JPH0516375B2 - - Google Patents

Info

Publication number
JPH0516375B2
JPH0516375B2 JP1899786A JP1899786A JPH0516375B2 JP H0516375 B2 JPH0516375 B2 JP H0516375B2 JP 1899786 A JP1899786 A JP 1899786A JP 1899786 A JP1899786 A JP 1899786A JP H0516375 B2 JPH0516375 B2 JP H0516375B2
Authority
JP
Japan
Prior art keywords
glass
temperature
gel
powder
silicate ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1899786A
Other languages
Japanese (ja)
Other versions
JPS62176931A (en
Inventor
Hideo Unuma
Yoshikazu Suzuki
Ryoichi Yoshida
Wakinori Maekawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1899786A priority Critical patent/JPS62176931A/en
Publication of JPS62176931A publication Critical patent/JPS62176931A/en
Publication of JPH0516375B2 publication Critical patent/JPH0516375B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は改良されたシリカガラスの製造法に関
するものである。さらに詳しくいえば、本発明
は、ケイ酸エステルやこれに所望の添加物を加え
た混合物を加水分解して得られたゲルの微粉末、
又は無定形シリカ微粉末を原料とし、溶融状態を
経ることなく、結晶質を含まず、勝つひび割れな
どのない品質の優れたシリカガラスを経済的に製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improved method for producing silica glass. More specifically, the present invention relates to a fine gel powder obtained by hydrolyzing a silicate ester and a mixture thereof with desired additives;
Alternatively, the present invention relates to a method for economically producing silica glass of excellent quality without undergoing a molten state, containing no crystalline matter, and having no cracks or the like, using amorphous silica fine powder as a raw material.

〔従来の技術〕[Conventional technology]

従来、シリカガラスの製造方法としては、その
製造過程において、溶融状態を経る方法と溶融状
態を経ない方法とが知られている。
Conventionally, methods for manufacturing silica glass have been known, including a method that involves a molten state in the manufacturing process and a method that does not involve a molten state.

前者の溶融状態う経る方法は、原料の石英及び
必要に応じて加える添加物を、2000℃以上の高温
で溶融したのち、冷却してガラスを得るという方
法である。しかしながら、この方法においては、
(1)溶融のために大きな熱量を必要とする、(2)溶融
時に不純物が混入したり、あるいは特定の成分が
蒸散したりする、(3)添加物の種類によつては、溶
融が著しく困難になつたり、結晶析出のためガラ
スの製造が不可能になる場合がある、などの問題
点がある。これらの問題点はすべて原料粉末の溶
融に伴うものである。
The former molten state method involves melting raw quartz and optional additives at a high temperature of 2,000°C or higher, and then cooling it to obtain glass. However, in this method,
(1) A large amount of heat is required for melting; (2) impurities may be mixed in during melting or certain components may evaporate; and (3) depending on the type of additive, melting may be significant. There are problems such as the production of glass becoming difficult or impossible due to crystal precipitation. All of these problems are associated with melting of the raw material powder.

一方、溶融状態を経ない方法としては、ケイ酸
エステル又はケイ酸エステルに必要に応じ金属ア
ルコキシド若しくは金属塩を添加した混合物を加
水分解してゲルお得、次いでこれを乾燥、加熱す
ることにより溶媒や水を除去し、かつゲル中の細
孔を消滅させてガラスを得る方法、あるいは無定
形シリカ微粉末を水やアルコールなどに分散して
ゲル化させたのち、このゲルを前記と同様に加熱
してガラスを得る方法がある。これらの方法は一
般にゾル−ゲル法と呼ばれ、原料の溶融状態を経
由しないために、前記の問題を回避することがで
きる。しかしながら、このようなゾル−ゲル法に
おいても、乾燥、加熱時に水分や溶媒の逸散のた
めに、内部応力が生じて、割れが生じやすく、ま
た加熱時間を極端に長くする必要が有るなどの欠
点を有している。
On the other hand, as a method that does not require a molten state, a silicate ester or a mixture of a silicate ester and a metal alkoxide or a metal salt is hydrolyzed to obtain a gel, which is then dried and heated to obtain a gel. A method of obtaining glass by removing silica and water and extinguishing the pores in the gel, or a method of dispersing amorphous silica fine powder in water or alcohol, gelling it, and then heating this gel in the same manner as above. There is a way to get glass. These methods are generally called sol-gel methods, and since the raw materials do not go through a molten state, the above-mentioned problems can be avoided. However, even in such a sol-gel method, internal stress is generated due to the dissipation of moisture and solvent during drying and heating, which tends to cause cracks, and requires an extremely long heating time. It has its drawbacks.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、このようなゾル−ゲル法の長
所を生かすとともにその欠点を克服し、ケイ酸エ
ステルやこれに所望の添加物を加えた混合物を加
水分解して得られたゲルの微粉末、または無定形
シリカ微粉末を原料とし、溶融状態を経ることな
く、結晶質を含まず、かつひび割れなどのない品
質の優れたシリカガラスを経済的に製造する方法
を提供することにある。
The purpose of the present invention is to take advantage of the advantages of the sol-gel method and overcome its disadvantages, and to produce a fine gel powder obtained by hydrolyzing a silicate ester and a mixture thereof with desired additives. It is an object of the present invention to provide a method for economically producing silica glass of excellent quality, which does not contain crystalline substances and is free from cracks, using amorphous silica fine powder as a raw material, without going through a molten state.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは前記目的を達成すべく鋭意研究を
重ねた結果、まず該ゲルの微粉末または無定形シ
リカ微粉末を所定の温度で仮焼して、原料粉末に
吸着されている水分や溶媒などの不純物を除去
し、かつ原料粉末中に存在する水分などを再吸着
する活性点を消減させ、次いでこの仮焼粉末を所
定の静水圧及び温度条件下で焼成することによ
り、その目的を達成しうることを見出し、この知
見に基づいて本発明を完成するに至つた。
As a result of intensive research to achieve the above object, the inventors of the present invention first calcined the gel fine powder or amorphous silica fine powder at a predetermined temperature to eliminate the moisture and solvent adsorbed on the raw material powder. This purpose is achieved by removing impurities such as, and reducing the active sites that re-adsorb moisture present in the raw powder, and then firing this calcined powder under predetermined hydrostatic pressure and temperature conditions. Based on this knowledge, the present invention was completed.

すなわち、本発明は、ケイ酸エステルまたはケ
イ酸エステルに金属アルコキシド若しくは金属塩
を添加した混合物を加水分解して得られるゲルの
微粉末、又は無定形シリカ微粉末を800〜1200℃
の温度で仮焼したのち、100〜1000気圧の静水圧
下において、900℃から生成するシリカガラスの
ガラス転移点までの範囲の温度で焼成することを
特徴とするシリカガラスの製造法を提供するもの
である。
That is, the present invention provides a gel fine powder obtained by hydrolyzing a silicate ester or a mixture of a silicate ester and a metal alkoxide or a metal salt, or an amorphous silica fine powder at a temperature of 800 to 1200°C.
Provided is a method for producing silica glass, characterized in that the silica glass is calcined at a temperature of 100 to 1000 atm, and then fired at a temperature ranging from 900°C to the glass transition point of the silica glass produced. It is something.

本発明方法において用いられる原料は、ケイ酸
エステルまたはケイ酸エステルに金属アルコキシ
ド若しくは金属塩を添加した混合物を加水分解し
て得られるゲルの微粉末、又は無定形シリカ微粉
末である。
The raw material used in the method of the present invention is a fine gel powder obtained by hydrolyzing a silicate ester or a mixture of a silicate ester and a metal alkoxide or a metal salt, or amorphous silica fine powder.

該ケイ酸エステルとしては、例えばケイ酸メチ
ル、ケイ酸エチル、ケイ酸プロピル、ケイ酸ブチ
ルなどが挙げられ、金属アルコキシドとしては、
例えば金属のメトキシド、エトキシド、プロポキ
シド、ブトキシドなどが挙げられる。また金属塩
としては、例えば炭酸塩、硫酸塩、硫酸塩、過塩
素酸塩、酢酸塩、シユウ酸など、アルコール−水
混合物溶媒に可溶なものが挙げられる。
Examples of the silicate ester include methyl silicate, ethyl silicate, propyl silicate, butyl silicate, and examples of the metal alkoxide include:
Examples include metal methoxide, ethoxide, propoxide, butoxide, and the like. Examples of metal salts include those soluble in alcohol-water mixture solvents, such as carbonates, sulfates, sulfates, perchlorates, acetates, and oxalic acid.

これらの金属アルコキシドや金属塩は目的とす
るガラスの物理および化学的諸性質を調節するた
めに用いられるものであり、その添加量は通常ケ
イ酸エステル100重量部に対し、0〜40重量部の
範囲で選ばれる。
These metal alkoxides and metal salts are used to adjust the physical and chemical properties of the target glass, and the amount added is usually 0 to 40 parts by weight per 100 parts by weight of silicate ester. selected within the range.

ケイ酸エステル及びケイ酸エステルに金属アル
コキシド若しくは金属塩を添加した混合物の加水
分解は、通常これらを溶解するのに十分な量のア
ルコールと該ケイ酸エステルに対し2〜30倍モル
量、好ましくは10〜30倍モル量の水との混合溶媒
中に、前記ケイ酸エステルや混合物を溶解し、こ
れに該ケイ酸エステルにたいし10-5〜10-2倍モル
量の鉱酸又はアンモニアを触媒として添加し、常
圧下室温から該アルコールの沸点以下の範囲の温
度に加熱することにより行われる。溶媒に用いら
れるアルコールとしては、炭素数1〜8のアルコ
ールが好ましい。
Hydrolysis of a silicate ester and a mixture of a silicate ester and a metal alkoxide or metal salt is usually carried out using a sufficient amount of alcohol to dissolve the silicate ester and a molar amount of 2 to 30 times the silicate ester, preferably The silicate ester or mixture is dissolved in a mixed solvent with 10 to 30 times the molar amount of water, and a mineral acid or ammonia is added thereto in a molar amount of 10 -5 to 10 -2 times the silicate ester. The alcohol is added as a catalyst and heated to a temperature in the range from room temperature to below the boiling point of the alcohol under normal pressure. The alcohol used in the solvent is preferably an alcohol having 1 to 8 carbon atoms.

このような加水分解によつてゲルが生成し、こ
のゲルは粉砕され、原料粉末として用いられる。
A gel is produced by such hydrolysis, and this gel is crushed and used as a raw material powder.

本発明においては、原料粉末として、前記のよ
うにして得られたゲル微粉末又は無定形シリカ微
粉末が用いられる。この原料微粉末は水分や溶媒
などの不純物が吸着されているので、これを除去
し、かつ水分などを再吸着する活性点を消減させ
るために、空気又は酸素中で800〜1200℃の範囲
の温度において仮焼される。この際雰囲気中に数
%程度の塩素が含まれていてもよい。仮焼時の昇
温速度は10℃/分以下、好ましくは1℃/分〜5
℃/分の範囲が望ましい。また仮焼時間は通常10
分〜数時間程度である。仮焼時間が低すぎたり、
昇温速度が速すぎたりすると、不純物や活性点の
除去が不完全となり、また仮焼温度が高すぎると
原料粉末の結晶化をもたらす。最適仮焼温度は添
加物の種類によつて異なるが、純シリカの場合で
は好ましくは800〜1200℃の範囲で選ばれる。
In the present invention, the gel fine powder or amorphous silica fine powder obtained as described above is used as the raw material powder. Since this raw material fine powder has impurities such as moisture and solvent adsorbed, in order to remove this and reduce the active sites that re-adsorb moisture, etc., it is heated in air or oxygen at a temperature of 800 to 1200℃. Calcined at temperature. At this time, the atmosphere may contain approximately several percent of chlorine. The temperature increase rate during calcination is 10°C/min or less, preferably 1°C/min to 5°C.
A range of °C/min is desirable. Also, the calcination time is usually 10
It takes about minutes to several hours. If the calcination time is too low,
If the heating rate is too fast, impurities and active sites will be incompletely removed, and if the calcination temperature is too high, the raw material powder will crystallize. The optimum calcination temperature varies depending on the type of additive, but in the case of pure silica, it is preferably selected in the range of 800 to 1200°C.

このようにして仮焼した粉末を、白金、金など
の高融点金属の型に充賃し、型の内部を真空脱気
したのちに封じるか又は型全体を市販のガラス管
などの低融点物質でつつみ真空封入する。金属型
はできるだけ薄いものが好ましい。これを静水圧
的に圧縮し、焼成することによつて目的とするシ
リカガラスを得る。圧縮及び焼成する理由は、粉
末粒子の間の空隙を埋めるために十分な物質移動
が起きるのを容易にするためである。静水圧的に
圧縮する理由は、得られたガラスに応力を残さな
いようにするためと、一軸圧縮では不可能な複雑
な形状のものが得られるようにするためである。
圧力や温度が高すぎたり、焼成時間が長すぎると
原料粉末が結晶化する。最適な圧力、温度及び時
間は、原料粉末の組成やこれら相互の兼ね合いに
よつて決まるが、純シリカガラスの場合、焼成温
度は好ましくは900〜1200℃の範囲で選ばれ、ま
た焼成時間は数分〜数時間程度である。
The powder calcined in this way is filled into a mold made of a high melting point metal such as platinum or gold, and the inside of the mold is vacuum degassed and then sealed, or the entire mold is filled with a low melting point metal such as a commercially available glass tube. Pack and vacuum seal. The metal mold is preferably as thin as possible. This is hydrostatically compressed and fired to obtain the desired silica glass. The reason for compaction and calcination is to facilitate sufficient mass transfer to occur to fill the voids between the powder particles. The reason for hydrostatic compression is to prevent stress from remaining in the resulting glass and to obtain a complex shape that is impossible with uniaxial compression.
If the pressure or temperature is too high or the firing time is too long, the raw material powder will crystallize. The optimal pressure, temperature, and time are determined by the composition of the raw material powder and the balance between these, but in the case of pure silica glass, the firing temperature is preferably selected in the range of 900 to 1200°C, and the firing time is several times. It takes about minutes to several hours.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は、ケイ酸エステルやこれに所望
の添加物を加えた混合物を加水分解して得られた
ゲルの粉末、又は無定形シリカ微粉末を原料と
し、溶融状態を経ないでシリカガラスを製造する
方法であつて、この方法によると、結晶質を含ま
ず、かつひび割れなどの品質の優れたシリカガラ
スを経済的に得ることができる。
The method of the present invention uses gel powder obtained by hydrolyzing a silicate ester or a mixture thereof with desired additives, or amorphous silica fine powder as a raw material, and produces silica glass without undergoing a molten state. According to this method, it is possible to economically obtain silica glass that does not contain crystalline materials and has excellent quality such as cracks.

〔実施例〕〔Example〕

次に実施例により本発明をさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 ケイ酸エチルから純シリカガラスを製造した
場合の例 ケイ酸エチル(市販特級品)20ml、エチルアル
コール40ml、水18ml、塩酸0.003モルを加え、60
℃にて3日間加水分解せしめ、ゲルを得た。これ
をメノウ乳鉢にて200メツシユ以下に粉砕し酸素
中で0.5℃/分の昇温速度で1000℃まで加熱し2
時間保持した。得られた粉末を第1図のように白
金箔の容器に充填し、軟質ガラスの管に入れ真空
ポンプで0.1Torrに1時間保持したのちに口を封
じた。次いでこれを第2図のような静水圧装置に
装着し、300気圧、1100℃にて1時間保持した。
圧力はアルゴンガス圧で加えた。温度1100℃では
軟質ガラスは溶融し、白金容器を完全に包んで静
水圧を伝えることができる。この結果、密度2.20
g/cm3の透明で結晶質を含まない純シリカガラス
がえられた。
Example 1 Example of manufacturing pure silica glass from ethyl silicate Add 20 ml of ethyl silicate (commercially available special grade product), 40 ml of ethyl alcohol, 18 ml of water, and 0.003 mol of hydrochloric acid,
Hydrolysis was carried out at ℃ for 3 days to obtain a gel. This was ground to 200 mesh or less in an agate mortar and heated to 1000°C at a heating rate of 0.5°C/min in oxygen.
Holds time. The obtained powder was filled into a platinum foil container as shown in Figure 1, placed in a soft glass tube, kept at 0.1 Torr for 1 hour with a vacuum pump, and then sealed. Next, this was placed in a hydrostatic pressure device as shown in FIG. 2, and maintained at 300 atm and 1100° C. for 1 hour.
The pressure was applied using argon gas pressure. At a temperature of 1100 degrees Celsius, the soft glass melts, completely enveloping the platinum container and transmitting hydrostatic pressure. This results in a density of 2.20
A transparent, crystal-free pure silica glass of g/cm 3 was obtained.

実施例 2 ケイ酸エチル6添加物を加えた場合の例 ケイ酸エチル20ml、ホウ酸エチル2ml、エチル
アルコール40ml、水18mlに塩酸0.003モルを加え、
60℃にて3日間加水分解しゲルを得た。以下、実
施例1と同様に行つたが、静水圧下の焼成条件は
300気圧950℃とした。その理由は、ホウ酸が加え
られたことにより、実施例1の場合よりも低温で
ガラスが得られるためである。
Example 2 Example of adding ethyl silicate 6 additives Add 0.003 mol of hydrochloric acid to 20 ml of ethyl silicate, 2 ml of ethyl borate, 40 ml of ethyl alcohol, and 18 ml of water.
Hydrolysis was carried out at 60°C for 3 days to obtain a gel. The following procedure was carried out in the same manner as in Example 1, except that the firing conditions under hydrostatic pressure were
The temperature was 300 atm and 950°C. The reason is that glass can be obtained at a lower temperature than in Example 1 due to the addition of boric acid.

この結果、透明で結晶質を含まない約90モル%
SiO2−10モル%B2O3のガラスが得られた。
As a result, approximately 90 mol% transparent and crystal-free
A glass of SiO2-10 mol% B2O3 was obtained.

実施例 3 無定形シリカ微粉末を用いた場合の例 原料として市販のシリカ微粉末を用いた。平均
粒径は10ナノメーターであつた。これを酸素中で
実施例1と同様に仮焼し、以下同様に焼成した。
Example 3 Example using amorphous silica fine powder Commercially available silica fine powder was used as a raw material. The average particle size was 10 nanometers. This was calcined in oxygen in the same manner as in Example 1, and then fired in the same manner.

この結果、透明で結晶質を含まないシリカガラ
スが得られた。
As a result, transparent silica glass containing no crystals was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例において、静水圧装置に装着す
る仮焼原料粉末を封入したアンプルの断面概略図
であり、図中符号1は軟質ガラス、2は白金箔、
3は仮焼原料粉末である。 第2図は実施例において、前記アンプルを装着
し、加熱後の静水装置の断面概略図であり、図中
の符号は次の意味を示す。 11:炉体、12:発熱体、13:アルミナ製
保護体、14:熱電体、15:ガス導入口、1
6:軟質ガラス、17:アルミナ管、18:シリ
カガラス。
FIG. 1 is a schematic cross-sectional view of an ampoule filled with calcined raw material powder to be attached to a hydrostatic pressure device in an example, in which reference numeral 1 is soft glass, 2 is platinum foil,
3 is a calcined raw material powder. FIG. 2 is a schematic cross-sectional view of the hydrostatic device after heating with the ampoule attached thereto in the embodiment, and the symbols in the figure have the following meanings. 11: Furnace body, 12: Heating element, 13: Alumina protector, 14: Thermoelectric element, 15: Gas inlet, 1
6: Soft glass, 17: Alumina tube, 18: Silica glass.

Claims (1)

【特許請求の範囲】[Claims] 1 ケイ酸エステル又はケイ酸エステルに金属ア
ルコキシド若しくは金属塩を添加した混合物を加
水分解して得られるゲルの微粉末、又は無定形シ
リカ微粉末を800〜1200℃の温度で仮焼したのち、
100〜1000気圧の静水圧下において、900℃から生
成するシリカガラスのガラス転移点までの範囲の
温度で焼成することを特徴とするシリカガラスの
製造法。
1 After calcining fine gel powder or amorphous silica powder obtained by hydrolyzing a silicate ester or a mixture of a silicate ester and a metal alkoxide or metal salt, at a temperature of 800 to 1200 °C,
A method for producing silica glass characterized by firing at a temperature ranging from 900°C to the glass transition point of the silica glass produced under hydrostatic pressure of 100 to 1000 atmospheres.
JP1899786A 1986-01-29 1986-01-29 Production of silica glass Granted JPS62176931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1899786A JPS62176931A (en) 1986-01-29 1986-01-29 Production of silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1899786A JPS62176931A (en) 1986-01-29 1986-01-29 Production of silica glass

Publications (2)

Publication Number Publication Date
JPS62176931A JPS62176931A (en) 1987-08-03
JPH0516375B2 true JPH0516375B2 (en) 1993-03-04

Family

ID=11987196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1899786A Granted JPS62176931A (en) 1986-01-29 1986-01-29 Production of silica glass

Country Status (1)

Country Link
JP (1) JPS62176931A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789389A (en) * 1987-05-20 1988-12-06 Corning Glass Works Method for producing ultra-high purity, optical quality, glass articles
JP2737191B2 (en) * 1987-12-28 1998-04-08 東ソー株式会社 Method for producing homogeneous quartz glass block
JPH01226747A (en) * 1988-03-08 1989-09-11 Tosoh Corp Production of high-purity translucent quartz glass

Also Published As

Publication number Publication date
JPS62176931A (en) 1987-08-03

Similar Documents

Publication Publication Date Title
US4851150A (en) Drying control chemical additives for rapid production of large sol-gel derived silicon, boron and sodium containing monoliths
JPH0118007B2 (en)
US20070182037A1 (en) Preparation of transparent ceramics of yag dope by lanthanides
JP2768442B2 (en) Manufacturing method of semiconductor-containing glass
WO1991009993A1 (en) Hydrothermal process for growing optical-quality single crystals
JPH0516375B2 (en)
JP2839725B2 (en) Method for producing high-purity crystalline silica
JPH05294723A (en) Production of polycrystalline transparent yag ceramic for solid laser
JPH0597569A (en) Production of oxide laser single crystal
JPH0292817A (en) Production of yttrium aluminium garnet
JPS603013B2 (en) Manufacturing method of colored silica glass
JPS6311516A (en) Production of high purity magnesia powder having anti-hydration property
Yoshimoto et al. Elastic Properties and the Short- and Medium-Range Structures of Lead Silicate Glasses
JPH0328382B2 (en)
CN117448962A (en) Lead magnesium niobate lead titanate piezoelectric monocrystal and preparation method thereof
JP2723312B2 (en) Production method of beta alumina fiber
JPH0776093B2 (en) Quartz glass manufacturing method
JPH02133330A (en) Production of porous silica glass body
JPH01275447A (en) Production of titania-silica glass by sol-gel process
JPH06279174A (en) Production of oxide single crystal
JPH0776100B2 (en) Method for manufacturing glass molded body
JPS61111961A (en) Manufacture of hydration-resistant high fineness magnesia sintered body
JPH01115897A (en) Production of magnesium fluoride single crystal
JP2722785B2 (en) High purity silica powder
JPH03247557A (en) Production of alumina-silica-based ceramic sintered body excellent in high-temperature strength

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term