JPH0787976B2 - Online slab surface defect detection method - Google Patents

Online slab surface defect detection method

Info

Publication number
JPH0787976B2
JPH0787976B2 JP30339088A JP30339088A JPH0787976B2 JP H0787976 B2 JPH0787976 B2 JP H0787976B2 JP 30339088 A JP30339088 A JP 30339088A JP 30339088 A JP30339088 A JP 30339088A JP H0787976 B2 JPH0787976 B2 JP H0787976B2
Authority
JP
Japan
Prior art keywords
heat flux
temperature
distribution
slab
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30339088A
Other languages
Japanese (ja)
Other versions
JPH02151356A (en
Inventor
雅弘 川越
章一 日和佐
圭吾 池田
弘郷 山根
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP30339088A priority Critical patent/JPH0787976B2/en
Publication of JPH02151356A publication Critical patent/JPH02151356A/en
Publication of JPH0787976B2 publication Critical patent/JPH0787976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋳片の表面欠陥を鋳造中にオンラインで検知
する連続鋳造におけるオンライン鋳片表面欠陥検出方法
に関する。
Description: TECHNICAL FIELD The present invention relates to an on-line slab surface defect detection method in continuous casting in which slab surface defects are detected online during casting.

〔従来の技術〕[Conventional technology]

連続鋳造時において生じる不具合のうち、特に典型的な
例として炭素含有量が0.08〜0.16%のいわゆる中炭素鋼
においては、鋳造時の凝固過程において包晶反応を伴う
ため変態収縮による鋳片表面の縦割れやコーナー部のカ
ギ割れ、ディプレッション等を発生しやすく、連鋳での
高速安定鋳造が困難であり、大きな問題となっている。
そこで、従来は鋳片を目視観察するか他の検査方法によ
り鋳片の表面欠陥の発生を検出していたが、このような
方法では検査に多くの時間や人手を要し、表面欠陥を発
見したときにはすでに多量の鋳片が製造されてしまって
おり、これらの鋳片の手入れが必要となるとともに物流
が非常に複雑になる。
Among the problems that occur during continuous casting, in a so-called medium carbon steel with a carbon content of 0.08 to 0.16% as a typical example, since a peritectic reaction is involved in the solidification process during casting, the slab surface due to transformation shrinkage This is a major problem because vertical cracks, cracks in the corners, depletion, etc. are likely to occur and high-speed stable casting in continuous casting is difficult.
Therefore, conventionally, the occurrence of surface defects in the slab was detected by visually observing the slab or by other inspection methods, but such a method requires much time and manpower for the inspection, and the surface defects are found. At that time, a large amount of slabs have already been produced, and it is necessary to care for these slabs and the distribution becomes very complicated.

このような、これまでの欠点を解消するものとして、例
えば特開昭62−192243号公報に開示された「連続鋳造時
における鋳片縦割れの検出方法」がある。これはモール
ドに熱電対を複数個埋設して温度を測定し、測定各点で
温度変化量を求め、この変化量が所定値を超えるか否か
により縦割れ発生の存否を検出するものである。
As a method for solving the above drawbacks, for example, there is a "method for detecting vertical cracks in a slab during continuous casting" disclosed in Japanese Patent Laid-Open No. 62-192243. This is to embed a plurality of thermocouples in a mold, measure the temperature, determine the temperature change amount at each measurement point, and detect the presence or absence of vertical cracking by checking whether this change amount exceeds a predetermined value. .

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

そこで、当発明者らは、実験により上記提案の機能を確
かめるために、モールド壁に複数個の熱電対を埋設して
温度を測定し、各点での温度変化量を経時的に求め、鋳
片表面性状との関係を調査したところ、非常に大きな縦
割れについてはある程度検出できるが、微細な縦割れに
ついてはほとんど検出できなかった(第11図参照)。
Therefore, in order to confirm the function of the above proposal by experiments, the present inventors embed a plurality of thermocouples in the mold wall, measure the temperature, and obtain the temperature change amount at each point with time, As a result of investigating the relationship with one-sided surface properties, very large vertical cracks could be detected to some extent, but fine vertical cracks could hardly be detected (see Fig. 11).

第11図(a)は表面欠陥がないスラブの最大温度変化量
を示し、同図(b)は表面欠陥発生スラブの最大温度変
化量とこの変化量に対応するスラブスケッチを示したも
のであるが、図より明らかなように、この従来方法では
表面欠陥を温度変化量により検知するのは困難であるこ
とがわかる。
FIG. 11 (a) shows the maximum temperature change amount of the slab without surface defects, and FIG. 11 (b) shows the maximum temperature change amount of the surface defect generation slab and the slab sketch corresponding to this change amount. However, as is clear from the figure, it is difficult to detect surface defects by the amount of temperature change with this conventional method.

本発明は、このような従来の欠点にかんがみてなされた
ものであて、各点の温度変化量でなく、モールド幅方向
温度あるいは熱流束分布のバランスの経時的変化を検知
することにより、鋳片表面のカギ割れ、ディプレッショ
ン等も含めた表面欠陥をオンラインで検出することを目
的としている。
The present invention has been made in view of such a conventional drawback, and detects the change over time in the mold width direction temperature or the balance of the heat flux distribution, rather than the temperature change amount at each point, to obtain a slab. The purpose is to detect surface defects including surface cracks and depletion online.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、連続鋳造モールドの幅方向各点での温度又は
熱流束を計測し、温度又は熱流束分布を観察し、該温度
又は熱流束分布の経時的変化をもとに、鋳片の表面欠陥
の有無を判定することを特徴とするオンライン鋳片表面
欠陥検出方法を提供するものであって、前記変化検出手
段としては、モールド幅方向各点での各隣りの計測点と
の温度又は熱流束の差に±の符号を与え、この符号の並
び方、又は温度又は熱流束の低い方からの順序の変化を
もとにオンラインで検出するか、あるいは温度又は熱流
束分布の経時的変化を、各計測点分布の極小点の変化を
もとにオンラインで検出する方法がある。
The present invention measures the temperature or heat flux at each point in the width direction of the continuous casting mold, observes the temperature or heat flux distribution, and based on the change over time of the temperature or heat flux distribution, the surface of the slab An on-line slab surface defect detection method characterized by determining the presence or absence of a defect, wherein the change detection means is a temperature or heat flow with each adjacent measurement point at each point in the mold width direction. The difference between the fluxes is given a sign of ±, and it is detected online based on the arrangement of this code, or the change in the order from the lower temperature or heat flux, or the change over time in the temperature or heat flux distribution, There is a method of detecting online based on the change of the minimum point of each measurement point distribution.

〔作用〕[Action]

本発明は、上記のような構成とすることによって得られ
た知見、即ち、鋳片に表面欠陥がない場合、モールド幅
方向における温度分布あるいは熱流束分布は時間的変化
が認められないのに対し、表面欠陥発生時には前記分布
が時間的に大きく変化することに基づくものである。即
ち、温度又は熱流束分布の時間的変動を検知して、変化
したならば表面欠陥発生、変化しなければ表面性状良好
と判断することで鋳造中にオンラインで鋳片表面性状を
知ることが可能である。
The present invention is the knowledge obtained by the above-mentioned configuration, that is, when the slab has no surface defects, the temperature distribution or heat flux distribution in the mold width direction shows no temporal change. The above is based on the fact that the distribution largely changes with time when surface defects occur. That is, it is possible to know the surface property of the slab online during casting by detecting the time variation of the temperature or heat flux distribution, and if it changes, it is judged that the surface defect has occurred, and if it has not changed, the surface property is good. Is.

〔実施例〕〔Example〕

以下、この発明を図,表等を参照して説明する。第1〜
10図は本発明の実施例を示すものである。
The present invention will be described below with reference to the drawings, tables and the like. First to
FIG. 10 shows an embodiment of the present invention.

第1図は実施例における連続鋳造用モールドを斜視図で
示したものである。このモールドの銅板には、その幅方
向メニスカス部に温度測定器としての熱電対を埋め込
み、熱電対の熱起電力を温度に対応する電気信号に変換
器で変換し、演算器に取り込む。
FIG. 1 is a perspective view showing a continuous casting mold according to an embodiment. A thermocouple as a temperature measuring device is embedded in the meniscus portion in the width direction of the copper plate of this mold, and the thermoelectromotive force of the thermocouple is converted into an electric signal corresponding to the temperature by the converter and taken into the calculator.

この信号は一定周期(例えば1秒毎)で取り込まれる。
そしてモールド幅方向の温度分布あるいは熱流束分布を
計算し、CRT画面に出力する。但し、CRT画面出力時には
モールド幅方向での温度又は熱流束をスプライン関数で
補間している。また熱流束計算の場合には、深さを変え
て更にもう1本づつ熱電対を埋め込み(第2図及び第8
図(イ)参照)、その温度差をもとに計算する。第2図
に実験時の測温点と熱電対位置を示す。熱電対はCA熱電
対(1mmφ,シース長さ1.5m,耐熱タイプ補償導線)を使
用。また熱電対番号のうち、奇数のものは表面から5mm
の位置に、偶数のものは15mmの位置に埋め込んだもので
ある。
This signal is taken in at a constant cycle (for example, every second).
Then, the temperature distribution or heat flux distribution in the mold width direction is calculated and output to the CRT screen. However, when the CRT screen is output, the temperature or heat flux in the mold width direction is interpolated by the spline function. Further, in the case of heat flux calculation, another thermocouple is embedded by changing the depth (see FIGS. 2 and 8).
Figure (a)), and calculate based on the temperature difference. Figure 2 shows the temperature measurement points and thermocouple positions during the experiment. CA thermocouple (1mmφ, sheath length 1.5m, heat resistant type compensating lead wire) is used as the thermocouple. Also, of the thermocouple numbers, the odd number is 5 mm from the surface.
, The even ones are embedded at the 15 mm position.

各熱電対は、モールド上部より150mmの位置にある。ま
た深さ方向に埋め込んだ2本の熱電対の温度差をもとに
熱流束qを各点で一定周期で計算する。すなわち、 ここで、 q:熱流束(Kcal/m2h) k:銅板モールド熱伝導係数(Kcal/mhk) D:2本の熱電対の深さの差(m) 第3図は、熱流束qをモールド幅方向の各点で計算し、
その値をスプライン関数で補間したグラフを示す。
Each thermocouple is 150 mm above the top of the mold. Further, the heat flux q is calculated at each point at a constant cycle based on the temperature difference between the two thermocouples embedded in the depth direction. That is, Here, q: heat flux (Kcal / m 2 h) k: heat conductivity coefficient of copper plate mold (Kcal / mhk) D: difference in depth between two thermocouples (m) Fig. 3 shows heat flux q Calculate at each point in the mold width direction,
The graph which interpolated the value by the spline function is shown.

そして、上記の温度ないし熱流束を測定してその分布の
変更回数を調査し、その値が閾値を越えたならば鋳片表
面欠陥発生と判断する。なお、分布の変更回数とは、熱
流束の最低点を位置との関係でプロットし、位置の変更
を生じた場合、変更(分布の変化)として回数をカウン
トする。
Then, the temperature or heat flux is measured and the number of changes of the distribution is investigated, and if the value exceeds a threshold value, it is judged that the surface defect of the slab has occurred. The distribution change frequency is plotted by plotting the lowest point of the heat flux in relation to the position, and when the position change occurs, the number is counted as a change (change in distribution).

第4図は、上記のような測定結果が同図(a)において
(イ)の分布状態から4秒後に(ロ)の分布状態に変化
した場合には鋳片の表面欠陥が発生したと判断し、同図
(b)の(イ),(ロ)の如く変化しない場合は表面欠
陥は発生しないと判断される。
FIG. 4 shows that the surface defect of the slab was judged to have occurred when the above measurement results changed from the distribution state of (a) to the distribution state of (b) after 4 seconds in FIG. However, when there is no change as shown in (a) and (b) of FIG.

この際の分布の変化状態を知る検出手段としては、第5
図(a)のように隣りの計測点との温度又は熱流束の差
に低くなれば−,高くなれば+の符号を与え、この符号
の並び方の順序が経時的に変化した場合(同図(b)の
イ→ロ)、あるいはまた温度差の低い純に番号を付し
(第6図)、この番号の並び方の順序が経時的に変化し
た(同図(b)のイ→ロ)のような場合は鋳片表面に欠
陥を生じたものと判断される。そして、この分布の変化
の有無は前述のCRTを常時監視することにより、欠陥発
生に対して直ちに対応することができる。この手法を用
いて分布の変化回数を各鋳片毎に調べた結果を第7図に
示す。これにより表面欠陥指数と分布変化回数の対応が
よくとれていることが分かる。
As the detection means for knowing the change state of the distribution at this time,
When the difference in temperature or heat flux from the adjacent measurement point becomes low as shown in FIG. 7A, a sign of + is given when the difference becomes high, and the order of arrangement of the signs changes with time (FIG. (B) (a) -b) or a number having a low temperature difference is assigned (Fig. 6), and the order of arrangement of the numbers changes with time (a- (b) in the same figure). In such cases, it is judged that a defect has occurred on the surface of the slab. The presence or absence of this distribution change can be immediately dealt with by the defect occurrence by constantly monitoring the CRT. FIG. 7 shows the results of examining the number of distribution changes for each slab using this method. From this, it can be seen that the correspondence between the surface defect index and the number of distribution changes is well taken.

次に熱流束が最も低い点、すなわち抜熱が最も遅れてい
ると考えられている点ではシェルが最も薄く、縦割れ等
が発生し易いと考えられる。もし、熱流束分布が変化し
なければ、熱流束が最も低い点(極小点)も時間的に変
化しないと考えられる。そこで熱流束が最も低い点が時
間的にどう変化するかを第8図に示す方法で調べてみ
た。その結果を第10図に示す。これから明らかなよう
に、表面欠陥が発生した鋳片では熱流束の極小点(すな
わち、シェルが最も薄いと考えられる点)が時間的にし
ばしば変化しているのに対し、表面欠陥のない鋳片では
ほとんど変化のないことが分かる。よって熱流束分布の
極小点の時間的変化をCRTで監視することにより、鋳片
表面欠陥のオンライン検知システムを確率することが可
能である。
Next, at the point where the heat flux is the lowest, that is, at the point where heat removal is considered to be the most delayed, it is considered that the shell is the thinnest and vertical cracks and the like are likely to occur. If the heat flux distribution does not change, it is considered that the point where the heat flux is the lowest (minimum point) does not change with time. Therefore, we examined how the point with the lowest heat flux changes with time by the method shown in FIG. The results are shown in Fig. 10. As is clear from this, the minimum point of heat flux (that is, the point where the shell is considered to be the thinnest) frequently changes with time in the slab with surface defects, while the slab with no surface defects is present. Then you can see that there is almost no change. Therefore, by monitoring the temporal change of the minimum point of the heat flux distribution by CRT, it is possible to establish an online detection system for slab surface defects.

次に中炭材について、その表面欠陥に大きな影響を及ぼ
すと考えられるメニスカス部での抜熱挙動を把握するた
めに、モールド銅板メニスカス部幅方向に熱電対(深さ
方向に2本ずつ)を埋め込み、操業条件の変化に伴う抜
熱量の変化と表面性状との関係を調査した。その結果、
中炭材であっても、低速度の鋳造では温度(熱流束)分
布にムラの発生がないが、高速鋳造を行うと分布にムラ
を生じる。すなわち、極小点の時間的変化による方法に
おいて、高速鋳造1.7m/minを行いつつ分布を監視した。
分布の極小点が他の熱電対で検出され、分布変化が検出
されたので、直ちに鋳造速度を1.1m/minに低下させ、分
布の均一化を図った。そして分布の均一化後は増速し、
1.7m/minの鋳造速度に戻し、鋳造を継続した。その結
果、鋳込後の鋳片表面を観察したところ、極小点の移動
が生じた時間と対応する部分に欠陥が見られた他は、欠
陥は発生しておらず、検出に充分な精度を有するものと
確認できた。
Next, in order to understand the heat removal behavior in the meniscus part, which is considered to have a great influence on the surface defects of the medium carbonaceous material, a thermocouple (two in the depth direction) was placed in the width direction of the mold copper plate meniscus part. We investigated the relationship between the surface texture and the change in heat removal amount due to changes in embedding and operating conditions. as a result,
Even with medium carbonaceous materials, there is no unevenness in temperature (heat flux) distribution in low-speed casting, but unevenness occurs in high-speed casting. That is, the distribution was monitored while performing high-speed casting at 1.7 m / min in the method based on the temporal change of the minimum point.
Since the minimum point of the distribution was detected by another thermocouple and the change in the distribution was detected, the casting speed was immediately reduced to 1.1 m / min to make the distribution uniform. And after homogenizing the distribution, speed up,
The casting speed was returned to 1.7 m / min and the casting was continued. As a result, when observing the surface of the cast slab after casting, a defect was found in the portion corresponding to the time when the movement of the minimum point occurred, and no defect occurred, and sufficient accuracy for detection was obtained. I was able to confirm that I had it.

次に符号の並び方の順序の経時的変化による方法におい
ては、検出箇所7点のうち、3点に変化がみられ、分布
が変化したと判断できたので鋳造速度を1.7m/minから1.
1m/minに低下し、分布の安定を待って前記と同様に再び
増速した。
Next, in the method of changing the order of the code sequence with time, three of the seven detection points were changed, and it was determined that the distribution had changed, so the casting speed was changed from 1.7 m / min to 1.
It decreased to 1 m / min, and after stabilizing the distribution, the speed was increased again as described above.

第9図は、実験において温度分布及び熱流束分布を測定
し、鋳片表面性状との対応を調査したところ、表面欠陥
あり鋳片では、分布の時間的変化が激しいのに対し、表
面欠陥なし鋳片では分布の形が時間的にほとんど変化し
ないことが分かった。
Fig. 9 shows that the temperature distribution and heat flux distribution were measured in an experiment and the correspondence with the surface properties of the slab was investigated. It was found that the distribution shape of the slab changed little with time.

また、前記調査の結果、今までの文献によると、表面欠
陥はメニスカス直下で幅方向の不均一凝固が原因ではな
いかといわれているが、今回の実験からは、たとえ分布
が不均一であったとしても経時的にその分布が大きく変
化しなければ表面欠陥は発生しにくいとの結論が得られ
た。
Further, as a result of the above investigation, according to the literatures so far, it is said that the surface defect may be caused by the nonuniform solidification in the width direction immediately below the meniscus, but from the present experiment, even the distribution was nonuniform. However, it was concluded that surface defects are unlikely to occur unless the distribution changes significantly over time.

表面欠陥が発生した鋳片と発生しなかった鋳片の熱流束
分布を比べて、表面欠陥の発生した鋳片ではその分布の
変化は明らかに激しいものがあった。それ故、熱流束分
布を常時監視することによって表面欠陥のオンライン検
知システムの構成は可能である。また、同様の指標を使
用することにより、操業要因の定量的評価も可能と考え
られる。
By comparing the heat flux distributions of the slab with surface defects and the slab with no surface defects, the distribution of the slabs with surface defects showed a marked change. Therefore, it is possible to construct an online detection system for surface defects by constantly monitoring the heat flux distribution. In addition, it is considered possible to quantitatively evaluate operating factors by using the same index.

次の第1表に従来法と本発明による表面欠陥検出率を、
第2表に本発明稼働前と稼働後の表面欠陥発生率、ブレ
ークアウト発生率、平均鋳込速度の推移を示す。
Table 1 below shows the surface defect detection rates according to the conventional method and the present invention.
Table 2 shows changes in surface defect occurrence rate, breakout occurrence rate, and average pouring speed before and after the operation of the present invention.

〔発明の効果〕 上記、第1,2表に示すように、本発明は従来法に比べて
表面欠陥検出率が極めて高い。また、本発明稼働によ
り、表面欠陥発生率は10%から2%へと激減するととも
に、表面欠陥起因のブレイクアウトも減少するといった
効果が得られた。
[Advantages of the Invention] As shown in Tables 1 and 2 above, the present invention has an extremely high surface defect detection rate as compared with the conventional method. Further, the operation of the present invention has the effect that the surface defect occurrence rate is drastically reduced from 10% to 2% and the breakout due to the surface defects is also reduced.

さらに、以上説明したように、本発明により表面欠陥を
鋳造中にオンラインで検出することができる。従って表
面欠陥検出時に適切なアクションを採ることにより欠陥
の進展を抑制し、表面性状の検査工程,物流の簡素化を
図ることも可能である。また、安定鋳造による現在以上
の高速鋳造も可能と考えられることから、本発明の意義
は極めて高い。
Furthermore, as explained above, the present invention allows surface defects to be detected online during casting. Therefore, it is possible to suppress the progress of defects by taking appropriate actions when surface defects are detected, and to simplify the surface property inspection process and physical distribution. Further, since it is considered that stable casting can be performed at higher speeds than at present, the significance of the present invention is extremely high.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明構成の模式図、第2図は連鋳モールドへ
の熱電対の埋め込み位置の実施例を示す図、第3図は熱
流束分布をスプライン関数で補間したグラフ、第4図
(a)は表面欠陥のある場合の熱流束の分布変化を示
し、同図(b)は表面欠陥のない場合の熱流束分布の変
化しない状態を示すグラフ、第5図は温度又は熱流束の
隣り合う差に符号を与えたもので、同図(a)はその分
布の変動を示し、同図(b)はその符号の並びの変化を
示した図、第6図は温度又は熱流束の隣り合う差に番号
を付したもので、同図(a)はその分布の変動を示し、
同図(b)はその番号の並びの変化を示した図、第7図
は表面欠陥指数と分布変化回数との関係を示す図、第8
図は温度又は熱流束分布の極小点の経時変化を示す図、
第9図は温度又は熱流束分布の経時的変化に対応した鋳
片表面欠陥の状態をスケッチ図で示し、同図(a)は欠
陥のある場合、同図(b)は欠陥を生じない場合を示し
た図、第10図は熱流束最低点(極小点)の推移の状態と
表面欠陥の有無との関係を示し、同図(a)は1チャー
ジ目、同図(b)は2チャージ目、同図(c)は3チャ
ージ目の場合を示した図、第11図(a)は表面欠陥がな
い鋳片の最大温度変化量と時間との関係、同図(b)は
表面欠陥発生鋳片の時間に対する最大温度変化量とこれ
に鋳片スケッチを対応させた図である。
FIG. 1 is a schematic diagram of the constitution of the present invention, FIG. 2 is a diagram showing an embodiment of a position where a thermocouple is embedded in a continuous casting mold, FIG. 3 is a graph in which a heat flux distribution is interpolated by a spline function, and FIG. (A) shows a change in heat flux distribution when there is a surface defect, and (b) shows a graph showing a state in which the heat flux distribution does not change when there is no surface defect, and FIG. 5 shows temperature or heat flux. Signs are given to adjacent differences. Fig. 6 (a) shows changes in the distribution, Fig. 6 (b) shows changes in the arrangement of the signs, and Fig. 6 shows changes in temperature or heat flux. Numbers are given to adjacent differences, and FIG. 7A shows the variation of the distribution.
FIG. 7B is a diagram showing the change in the arrangement of the numbers, FIG. 7 is a diagram showing the relationship between the surface defect index and the number of distribution changes, and FIG.
The figure shows the change over time in the minimum point of the temperature or heat flux distribution,
FIG. 9 is a sketch diagram showing a state of a slab surface defect corresponding to a change in temperature or heat flux distribution with time. FIG. 9A shows a case where there is a defect, and FIG. 9B shows a case where no defect occurs. Fig. 10 shows the relationship between the transition state of the heat flux minimum point (minimum point) and the presence or absence of surface defects. The figure (a) is the first charge, and the figure (b) is the second charge. Fig. 11 (c) shows the case of the third charge, Fig. 11 (a) shows the relationship between the maximum temperature change and the time of the slab without surface defects, and Fig. 11 (b) shows the surface defects. It is the figure which matched the maximum temperature change amount with respect to the time of a generated slab, and this with a slab sketch.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山根 弘郷 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (56)参考文献 特開 昭56−95461(JP,A) 特開 昭61−200453(JP,A) 特開 昭63−30146(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hirogo Yamane, Inventor Hiroshima Yamane, 1-chome, Mizushima Kawasaki-dori, Kurashiki City, Okayama Prefecture (No address) Inside the Mizushima Works, Kawasaki Steel Co., Ltd. (56) Reference JP-A-56-95461 (JP, A) JP 61-200453 (JP, A) JP 63-30146 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】連続鋳造モールドの幅方向各点での温度又
は熱流束を計測し、温度又は熱流束分布を監視し、該温
度又は熱流束分布の経時的変化をもとに、鋳片の表面欠
陥の有無を判定することを特徴とするオンライン鋳片表
面欠陥検出方法。
1. A temperature or heat flux at each point in the width direction of a continuous casting mold is measured, the temperature or heat flux distribution is monitored, and a slab of a slab is measured based on a change with time of the temperature or heat flux distribution. An online slab surface defect detection method characterized by determining the presence or absence of a surface defect.
【請求項2】前記温度又は熱流束分布の経時的変化を、
隣りの計測点との温度又は熱流束との差に±の符号を与
え、この符号の並び方、又は温度又は熱流束の低い方か
らの順序の変化をもとにオンラインで検出する請求項
(1)記載のオンライン鋳片表面欠陥検出方法。
2. The change in the temperature or heat flux distribution with time,
The difference between the temperature and the heat flux from the adjacent measurement point is given a sign of ±, and the online detection is performed based on the arrangement of the signs or the change in the order from the lower temperature or heat flux. ) A method for detecting surface defects on a slab as described above.
【請求項3】前記温度又は熱流束分布の経時的変化を、
各計測点分布の極小点の変化をもとにオンラインで検出
する請求項(1)記載のオンライン鋳片表面欠陥検出方
法。
3. The change in the temperature or heat flux distribution with time,
The online slab surface defect detection method according to claim 1, wherein the detection is performed online based on a change in the minimum point of each measurement point distribution.
JP30339088A 1988-11-30 1988-11-30 Online slab surface defect detection method Expired - Fee Related JPH0787976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30339088A JPH0787976B2 (en) 1988-11-30 1988-11-30 Online slab surface defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30339088A JPH0787976B2 (en) 1988-11-30 1988-11-30 Online slab surface defect detection method

Publications (2)

Publication Number Publication Date
JPH02151356A JPH02151356A (en) 1990-06-11
JPH0787976B2 true JPH0787976B2 (en) 1995-09-27

Family

ID=17920444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30339088A Expired - Fee Related JPH0787976B2 (en) 1988-11-30 1988-11-30 Online slab surface defect detection method

Country Status (1)

Country Link
JP (1) JPH0787976B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19722877C2 (en) * 1997-05-31 1999-09-09 Schloemann Siemag Ag Liquid-cooled continuous casting mold
JP4074443B2 (en) * 2001-05-18 2008-04-09 新日本製鐵株式会社 In-mold slab condition evaluation apparatus, method, computer program, and computer-readable storage medium
JP4828366B2 (en) * 2006-09-25 2011-11-30 株式会社神戸製鋼所 Longitudinal detection method and continuous casting method based on mold heat flux
DE102008029742A1 (en) 2008-06-25 2009-12-31 Sms Siemag Aktiengesellschaft Mold for casting metal
JP5226548B2 (en) * 2009-01-29 2013-07-03 株式会社神戸製鋼所 Continuous casting method of medium carbon steel with changing casting speed and level
ES2953887T3 (en) 2010-04-08 2023-11-16 Foerster Inst Dr Gmbh & Co Kg Thermographic test method and test device to carry out the test method

Also Published As

Publication number Publication date
JPH02151356A (en) 1990-06-11

Similar Documents

Publication Publication Date Title
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
Pinheiro et al. Mould heat transfer and continuously cast billet quality with mould flux lubrication Part 1 Mould heat transfer
JPH0787976B2 (en) Online slab surface defect detection method
JP2003181609A (en) Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
JP4112783B2 (en) Breakout detection method in continuous casting equipment
JPH0360852A (en) Method for detecting surface defect on cast slab in on-line
JPS58148063A (en) Method for predicting cracking of ingot in continuous casting
JP4828366B2 (en) Longitudinal detection method and continuous casting method based on mold heat flux
JPH11300455A (en) Detection of liquid level in casting mold in continuous casting and apparatus therefor
JP3537625B2 (en) Method and apparatus for measuring solidified shell thickness in continuous casting
JP2003010950A (en) Detecting method for surface flaw in continuous casting, and continuous casting method
JPH0771726B2 (en) Continuous casting method
JPS62192243A (en) Detection of casting slab longitudinal cracking in continuous casting
JPH02117750A (en) Method for detecting molten metal surface level in metal strip continuous casting
JPH02165856A (en) Method for discriminating abnormality of temperature measuring element in continuous casting apparatus
JP3062723B2 (en) Measurement method of slab surface dent shape due to solidification shrinkage in mold
JP7384323B1 (en) Continuous casting start timing determination method, continuous casting equipment operating method, slab manufacturing method, determination device, continuous casting start determination system, and display terminal device
JP5915589B2 (en) Temperature measurement method for continuous casting mold
US6845286B2 (en) Detection of roller damage and/or misalignment in continuous casting of metals
JP7469623B2 (en) Detection method for defects in slab during continuous casting
KR100516028B1 (en) Method and device for estimating/controlling molten steel flowing pattern in continuous casting
JP2895603B2 (en) Surface defect judgment method for continuous cast slab
KR20010057093A (en) Method for analyzing the inner defect of continuous casting slab
JP2005007460A (en) Method for detecting surface defect on continuously cast steel billet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees