JPH0292817A - Production of yttrium aluminium garnet - Google Patents

Production of yttrium aluminium garnet

Info

Publication number
JPH0292817A
JPH0292817A JP63242890A JP24289088A JPH0292817A JP H0292817 A JPH0292817 A JP H0292817A JP 63242890 A JP63242890 A JP 63242890A JP 24289088 A JP24289088 A JP 24289088A JP H0292817 A JPH0292817 A JP H0292817A
Authority
JP
Japan
Prior art keywords
ion
precipitate
yag
yttrium
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63242890A
Other languages
Japanese (ja)
Other versions
JP2673161B2 (en
Inventor
Hajime Haneda
肇 羽田
Shinichi Shirasaki
信一 白崎
Shinichi Matsuda
松田 伸一
Akio Watanabe
明男 渡辺
Yasuhiro Matsumoto
靖弘 松本
Takakimi Yanagiya
高公 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUNOSHIMA KAGAKU KOGYO KK
Konoshima Chemical Co Ltd
National Institute for Research in Inorganic Material
Original Assignee
KOUNOSHIMA KAGAKU KOGYO KK
Konoshima Chemical Co Ltd
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUNOSHIMA KAGAKU KOGYO KK, Konoshima Chemical Co Ltd, National Institute for Research in Inorganic Material filed Critical KOUNOSHIMA KAGAKU KOGYO KK
Priority to JP63242890A priority Critical patent/JP2673161B2/en
Publication of JPH0292817A publication Critical patent/JPH0292817A/en
Application granted granted Critical
Publication of JP2673161B2 publication Critical patent/JP2673161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain raw material powder of product containing small number of secondary particle, capable of sintering readily and giving high transparent sintered compact by making existence of specific amount of sulfate ion at precipitation in a producing method of adding urea to an acidic aqueous solution containing Y ion and Al ion and precipitating. CONSTITUTION:An acidic aqueous solution containing Y ion and Al ion is neutralized by urea and precipitate is generated, then resultant precipitate is calcined to obtain yttrium aluminium garnet(YAG). In said process, sulfate ion in an amount of 0.1-1.2mol times of total amount of Y ion and Al ion is contained in the acidic aqueous solution. By said method, YAG raw material powder in which growth of secondary particle is small is obtained. Next, 100-2500wt.ppm. SiO2 is added to said powder and the powder is sintered at 1650-1900 deg.C under no oxygen atmosphere to afford polycrystalline YAG sintered material having high light transmittance. With the above-mentioned two critical values of sulfate ion, granular precipitate is obtained for above the lower critical value and only material having low sintering ability is obtained at above the higher critical value.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、イツトリウムアルミニウムガーネット、(
Y3A lso+z、以下単にYAGということがある
。)、の製造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] This invention provides yttrium aluminum garnet, (
Y3A lso+z, hereinafter simply referred to as YAG. ), relating to a manufacturing method.

[従来技術] イツトリウムアルミニウムガーネットは、レーザーホス
ト材料、蛍光材料等の機能を有し、広範囲に利用されて
いる。最近ではセラミックス製造法を用いた多結晶のイ
ツトリウムアルミニウムガーネットの利用が進展し、そ
のため易反応性、易焼結性、均一性を備えた厚料粉末が
要望されている。またイツトリウムアルミニウムガーネ
ットの主な用途は光学材料であり、透明度の高い焼結体
が必要とされている。イツトリウムアルミニウムガーネ
ットは結晶構造が立方晶であるため、複屈折がなく、結
晶粒界での光散乱がない。そこで結晶から不純物や気孔
を除けば、光透過性、特に直線透過性の高い多結晶の焼
結体が得られることが知られている。
[Prior Art] Yttrium aluminum garnet has functions such as a laser host material and a fluorescent material, and is widely used. Recently, the use of polycrystalline yttrium aluminum garnet using ceramic manufacturing methods has progressed, and there is therefore a demand for thick powders with easy reactivity, easy sinterability, and uniformity. Yttrium aluminum garnet is mainly used as an optical material, and a highly transparent sintered body is required. Yttrium aluminum garnet has a cubic crystal structure, so it has no birefringence and no light scattering at grain boundaries. Therefore, it is known that by removing impurities and pores from the crystal, a polycrystalline sintered body with high light transmittance, especially linear transmittance, can be obtained.

発明者らは、イツトリウムアルミニウムガーネットの製
造方法を研究し、これらのイオンの混合酸性水溶液を尿
素で中和して沈澱を生成させ、生成した沈澱を仮焼して
イツトリウムアルミニウムガーネットとする方法を開発
した(特願昭62−248.957号)。この方法の特
徴は、次の点にある。通常のアンモニアによる沈澱の形
成を用いると、反応の制御が困難で、濾過不能のゼリー
状の沈澱が生成する。沈澱を遠心分離により強引に分離
しても、沈澱中には塩化アンモニウム等の不純物が残存
し、これを充分に除くことができない。そして得られた
沈澱を仮焼すると、混入した塩化アンモニウム等の不純
物が仮焼時のイツトリウムアルミニウムガーネットの結
晶成長を促し、焼結性に乏しい材料しか得られない。こ
れに対して尿素による沈澱では、沈澱反応は緩慢で制御
し易く、不純物イオンの含有の少ない沈澱を得ることが
できる。
The inventors researched a method for producing yttrium aluminum garnet, and found a method in which a mixed acidic aqueous solution of these ions is neutralized with urea to form a precipitate, and the resulting precipitate is calcined to produce yttrium aluminum garnet. (Japanese Patent Application No. 62-248.957). This method is characterized by the following points. Using conventional ammonia precipitate formation, the reaction is difficult to control and produces a jelly-like precipitate that cannot be filtered. Even if the precipitate is forcibly separated by centrifugation, impurities such as ammonium chloride remain in the precipitate and cannot be removed sufficiently. When the obtained precipitate is calcined, impurities such as ammonium chloride that have been mixed in promote crystal growth of yttrium aluminum garnet during calcining, resulting in a material with poor sinterability. On the other hand, in precipitation with urea, the precipitation reaction is slow and easy to control, and a precipitate containing less impurity ions can be obtained.

発明者らは、この方法の改良を進めた。尿素沈澱で得ら
れる生成物はゲル状で、なお多量の不純物イオンを含ん
でいる。この沈澱を仮焼すると、不純物イオンが2次粒
子の成長を促す。2次粒子が成長すると、焼結時に2次
粒子内のミクロ気孔を圧縮して除くことが困難なため、
緻密な焼結体を得ることが難しい。発明者はこの点に付
いて、沈澱時における特定量の硫酸イオンの存在が決定
的役割を果たすことを見出した。また発明者は、特定量
の硫酸イオンの存在下で得た沈澱を用いることにより、
光透過性の高い多結晶イツトリウムアルミニウムガーネ
ット焼結体を得うることを見出した。
The inventors proceeded to improve this method. The product obtained by urea precipitation is gel-like and still contains a large amount of impurity ions. When this precipitate is calcined, impurity ions promote the growth of secondary particles. When the secondary particles grow, it is difficult to compress and remove the micropores within the secondary particles during sintering.
It is difficult to obtain a dense sintered body. The inventors have found that the presence of a specific amount of sulfate ions during precipitation plays a decisive role in this regard. The inventor also discovered that by using a precipitate obtained in the presence of a specific amount of sulfate ions,
We have discovered that it is possible to obtain a polycrystalline yttrium aluminum garnet sintered body with high optical transparency.

[発明の課題] 請求項1の発明では、2次粒子の成長が小さい、イツト
リウムアルミニウムガーネット厚料粉末の製造法を得る
ことを課題とする。
[Problem of the Invention] An object of the invention is to provide a method for producing thick yttrium aluminum garnet powder in which the growth of secondary particles is small.

また請求項2の発明では、光透過性の高い多結晶イツト
リウムアルミニウムガーネット焼結体を得ることを課題
とする。
Another object of the invention is to obtain a polycrystalline yttrium aluminum garnet sintered body with high light transmittance.

[発明の構成] 請求項1に記載の発明は、イツトリウムイオンとアルミ
ニウムイオンとを含む酸性水溶液を尿素で中和して沈澱
を生成させ、得られた沈澱を仮焼してイツトリウムアル
ミニウムガーネットとする方法において、前記の酸性水
溶液にはイツトリウムイオンとアルミニウムイオンとの
合計量に対するモル比で、0.1〜1.2倍量の硫酸イ
オンを含有させたことを特徴とする。
[Structure of the Invention] The invention as set forth in claim 1 is directed to neutralizing an acidic aqueous solution containing yttrium ions and aluminum ions with urea to generate a precipitate, and calcining the obtained precipitate to produce a yttrium aluminum garnet. The method is characterized in that the acidic aqueous solution contains sulfate ions in a molar ratio of 0.1 to 1.2 times the total amount of yttrium ions and aluminum ions.

次に請求項2の発明は、請求項1゛の方法により得られ
たイツトリウムアルミニウムガーネット粉末に100〜
2500wtppmの5i02を含有させると共に、こ
れを無酸素雰囲気下で1650〜1900℃で焼結して
、多結晶透明イツトリウムアルミニウムガーネット焼結
体とすることを特徴とする 請求項lの発明を説明する。母液に硫酸イオンを存在さ
せて尿素で沈澱させると、ゲル状ではなく粒状の沈澱が
得られる。沈澱がゲル状でないため、母液からの不純物
イオンの混入が少ない。このことは、仮焼時の2次粒子
の成長が少ないとの効果をもたらす。逆にゲル状の沈澱
から出発すると、ゲル内に侵入したアンモニウム塩等の
不純物のため、仮焼時に2次粒子が成長する。2次粒子
内部の気孔は後の焼結で除くことが困難であり、ゲル状
の沈澱を出発材料とすると、緻密な焼結体を得ることが
できない。
Next, the invention of claim 2 provides that the yttrium aluminum garnet powder obtained by the method of claim 1 is
The invention of claim l is characterized in that it contains 2500wtppm of 5i02 and is sintered at 1650 to 1900°C in an oxygen-free atmosphere to form a polycrystalline transparent yttrium aluminum garnet sintered body. . When precipitating with urea in the presence of sulfate ions in the mother liquor, a granular precipitate is obtained rather than a gel-like precipitate. Since the precipitate is not gel-like, there is less contamination of impurity ions from the mother liquor. This has the effect that the growth of secondary particles during calcination is small. On the other hand, when starting from a gel-like precipitate, secondary particles grow during calcination due to impurities such as ammonium salts that have entered the gel. It is difficult to remove the pores inside the secondary particles during subsequent sintering, and if a gel-like precipitate is used as a starting material, a dense sintered body cannot be obtained.

硫酸イオンの効果には2つの臨界点が有る。イツトリウ
ムイオンとアルミニウムイオンの合計量に対するモル比
で0.1倍以上の硫酸イオンを加えることにより、粒状
の沈澱が得られる。そしてこの沈澱を仮焼後に焼結する
と、緻密な多結晶YAG焼結体が得られる。一方硫酸イ
オンのモル比をイツトリウムとアルミニウムの合計量に
対して1.5倍以上とすると、即ち硫酸イツトリウムと
硫酸アルミニウムとの混合水溶液等から出発すると、沈
澱の粒子径が増大し、焼結性の低い材料しか得られない
。過剰の硫酸イオンによる焼結性の低下は、モル比で1
.2程度から発現する。従って好ましい硫酸イオン含量
は前記のモル比で、0゜1−1.2、より好ましくは0
.15〜1.0である。なお仮焼雰囲気は任意で、温度
は500〜1400℃1より好ましくは900〜135
0℃が良い。
There are two critical points in the effect of sulfate ions. By adding sulfate ions in a molar ratio of 0.1 times or more to the total amount of yttrium ions and aluminum ions, a granular precipitate can be obtained. When this precipitate is calcined and then sintered, a dense polycrystalline YAG sintered body is obtained. On the other hand, if the molar ratio of sulfate ions is 1.5 times or more with respect to the total amount of yttrium and aluminum, that is, if you start from a mixed aqueous solution of yttrium sulfate and aluminum sulfate, the particle size of the precipitate increases and the sinterability increases. Only low-quality materials can be obtained. Deterioration of sinterability due to excess sulfate ions occurs at a molar ratio of 1
.. It appears from about 2. Therefore, the preferred sulfate ion content is 0°1-1.2, more preferably 0.
.. 15 to 1.0. Note that the calcination atmosphere is arbitrary, and the temperature is 500 to 1400°C, preferably 900 to 135°C.
0℃ is good.

次に仮焼後のYAG粉末を用いた、多結晶透明イツトリ
ウムアルミニウムガーネットの製造方法を説明する。得
られたYAG粉末を焼結すると、緻密な焼結体が得られ
る。光学的に透明な焼結体を得る条件は、無酸素雰囲気
で焼結することと、YAGに対して100〜2500w
tppm1より好ましくは300〜2000wtppm
の5iO8とを加えることとである。
Next, a method for producing polycrystalline transparent yttrium aluminum garnet using YAG powder after calcination will be described. When the obtained YAG powder is sintered, a dense sintered body is obtained. The conditions for obtaining an optically transparent sintered body are sintering in an oxygen-free atmosphere and a power consumption of 100 to 2500 w for YAG.
tppm1 more preferably 300 to 2000 wtppm
5iO8.

例えば同じ1000w100Oの5i02を加えたYA
Gでも、酸素中で焼結すると不透明なものしか得られな
い。これに対して、真空中、H2中、Ar中のいずれで
も、透明な多結晶YAG焼結体を得ることができる。ま
た雰囲気を選ぶだけでは不十分で、焼結体の光透過性は
Sin、含量に依存する。SiO□を加えないものは不
透明であり、過剰のSiO□を加えたものも不透明であ
る。そして発明者は、300〜2000wtppmのS
in、で、(以下ではwtppm単位を単にppmとし
て表示する。)、0.25mm”程度の吸光係数との高
い光透過性を得ることに成功した。なお5iOzの添加
時期は任意であり、母液に添加しても、仮焼前の沈澱に
添加しても、あるいは仮焼後のYAG粉末に添加しても
良い。
For example, YA with the same 1000w100O 5i02 added
Even with G, only opaque materials can be obtained when sintered in oxygen. On the other hand, a transparent polycrystalline YAG sintered body can be obtained in vacuum, H2, or Ar. Moreover, it is not enough to select the atmosphere; the light transmittance of the sintered body depends on the Sin content. Those without SiO□ are opaque, and those with excess SiO□ are also opaque. The inventor then discovered that 300 to 2000 wtppm of S
(Hereinafter, the wtppm unit is simply expressed as ppm), we succeeded in obtaining high light transmittance with an extinction coefficient of about 0.25 mm.The timing of addition of 5iOz is arbitrary, and the mother liquor It may be added to the precipitate before calcination, or may be added to the YAG powder after calcination.

また緻密な焼結体を得るには1650℃以上の0〜19
00℃に限られる。
In addition, to obtain a dense sintered body, the temperature is 0 to 19 at 1650℃ or higher.
Limited to 00℃.

[実施例] 実施例1 硝酸イツトリウム水溶液と硫酸アルミニウム水溶液とを
当量、即ちYAGの組成に応じて混合し、水を加えて、
YAG換算で7 mm o l /Litterの酸性
水溶液ILitterとした。これに室温で51゜4g
の尿素(10倍当量)を加え、95℃に加温して撹拌下
で5時間反応させた。反応後に2 Litterの水を
加えて冷却し、尿素の分解を停止させた。
[Example] Example 1 A yttrium nitrate aqueous solution and an aluminum sulfate aqueous solution were mixed in equivalent amounts, that is, according to the composition of YAG, and water was added,
The acidic aqueous solution ILitter was 7 mmol/Litter in terms of YAG. Add to this 51゜4g at room temperature.
of urea (10 times equivalent) was added, heated to 95°C, and reacted for 5 hours with stirring. After the reaction, 2 liters of water was added and cooled to stop the decomposition of urea.

次いで沈澱を濾過し水洗すると、粒状の沈澱が得られた
。沈澱の乾燥後、空気中1100℃で3時間仮焼し、生
成物をボールミルで10時間粉砕した。生成物はYAG
l相で他の相の混入はなく、結晶粒径は0.32m1比
表面積は2m”/gであった。
The precipitate was then filtered and washed with water to obtain a granular precipitate. After drying the precipitate, it was calcined in air at 1100° C. for 3 hours, and the product was ground in a ball mill for 10 hours. The product is YAG
The crystal grain size was 0.32 m1 and the specific surface area was 2 m''/g.

ここでは母液中の酸イオンの62.5%を硫酸イオンで
まかない、他を硝酸イオンでまかなった。
Here, 62.5% of the acid ions in the mother liquor were covered by sulfate ions, and the rest were covered by nitrate ions.

従ってイツトリウムイオンとアルミニウムイオンとの合
計量に対する、硫酸イオンのモル比は約0゜94である
。なお重要なことは所定量の硫酸イオンの存在下で沈澱
させることで、共存させた硝酸イオンではない。硝酸イ
オンを塩素イオンや酢酸イオンに変えて同様の実験を行
ったが、結果は全て同等であった。
Therefore, the molar ratio of sulfate ions to the total amount of yttrium ions and aluminum ions is about 0.94. It is important to note that the precipitation is carried out in the presence of a predetermined amount of sulfate ions, rather than the coexisting nitrate ions. Similar experiments were conducted by replacing nitrate ions with chloride and acetate ions, but the results were all the same.

尿素を加えて沈澱させると、尿素はアンモニアとCO2
とに分解し、これによってアルミニウムやイツトリウム
が水酸化物等として沈澱する。沈澱は先ずアルミニウム
の沈澱が先行し、次いでPHが7.5以上に増加すると
イツトリウムが沈澱する。尿素の分解反応は緩慢であり
、70℃1実用的には80℃以上でないと、イツトリウ
ムは定量的には沈澱しない。従って沈澱反応時の温度は
70℃〜沸点、より好ましくは80℃〜沸点とする。次
にPHが9.5を越えると、アルミニウムの再溶解が始
まる。しかし加温下での尿素での沈澱では、生成したア
ンモニアの気化のためPHは8程度にとどまる。従って
、PHの増加によるアルミニウムの再溶解は問題になら
ない。実験によれば、尿素は母液の酸に対して2倍以上
加えることが好ましく、良い好ましくは5〜20倍とす
る。
When urea is added and precipitated, urea becomes ammonia and CO2.
As a result, aluminum and yttrium are precipitated as hydroxides. The precipitation is first preceded by precipitation of aluminum, and then, when the pH increases to 7.5 or higher, yttrium is precipitated. The decomposition reaction of urea is slow, and yttrium does not precipitate quantitatively unless the temperature is 70°C (1 practically, 80°C or higher). Therefore, the temperature during the precipitation reaction is 70°C to the boiling point, more preferably 80°C to the boiling point. Next, when the pH exceeds 9.5, remelting of aluminum begins. However, in precipitation with urea under heating, the pH remains at about 8 due to vaporization of the ammonia produced. Therefore, remelting of aluminum due to an increase in pH is not a problem. According to experiments, it is preferable to add urea at least twice the amount of acid in the mother liquor, preferably 5 to 20 times.

なお発明者は、この実施例で深索に変えてアンモニアを
用いることを試みた。即ち室温でアンモニアを加え、液
のPHを8.5とした。得られた沈澱はゼリー状で濾過
不能であり、これを遠心分離を4回繰り返して洗浄した
が、好ましい出発材料とはならなかった。例えば洗浄後
の沈澱を空気中1000℃で3時間焼成すると、ボール
ミル粉砕後の生成物の平均粒径は0.85μmであった
In this example, the inventor attempted to use ammonia instead of a deep cable. That is, ammonia was added at room temperature to adjust the pH of the liquid to 8.5. The resulting precipitate was jelly-like and unfilterable, and although it was washed by repeated centrifugation four times, it did not serve as a preferred starting material. For example, when the precipitate after washing was calcined in air at 1000° C. for 3 hours, the average particle size of the product after ball milling was 0.85 μm.

また仮焼後のYAG粉末を空気中1700℃で5時間焼
結したが、焼結体の密度は4.15g/cm”(理論密
度の91.2%)に過ぎなかった。
Further, the YAG powder after calcination was sintered in air at 1700° C. for 5 hours, but the density of the sintered body was only 4.15 g/cm” (91.2% of the theoretical density).

なお尿素沈澱の場合でも全量を硝酸イオンとして沈澱さ
せると、沈澱はゲル状で多量の硝酸アンモニウムイオン
を吸蔵していた。
In the case of urea precipitation, when the entire amount was precipitated as nitrate ions, the precipitate was gel-like and occluded a large amount of ammonium nitrate ions.

実施例2 塩化イツトリウム30mmolと塩化アルミニラA50
mmo l、及び硫酸アンモニウム30mmolを含む
水溶液I Litterに、室温で尿素36gを加え、
撹拌下で95℃で60分反応させた。
Example 2 Yttrium chloride 30 mmol and aluminum chloride A50
Add 36 g of urea to an aqueous solution I Litter containing 30 mmol of ammonium sulfate and 30 mmol of ammonium sulfate at room temperature,
The reaction was carried out at 95° C. for 60 minutes with stirring.

反応後に室温まで放冷し、濾過と水洗とを行って乾燥し
、1000℃の空気中で3時間仮焼した。
After the reaction, the mixture was allowed to cool to room temperature, filtered, washed with water, dried, and calcined in air at 1000°C for 3 hours.

仮焼後10時間のボールミル粉砕(以下同様)で得られ
た生成物は、平均粒径が0.35μm、 BET法での
比表面積が3m”/gであった。なお沈澱は粒状で仮焼
による2次粒子の成長はなく、ボールミル粉砕後に、2
Ton/cm2でプレス成型し1700℃で空気中3時
間焼結した。焼結密度4.55g/cm’ (はぼ理論
密度の緻密な焼結体)の不透明な焼結体が得られた。
The product obtained by ball milling for 10 hours after calcination (the same applies hereinafter) had an average particle size of 0.35 μm and a specific surface area of 3 m''/g by the BET method.The precipitate was granular and after calcination. There was no growth of secondary particles due to
It was press-molded at ton/cm2 and sintered in air at 1700°C for 3 hours. An opaque sintered body with a sintered density of 4.55 g/cm' (a dense sintered body with a theoretical density) was obtained.

実施例3 酸化イツトリウム6.35gと水酸化アルミニウム7.
31g (YAGとして18.75mmo l)を11
.6Nの濃塩酸40m1と36Nの濃硫酸6mlで溶解
し、水を加えてl Litterとした。イツトリウム
とアルミニウムの合計モル数に対する硫酸イオンのモル
比は、0.72である。これに210gの尿素(塩酸と
硫酸の合計量に対して10倍当量)を加え、撹拌下、9
5℃で120分間反応させた。その後2Litterの
水で冷却し、沈澱物を濾過して水洗した。沈澱は粒状で
あった。沈澱を乾燥し、酸素中で1300℃で1時間仮
焼し、ボールミルで10時間粉砕した。粉砕後の生成物
はYAG1相であり、平均粒径は0.4μm、比表面積
は1m2/gであった。これを2Ton/Cm”の圧力
でプレス成型し、1600℃で30時間酸素中で焼結し
た。焼結体の相対密度は99゜3%(密度4.52g/
cmってあった。
Example 3 6.35 g of yttrium oxide and aluminum hydroxide7.
31g (18.75mmol as YAG) in 11
.. It was dissolved in 40 ml of 6N concentrated hydrochloric acid and 6 ml of 36N concentrated sulfuric acid, and water was added to make 1 Litter. The molar ratio of sulfate ions to the total number of moles of yttrium and aluminum is 0.72. Add 210 g of urea (10 times equivalent to the total amount of hydrochloric acid and sulfuric acid) to this, and stir for 90 minutes.
The reaction was carried out at 5°C for 120 minutes. Thereafter, the mixture was cooled with 2 liters of water, and the precipitate was filtered and washed with water. The precipitate was granular. The precipitate was dried, calcined in oxygen at 1300° C. for 1 hour, and ground in a ball mill for 10 hours. The product after pulverization was a YAG1 phase, with an average particle size of 0.4 μm and a specific surface area of 1 m 2 /g. This was press-molded at a pressure of 2Ton/Cm'' and sintered in oxygen at 1600℃ for 30 hours.The relative density of the sintered body was 99.3% (density 4.52g/cm).
There was a cm.

この実施例に付いて、硫酸量を変えた他は全て同様にし
て、硫酸イオンの効果を調べた。仮焼後ボールミルで粉
砕した後の平均粒径、1600℃焼結後の相対密度を表
1に示す。
Regarding this example, the effect of sulfate ions was investigated in the same manner except that the amount of sulfuric acid was changed. Table 1 shows the average particle diameter after calcination and pulverization in a ball mill, and the relative density after sintering at 1600°C.

表 1 硫酸イオンの効果 SO,”7(Y+A I) 粒径(μm)  密度(%) (モル比) 0.15 0.72 1.2 1.5 0.4       96 0.4      99以上 0.4       99.3 0.4      99以上 0.5       98 表1から、モル比で0.15以上の硫酸イオンにより焼
結密度が向上し、透明な多結晶YAG焼結体を得る可能
性が生じる。これはゲル状沈澱の生成を抑え、仮焼時の
2次粒子の成長を防止したためである。しかしモル比で
1.5以上の硫酸イオンを加えると、仮焼後の粒径が増
して焼結活性が低下し、緻密なYAG焼結体は得られな
くなる。
Table 1 Effect of sulfate ion SO, 7 (Y + A I) Particle size (μm) Density (%) (Molar ratio) 0.15 0.72 1.2 1.5 0.4 96 0.4 99 or more 0. 4 99.3 0.4 99 or more 0.5 98 From Table 1, sulfuric acid ions with a molar ratio of 0.15 or more improve the sintered density, making it possible to obtain a transparent polycrystalline YAG sintered body. This is because it suppresses the formation of gel-like precipitates and prevents the growth of secondary particles during calcination. However, when sulfate ions are added at a molar ratio of 1.5 or more, the particle size after calcination increases and The crystallization activity decreases, and a dense YAG sintered body cannot be obtained.

実施例4 実施例2で調整したYAG焼結体は緻密であるが、不透
明であった。同様に実施例1.3で得た原料YAG粉末
の焼結温度を増して、緻密なものを得たが全て不透明で
あった。そこで焼結雰囲気と添加物とにより、光透過性
に優れた多結晶YAG焼結体を製造することを検討した
。なお実施例1〜3のYAGの仮焼粉末の製造に関する
知見は、全てこの実施例にも当てはまる。
Example 4 The YAG sintered body prepared in Example 2 was dense but opaque. Similarly, the sintering temperature of the raw material YAG powder obtained in Example 1.3 was increased to obtain a dense powder, but it was all opaque. Therefore, we considered producing a polycrystalline YAG sintered body with excellent light transmittance by using a sintering atmosphere and additives. Note that all the knowledge regarding the production of YAG calcined powder in Examples 1 to 3 also applies to this example.

実施例2での沈澱前の母液に、コロイダルシリカ(Na
イオンフリーのシリカゾル)を加え、シリカの添加効果
を検討した。また焼結雰囲気を、空気中、酸素中、真空
中、水素中、Ar中とし、雰囲気の影響を検討した。い
ずれの試料に付いても理論密度通りの焼結体が得られた
。得られた試料に付いて、589nmでのビーム状の光
に対する吸光係数を測定した。結果を表2に示す。
Colloidal silica (Na
We added ion-free silica sol) to examine the effect of adding silica. In addition, the sintering atmosphere was set to air, oxygen, vacuum, hydrogen, and Ar, and the influence of the atmosphere was investigated. A sintered body having the theoretical density was obtained for each sample. The extinction coefficient of the obtained sample for beam-shaped light at 589 nm was measured. The results are shown in Table 2.

表 2 吸光係数 酸素中 空気中 11000pp    肉眼で不透明 11000pp  同上 真空中 水素中 Ar中 真空中 真空中 真空中 真空中 真空中 真空中 1000ppm 1000ppm 11000pp 無添加 0ppm 00ppm 2000ppm 3000ppm 3wt% 0.25 0.25 0.26 肉眼で不透明 0.26 0.25 肉眼で不透明 Sin、含量はYAGの重量に対する添加量、はwtp
pmを現す。
Table 2 Extinction coefficient In oxygen In air 11000pp Opaque to the naked eye 11000pp Same as above In vacuum In hydrogen In Ar In vacuum In vacuum In vacuum In vacuum In vacuum In vacuum In vacuum 1000 ppm 1000 ppm 11000 pp No additives 0 ppm 00 ppm 2000 ppm 3000 ppm 3 wt% 0.25 0.25 0 .26 Opaque to the naked eye 0.26 0.25 Opaque to the naked eye Sin, content is the amount added to the weight of YAG, wtp
Shows pm.

 pm これらの結果から、透明なYAG多結晶焼結体を得るに
は、無酸素雰囲気で100〜2500ppmの8102
、より好ましくは300−2000ppmの510.を
加えて焼結することが必要であることが分かる。そして
0 、25 mm”の吸光係数は1mm厚で78%の透
過係数に対応し、極めて高い値である。なお発明者はS
iO□の添加時期を、沈澱の形成後仮焼前、仮焼後焼結
前七変えることを試みたが、結果はいずれも同等であっ
た。更にSiO□の添加形態への依存性は見いだせなか
った。またイツトリウムやアルミニウムの原料の純度を
低下させると、原料中からSiO2が混入することがあ
る。このようなSin、であっても同様の効果が得られ
たので、重要なのはYAGに対する5in2の存在量で
ある。
pm From these results, in order to obtain a transparent YAG polycrystalline sintered body, 100 to 2500 ppm of 8102 is required in an oxygen-free atmosphere.
, more preferably 300-2000 ppm of 510. It can be seen that it is necessary to add and sinter. The extinction coefficient of 0.25 mm'' corresponds to a transmission coefficient of 78% at a thickness of 1 mm, which is an extremely high value.
Attempts were made to add iO□ at different times: after the formation of the precipitate and before calcination, and after calcination and before sintering, but the results were the same in both cases. Furthermore, no dependence on the addition form of SiO□ was found. Furthermore, if the purity of the yttrium or aluminum raw material is reduced, SiO2 may be mixed in from the raw material. Since the same effect was obtained even with such Sin, what is important is the amount of 5in2 present relative to YAG.

5102の存在や焼結雰囲気により、光学的性質が異な
る原因は次の点にある。5in2の存在は、YAG焼結
体内部の結晶粒径の分布を解消し、異常に成長した粒子
や微小粒子を消滅させた。このため光の焼結体内部での
散乱や屈折を減少させることができる。しかし逆に過剰
量の3wt%のSi○、添加では、焼結体中に気孔が生
じ不透明となった。一方酸素雰囲気下での焼結は、結晶
粒径の不規則な分布をもたらし、光学的性質を低下させ
た。
The reason why the optical properties differ depending on the presence of 5102 and the sintering atmosphere is as follows. The presence of 5in2 eliminated the crystal grain size distribution inside the YAG sintered body and eliminated abnormally grown particles and microparticles. Therefore, scattering and refraction of light inside the sintered body can be reduced. However, on the other hand, when an excessive amount of 3 wt % of Si○ was added, pores were formed in the sintered body, making it opaque. On the other hand, sintering under oxygen atmosphere resulted in an irregular distribution of grain size and reduced optical properties.

次に焼結温度に付いては、1650℃以下では緻密な焼
結体を得ることができず、また結晶粒径の不規則分布を
解消できなかっt;。しかし逆に1900℃以上では、
YAGの蒸発が激しく好ましい結果が得られなかった。
Next, regarding the sintering temperature, if it is below 1650°C, it is not possible to obtain a dense sintered body, and the irregular distribution of crystal grain size cannot be resolved. However, on the contrary, at temperatures above 1900℃,
The evaporation of YAG was severe and favorable results could not be obtained.

従って好ましい焼結温度は、1650℃〜1900℃で
ある。
Therefore, the preferred sintering temperature is 1650°C to 1900°C.

上記の説明では特定の実施例を示したが、これに限るも
のではない。例えばYAGに対する添加物としては、既
に種々のものが公知である。そこでこのような添加物を
加えることを排除するものではない。
Although specific embodiments have been described in the above description, the present invention is not limited thereto. For example, various additives for YAG are already known. Therefore, the addition of such additives is not excluded.

[発明の効果] 請求項1の発明では、2次粒子の成長が小さい、イツト
リウムアルミニウムガーネット原料粉末の製造法を得る
ことができる。
[Effects of the Invention] According to the invention of claim 1, it is possible to obtain a method for producing a yttrium aluminum garnet raw material powder in which the growth of secondary particles is small.

また請求項2の発明では、光透過性の高い多結晶イツト
リウムアルミニウムガーネット焼結体を得ることができ
る。
Further, according to the second aspect of the invention, a polycrystalline yttrium aluminum garnet sintered body having high light transmittance can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)イットリウムイオンとアルミニウムイオンとを含
む酸性水溶液を尿素で中和して沈澱を生成させ、得られ
た沈澱を仮焼してイットリウムアルミニウムガーネット
とする方法において、 前記の酸性水溶液にはイットリウムイオンとアルミニウ
ムイオンとの合計量に対するモル比で、0.1〜1.2
倍量の硫酸イオンを含有させたことを特徴とする、イッ
トリウムアルミニウムガーネットの製造方法。
(1) In a method in which an acidic aqueous solution containing yttrium ions and aluminum ions is neutralized with urea to form a precipitate, and the resulting precipitate is calcined to produce yttrium aluminum garnet, the acidic aqueous solution contains yttrium ions. The molar ratio to the total amount of aluminum ion and aluminum ion is 0.1 to 1.2.
A method for producing yttrium aluminum garnet, characterized by containing double the amount of sulfate ions.
(2)仮焼後のイットリウムアルミニウムガーネットに
は、100〜2500wtppmのSiO_2を含有さ
せると共に、これを無酸素雰囲気下で1650〜190
0℃で焼結して、多結晶透明イットリウムアルミニウム
ガーネット焼結体とすることを特徴とする、請求項1に
記載のイットリウムアルミニウムガーネットの製造方法
(2) The yttrium aluminum garnet after calcination contains 100 to 2500 wtppm of SiO_2, and is heated to 1650 to 190 wtppm in an oxygen-free atmosphere.
The method for producing yttrium aluminum garnet according to claim 1, characterized in that it is sintered at 0°C to form a polycrystalline transparent yttrium aluminum garnet sintered body.
JP63242890A 1988-09-27 1988-09-27 Method for manufacturing yttrium aluminum garnet Expired - Lifetime JP2673161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63242890A JP2673161B2 (en) 1988-09-27 1988-09-27 Method for manufacturing yttrium aluminum garnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63242890A JP2673161B2 (en) 1988-09-27 1988-09-27 Method for manufacturing yttrium aluminum garnet

Publications (2)

Publication Number Publication Date
JPH0292817A true JPH0292817A (en) 1990-04-03
JP2673161B2 JP2673161B2 (en) 1997-11-05

Family

ID=17095750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63242890A Expired - Lifetime JP2673161B2 (en) 1988-09-27 1988-09-27 Method for manufacturing yttrium aluminum garnet

Country Status (1)

Country Link
JP (1) JP2673161B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465053A (en) * 1990-07-04 1992-03-02 Natl Inst For Res In Inorg Mater Image display apparatus
JP2001158620A (en) * 1999-09-20 2001-06-12 Shin Etsu Chem Co Ltd Rare earth-aluminum-garnet fine powder, method for producing the same and sintered compact using the same powder
DE102007002079A1 (en) 2007-01-09 2008-07-10 Schott Ag Process for the production of optical elements and optical elements
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same
JP4688307B2 (en) * 2000-07-11 2011-05-25 コバレントマテリアル株式会社 Plasma-resistant member for semiconductor manufacturing equipment
WO2012014885A1 (en) * 2010-07-26 2012-02-02 日産化学工業株式会社 Precursor composition for forming amorphous metal oxide semiconductor layer, amorphous metal oxide semiconductor layer, method for producing same, and semiconductor device
WO2013111811A1 (en) 2012-01-25 2013-08-01 エム・テクニック株式会社 Manufacturing processes for garnet precursor microparticles and microparticles of garnet structure
CN104229857A (en) * 2014-08-14 2014-12-24 中国科学院上海硅酸盐研究所 Preparation method of controllable-shape YAG (yttrium aluminum garnet) microcrystal

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465053A (en) * 1990-07-04 1992-03-02 Natl Inst For Res In Inorg Mater Image display apparatus
JP2001158620A (en) * 1999-09-20 2001-06-12 Shin Etsu Chem Co Ltd Rare earth-aluminum-garnet fine powder, method for producing the same and sintered compact using the same powder
JP4688307B2 (en) * 2000-07-11 2011-05-25 コバレントマテリアル株式会社 Plasma-resistant member for semiconductor manufacturing equipment
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same
DE102007002079A1 (en) 2007-01-09 2008-07-10 Schott Ag Process for the production of optical elements and optical elements
WO2012014885A1 (en) * 2010-07-26 2012-02-02 日産化学工業株式会社 Precursor composition for forming amorphous metal oxide semiconductor layer, amorphous metal oxide semiconductor layer, method for producing same, and semiconductor device
JP5854231B2 (en) * 2010-07-26 2016-02-09 日産化学工業株式会社 Precursor composition for forming amorphous metal oxide semiconductor layer, method for producing amorphous metal oxide semiconductor layer, and method for producing semiconductor device
US10756190B2 (en) 2010-07-26 2020-08-25 Nissan Chemical Industries, Ltd. Precursor composition for forming amorphous metal oxide semiconductor layer, amorphous metal oxide semiconductor layer, method for producing same, and semiconductor device
WO2013111811A1 (en) 2012-01-25 2013-08-01 エム・テクニック株式会社 Manufacturing processes for garnet precursor microparticles and microparticles of garnet structure
KR20140125763A (en) 2012-01-25 2014-10-29 엠. 테크닉 가부시키가이샤 Manufacturing processes for garnet precursor microparticles and microparticles of garnet structure
US9260315B2 (en) 2012-01-25 2016-02-16 M. Technique Co., Ltd. Methods for producing garnet precursor microparticles and microparticles having garnet structure
CN104229857A (en) * 2014-08-14 2014-12-24 中国科学院上海硅酸盐研究所 Preparation method of controllable-shape YAG (yttrium aluminum garnet) microcrystal

Also Published As

Publication number Publication date
JP2673161B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
US4619817A (en) Hydrothermal method for producing stabilized zirconia
US5622551A (en) Chemically derived leucite
JPS6359985B2 (en)
JPS62162626A (en) Highly dispersed sol or gel of ultrafine crystal of monoclinic zirconia and production thereof
CN108249909A (en) A kind of novel method for preparing terbium aluminum garnet-base nano-powder and magneto-optic crystalline ceramics
WO2010071736A1 (en) Yb:y2o3 ceramic powders
KR101121876B1 (en) Process for preparing zirconium oxides and zirconium-based mixed oxides
JPH0292817A (en) Production of yttrium aluminium garnet
JPH0472774B2 (en)
US5866493A (en) Method of manufacturing a sintered body of indium tin oxide
JP3314388B2 (en) Method for producing indium hydroxide, indium oxide and ITO sintered body
JP2868176B2 (en) Method for producing rare earth element oxide powder
JPH0346407B2 (en)
JP2843909B2 (en) Method for producing yttrium oxide transparent sintered body
JPS62158116A (en) Production of fine aluminium oxide particles
JPS5939367B2 (en) Manufacturing method of zirconium oxide fine powder
US4774068A (en) Method for production of mullite of high purity
JP3563464B2 (en) Method for producing yttrium-aluminum-garnet powder and yttrium-aluminum-garnet sintered body using the same
JPS58213633A (en) Production of aluminum oxide
KR101324130B1 (en) Indium tin oxide powder and manufacturing method of producing the same
JPH01133940A (en) Production of fine titanium oxide particles
US20240246833A1 (en) Method for preparing nano-zirconium/hafnium oxide and metal nanoparticles
JP3394071B2 (en) Method for producing rare earth oxide fine powder
JPH0524864B2 (en)
KR960012723B1 (en) Process for the preparation of zirconia powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 12