoxide, the raw material for the metal alkoxide comprising:
A method for producing an optical glass body, characterized in that the above-mentioned porous gel having a bottom bulk density is produced by hydrolysis using at least two types of silicon alkoxides having different hydrolysis rates. (2) The above two types of alkoxides having different hydrolysis rates are silicon alkoxides S i (OCHa )4 and S i (OCz Ha )4, and claim 1 for manufacturing the above-mentioned optical glass body of silica glass. The method for producing an optical glass body described in Section 3. (3) The above silicon alkoxide S f (OCZ H6
)&/Above silicon alkoxide S i (OCH3)
3. The method for producing an optical glass body according to claim 2, wherein the molar ratio of 4 to 4 is 2 or more. The above silicon alkoxide S i (OCz Hs )
4 and the above silicon alkoxide S i (C)CH3
2. The method for producing an optical glass body according to claim 1, wherein the amount of water and alcohol solvent used is 3 to 6 mol each per 1 mol of the raw materials. (5) The method for producing an optical glass body according to claim 4, wherein the alcohol solvent is ethanol. (6) The water used for the above hydrolysis is 0.01 to 0.1
The method for producing an optical glass body according to claim 1, wherein the ammonia water has an ammonia concentration of mol/1. that's all

Claims (1)

【特許請求の範囲】 (1)金属アルコキシドを加水分解して得られた多孔質
ゲルを加熱焼結し光学ガラス体の酸化物ブロック体を製
造する方法において、上記金属アルコキシドの原料に、
加水分解速度の異なる少なくとも2種類のシリコンアル
コキシドを用い、加水分解を行ない低かさ密度の上記多
孔質ゲルを製造することを特徴とする光学ガラス体の製
造方法。 (2)上記の加水分解速度の異なる2種類のアルコキシ
ドは、シリコンアルコキシドSi(OCH_3)4及び
Si(OC_2H_5)_4であり、シリカガラスの上
記光学ガラス体を製造する特許請求の範囲第1項記載の
光学ガラス体の製造方法。 (3)上記シリコンアルコキシドSi(OC_2H_5
)_4/上記シリコンアルコキシドSi(OCH_3)
_4のモル比が2以上である特許請求の範囲第2項記載
の光学ガラス体の製造方法。 上記シリコンアルコキシドSi(OC_2H_5)_4
及び上記シリコンアルコキシドSi(OCH_3)_4
原料の合計1モルに対して使用する水とアルコール溶媒
はそれぞれ3〜6モルである特許請求の範囲第1項記載
の光学ガラス体の製造方法。 (5)上記アルコール溶媒はエタノールである特許請求
の範囲第4項記載の光学ガラス体の製造方法。 (6)上記加水分解に使用する水は、0.01〜0.0
1モル/lのアンモニヤ濃度を持つアンモニヤ水である
特許請求の範囲第1項記載の光学ガラス体の製造方法。
[Scope of Claims] (1) In a method for producing an oxide block body of an optical glass body by heating and sintering a porous gel obtained by hydrolyzing a metal alkoxide, the raw material for the metal alkoxide includes:
A method for producing an optical glass body, characterized in that the porous gel having a low bulk density is produced by hydrolysis using at least two types of silicon alkoxides having different hydrolysis rates. (2) The above two types of alkoxides having different hydrolysis rates are silicon alkoxides Si(OCH_3)4 and Si(OC_2H_5)_4, and the above-mentioned optical glass body of silica glass is manufactured according to claim 1. A method for manufacturing an optical glass body. (3) The above silicon alkoxide Si (OC_2H_5
)_4/Silicon alkoxide Si (OCH_3)
The method for producing an optical glass body according to claim 2, wherein the molar ratio of _4 is 2 or more. The above silicon alkoxide Si (OC_2H_5)_4
and the above silicon alkoxide Si (OCH_3)_4
2. The method for producing an optical glass body according to claim 1, wherein the amount of water and alcohol solvent used is 3 to 6 mol each per 1 mol of the raw materials in total. (5) The method for producing an optical glass body according to claim 4, wherein the alcohol solvent is ethanol. (6) The water used for the above hydrolysis is 0.01 to 0.0
The method for producing an optical glass body according to claim 1, wherein the ammonia water has an ammonia concentration of 1 mol/l.
JP21677384A 1984-10-16 1984-10-16 Preparation of optical glass body Granted JPS6197138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21677384A JPS6197138A (en) 1984-10-16 1984-10-16 Preparation of optical glass body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21677384A JPS6197138A (en) 1984-10-16 1984-10-16 Preparation of optical glass body

Publications (2)

Publication Number Publication Date
JPS6197138A true JPS6197138A (en) 1986-05-15
JPH039046B2 JPH039046B2 (en) 1991-02-07

Family

ID=16693667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21677384A Granted JPS6197138A (en) 1984-10-16 1984-10-16 Preparation of optical glass body

Country Status (1)

Country Link
JP (1) JPS6197138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202831A (en) * 1985-11-05 1987-09-07 Sumitomo Electric Ind Ltd Production of glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155038A (en) * 1980-04-30 1981-12-01 Hitachi Cable Ltd Preparation of base material for optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155038A (en) * 1980-04-30 1981-12-01 Hitachi Cable Ltd Preparation of base material for optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202831A (en) * 1985-11-05 1987-09-07 Sumitomo Electric Ind Ltd Production of glass

Also Published As

Publication number Publication date
JPH039046B2 (en) 1991-02-07

Similar Documents

Publication Publication Date Title
US5076980A (en) Method of making sol-gel monoliths
US5068208A (en) Sol-gel method for making gradient index optical elements
CA1311127C (en) Glass body formed from a vapor-derived gel and process for producing same
JPH0118007B2 (en)
JPS6197138A (en) Preparation of optical glass body
GB2100248A (en) Preparing porous bodies of doped silica gel
JP2635313B2 (en) Method for producing silica glass
JPS6027615A (en) Production of optical glass
JPH054839A (en) Method for preparing thin film by sol-gel method
JP2832213B2 (en) Manufacturing method of optical glass
US20020013209A1 (en) Erbium-doped multicomponent glasses manufactured by the sol-gel method
JPS6197137A (en) Preparation of optical glass body
JPH0416519A (en) Production of silica-based glass
JPS62265127A (en) Production of silica glass
JPH0798665B2 (en) Silica glass manufacturing method
JPH0582332B2 (en)
JPS6296339A (en) Production of optical fiber preform
JPS58223623A (en) Preparation of porous material
JPH0324416B2 (en)
野上 et al. Dehydration of Glass Prepared by Gel Process from Si (OC2H5) 4
JPH02188431A (en) Production of quartz glass
JPH0791069B2 (en) Glass manufacturing method
JPS63117917A (en) Production of glass
JPS62246835A (en) Production of base material for quartz glass optical fiber
JPS589843A (en) Preparation of optical glass