JP5915589B2 - Temperature measurement method for continuous casting mold - Google Patents

Temperature measurement method for continuous casting mold Download PDF

Info

Publication number
JP5915589B2
JP5915589B2 JP2013101201A JP2013101201A JP5915589B2 JP 5915589 B2 JP5915589 B2 JP 5915589B2 JP 2013101201 A JP2013101201 A JP 2013101201A JP 2013101201 A JP2013101201 A JP 2013101201A JP 5915589 B2 JP5915589 B2 JP 5915589B2
Authority
JP
Japan
Prior art keywords
thermocouple
mold
temperature
output signal
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013101201A
Other languages
Japanese (ja)
Other versions
JP2014221481A (en
Inventor
山田 敏雄
敏雄 山田
則親 荒牧
則親 荒牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013101201A priority Critical patent/JP5915589B2/en
Publication of JP2014221481A publication Critical patent/JP2014221481A/en
Application granted granted Critical
Publication of JP5915589B2 publication Critical patent/JP5915589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳型内の溶鋼を電磁力により攪拌する電磁攪拌手段を備えた連続鋳造装置において、鋳型の銅板温度を熱電対により測定する連続鋳造鋳型の温度測定方法に関する。   The present invention relates to a temperature measurement method for a continuous casting mold in which a copper plate temperature of a mold is measured by a thermocouple in a continuous casting apparatus provided with electromagnetic stirring means for stirring molten steel in the mold by electromagnetic force.

連続鋳造装置における鋳型の温度(銅板温度)を測定する技術として、鋳型を構成する銅板に熱電対を埋設することで温度測定を行う方法が知られている。測定された鋳型の温度は、ブレークアウトの予知等に利用されている。ブレークアウトは、凝固シェルの成長が不十分であるためにその不良部分から未凝固の溶鋼が噴出する現象であり、これを未然に防止するための技術として、例えば特許文献1には、鋳型の温度変化を監視し、この温度変化に基づいてブレークアウトを予知する方法が開示されている。   As a technique for measuring a mold temperature (copper plate temperature) in a continuous casting apparatus, a method of measuring temperature by embedding a thermocouple in a copper plate constituting a mold is known. The measured temperature of the mold is used for predicting breakout or the like. Breakout is a phenomenon in which unsolidified molten steel is ejected from a defective portion due to insufficient growth of a solidified shell. As a technique for preventing this, Patent Document 1, for example, A method for monitoring temperature changes and predicting breakouts based on the temperature changes is disclosed.

一方、近年では、連続鋳造装置は、鋳片の品質向上のため、鋳型内の溶鋼を電磁力によって攪拌する電磁攪拌装置を備えたものが一般的となっている。このような電磁攪拌装置を備えた連続鋳造装置において、上記したように鋳型に埋設された熱電対により温度測定を行う場合、熱電対の熱起電力の検出に際して電磁攪拌装置が電磁誘導ノイズ源となることが知られている。これは、電磁攪拌装置を構成する電磁攪拌用コイルがレイアウト上熱電対の近傍に配設されるためであり、電磁攪拌用コイルに流れる交流電流が発する磁場の影響を受けて熱電対の出力信号に電磁誘導ノイズが重畳されてしまい、正確な温度測定が行えない場合があった。特に、特許文献1の技術のように測定温度を利用してブレークアウトを予知する場合、鋳型内の溶鋼の微小な温度変化に基づく熱電対の出力信号の変化が電磁誘導ノイズに埋もれてしまい、ブレークアウトの予兆を捉えることが困難な場合が生じていた。   On the other hand, in recent years, a continuous casting apparatus is generally equipped with an electromagnetic stirring device that stirs molten steel in a mold by electromagnetic force in order to improve the quality of a slab. In a continuous casting apparatus equipped with such an electromagnetic stirrer, when the temperature is measured by the thermocouple embedded in the mold as described above, the electromagnetic stirrer is used as an electromagnetic induction noise source when detecting the thermoelectromotive force of the thermocouple. It is known to be. This is because the electromagnetic stirring coil constituting the electromagnetic stirring device is arranged in the vicinity of the thermocouple in the layout, and the output signal of the thermocouple is affected by the magnetic field generated by the alternating current flowing through the electromagnetic stirring coil. In some cases, electromagnetic induction noise is superimposed on the temperature, and accurate temperature measurement cannot be performed. In particular, when a breakout is predicted using the measured temperature as in the technique of Patent Document 1, a change in the output signal of the thermocouple based on a minute temperature change of the molten steel in the mold is buried in electromagnetic induction noise, In some cases, it was difficult to detect the sign of a breakout.

熱電対の出力信号から電磁誘導ノイズを除去する方法としては、従来から種々の提案がされている。例えば、特許文献1には、熱電対からの出力信号の移動平均計算を行うことにより、熱電対の出力信号から電磁攪拌装置からのノイズ信号を効果的に除去できる旨が記載されている。また、特許文献2には、組をなす熱電対線を並べて配置し、その基端側を並列又は直列に接続する回路部を設けた構成が開示されており、各熱電対線に誘起される起電力を打ち消すことによって電磁誘導ノイズを効果的に除去できる旨が記載されている。また特許文献3では、電磁誘導や放射ノイズ、輻射ノイズを検出するための配線を熱電対とともに配線し、検出用配線に発生した起電力を熱電対の起電力から相殺する構成が開示されている。   Conventionally, various proposals have been made as a method for removing electromagnetic induction noise from an output signal of a thermocouple. For example, Patent Literature 1 describes that a noise signal from an electromagnetic stirrer can be effectively removed from an output signal of a thermocouple by performing a moving average calculation of an output signal from a thermocouple. Further, Patent Document 2 discloses a configuration in which thermocouple wires forming a set are arranged side by side and a circuit unit that connects the base end sides in parallel or in series is provided, and is induced in each thermocouple wire. It is described that electromagnetic induction noise can be effectively removed by canceling the electromotive force. Patent Document 3 discloses a configuration in which wiring for detecting electromagnetic induction, radiation noise, and radiation noise is wired together with a thermocouple, and the electromotive force generated in the detection wiring is offset from the electromotive force of the thermocouple. .

特開2007−245208号公報JP 2007-245208 A 特開2009−58403号公報JP 2009-58403 A 特開2004−219098号公報Japanese Patent Laid-Open No. 2004-219098

ところで、熱電対の出力信号に生ずる電磁誘導ノイズは、電磁攪拌用コイルに流れる交流電流が発する磁場のみならず、交流磁場によって鋳型銅板や溶鋼に生ずる誘導電流が発する磁場も重畳されるため、必ずしも正弦波形とはならないことがあり、鋳型内の溶鋼の微小な温度変化を出力信号の移動平均計算により検出しようとすると5〜10周期分の信号サンプリングを行う必要がある場合があった。しかしながら、サンプリング点数が増えると温度測定の時間遅れが問題になる。また、鋳型に銅板温度を測定するための熱電対を特許文献2や特許文献3に記載されているように埋設するためには、鋳型を構成する銅板に穴あけ加工を施して熱電対埋め込み穴を形成する必要がある。そのため、上記した特許文献2や特許文献3に開示されている熱電対を適用して銅板温度を測定する場合、熱電対線を並べて配置する分、あるいは熱電対とともに補償電線や検出用電線を配線する分熱電対埋め込み穴を大きく形成しなければならず、鋳型本来の目的である溶鋼の冷却機能の低下を招く問題があった。また、これを避けるために、埋め込み穴の深さを変えて配線をずらす等の対策も考えられるが、熱電対を複数埋設する場合、個々の配線の位置が異なり、また電磁誘導の大きさは配線位置によって異なるために、電磁誘導ノイズの影響にばらつきが生じ、ノイズ除去率の向上には限界があった。   By the way, the electromagnetic induction noise generated in the output signal of the thermocouple is not necessarily limited to the magnetic field generated by the alternating current flowing in the electromagnetic stirring coil but also the magnetic field generated by the induced current generated in the mold copper plate or molten steel by the alternating magnetic field. In some cases, a sinusoidal waveform may not be obtained, and if it is attempted to detect a minute temperature change of the molten steel in the mold by moving average calculation of the output signal, it may be necessary to perform signal sampling for 5 to 10 cycles. However, when the number of sampling points increases, the time delay of temperature measurement becomes a problem. Moreover, in order to embed a thermocouple for measuring the copper plate temperature in the mold as described in Patent Document 2 and Patent Document 3, a hole is formed in the copper plate constituting the mold to form a thermocouple embedded hole. Need to form. Therefore, when measuring the copper plate temperature by applying the thermocouple disclosed in Patent Document 2 or Patent Document 3 described above, the compensation wire and the detection wire are wired together with the thermocouple wires arranged side by side or with the thermocouple. As a result, the thermocouple-embedded hole has to be formed in a large size, and there is a problem that the cooling function of the molten steel, which is the original purpose of the mold, is lowered. In order to avoid this, measures such as shifting the wiring by changing the depth of the embedded hole can be considered, but when embedding multiple thermocouples, the position of each wiring is different and the size of the electromagnetic induction is Since it differs depending on the wiring position, the influence of electromagnetic induction noise varies, and there is a limit to improving the noise removal rate.

本発明は、上記のような課題を解決するためになされたものであり、熱電対の出力信号に重畳される電磁誘導ノイズの影響を受けることなく鋳型の銅板温度を高精度に測定することができる連続鋳造鋳型の温度測定方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can accurately measure the copper plate temperature of the mold without being affected by electromagnetic induction noise superimposed on the output signal of the thermocouple. An object of the present invention is to provide a temperature measurement method for a continuous casting mold that can be used.

上述した課題を解決し、目的を達成するため、本発明にかかる連続鋳造鋳型の温度測定方法は、鋳型内の溶鋼を電磁力により攪拌する電磁攪拌手段を備えた連続鋳造装置において、前記鋳型の銅板温度を熱電対により測定する連続鋳造鋳型の温度測定方法であって、前記熱電対は、熱電対配線の内側に配線された検出用配線とともに前記鋳型に埋設され、前記熱電対の出力信号と前記検出用配線に発生した起電力とを前記電磁攪拌手段に印加される電圧周期の半周期以上同時にサンプリングし、前記半周期毎に前記検出用配線に発生した起電力が最も小さいサンプリング時間を選出し、該選出したサンプリング時間における前記熱電対の出力信号に基づいて前記鋳型の銅板温度を算出することを特徴とする。   In order to solve the above-described problems and achieve the object, a temperature measurement method for a continuous casting mold according to the present invention is a continuous casting apparatus provided with an electromagnetic stirring means for stirring molten steel in a mold by electromagnetic force. A temperature measurement method of a continuous casting mold for measuring a copper plate temperature with a thermocouple, wherein the thermocouple is embedded in the mold together with a detection wiring arranged inside a thermocouple wiring, and an output signal of the thermocouple The electromotive force generated in the detection wiring is simultaneously sampled over a half cycle of the voltage cycle applied to the electromagnetic stirring means, and the sampling time with the smallest electromotive force generated in the detection wiring is selected every half cycle. The temperature of the copper plate of the mold is calculated based on the output signal of the thermocouple at the selected sampling time.

本発明にかかる連続鋳造鋳型の温度測定方法は、上記発明において、前記選出したサンプリング時間における前記熱電対の出力信号に基づいて移動平均計算を行い、前記銅板温度を算出することを特徴とする。   The temperature measurement method for a continuous casting mold according to the present invention is characterized in that, in the above-mentioned invention, the copper plate temperature is calculated by performing a moving average calculation based on an output signal of the thermocouple at the selected sampling time.

本発明によれば、熱電対の出力信号に重畳される電磁誘導ノイズの影響を受けることなく鋳型の銅板温度を高精度に測定することができる。   According to the present invention, the copper plate temperature of the mold can be measured with high accuracy without being affected by electromagnetic induction noise superimposed on the output signal of the thermocouple.

図1は、連続鋳造装置の概略構成例を示す模式図である。FIG. 1 is a schematic diagram illustrating a schematic configuration example of a continuous casting apparatus. 図2は、鋳型に埋設される熱電対の概略構成を説明する図である。FIG. 2 is a diagram illustrating a schematic configuration of a thermocouple embedded in a mold. 図3は、鋳型の銅板温度の測定原理を説明する図である。FIG. 3 is a diagram for explaining the principle of measuring the copper plate temperature of the mold.

以下、図面を参照して、本発明の連続鋳造鋳型の温度測定方法を実施するための形態について説明する。なお、この実施の形態によって本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。   Hereinafter, with reference to drawings, the form for implementing the temperature measuring method of the continuous casting mold of this invention is demonstrated. Note that the present invention is not limited to the embodiments. Moreover, in description of drawing, the same code | symbol is attached | subjected and shown to the same part.

図1は、本実施の形態における連続鋳造装置1の概略構成例を示す模式図である。図1に示すように、連続鋳造装置1は、上下が開放された矩形状の銅製の鋳型(連続鋳造用鋳型)2を備える。   FIG. 1 is a schematic diagram illustrating a schematic configuration example of a continuous casting apparatus 1 according to the present embodiment. As shown in FIG. 1, the continuous casting apparatus 1 includes a rectangular copper mold (continuous casting mold) 2 that is open at the top and bottom.

鋳型2は、一対の長辺21,21と、長辺21,21の間に内装された一対の短辺23,23とで構成され、不図示の浸漬ノズルから長辺21,21および短辺23,23によって囲まれた内部の鋳造空間に溶鋼が注入される。浸漬ノズルにより鋳型2内に注入された溶鋼は、冷却されて側面に凝固シェルを形成し、側面が凝固した鋳片として鋳型2の下方に引き抜かれる。この鋳片は、最終的に適当な長さに切断され、目的のスラブ(鋳片)が製造される。   The mold 2 is composed of a pair of long sides 21 and 21 and a pair of short sides 23 and 23 provided between the long sides 21 and 21, and the long sides 21 and 21 and the short sides from an immersion nozzle (not shown). Molten steel is poured into the internal casting space surrounded by 23 and 23. The molten steel injected into the mold 2 by the immersion nozzle is cooled to form a solidified shell on the side surface, and is drawn out below the mold 2 as a cast piece whose side surface is solidified. This slab is finally cut into an appropriate length to produce a target slab (slab).

鋳型2(例えば図1中の手前側の長辺21)には、複数の熱電対3が多段に配列されて埋設されている。各熱電対3は、それぞれ長辺21の外面から所定の深さ位置に埋設される。なお、熱電対3の配置は、図示の例に限定されるものではない。また、熱電対3は、奥側の長辺21や短辺23,23にも配置することが好ましい。   In the mold 2 (for example, the long side 21 on the near side in FIG. 1), a plurality of thermocouples 3 are arranged and embedded in multiple stages. Each thermocouple 3 is embedded at a predetermined depth from the outer surface of the long side 21. The arrangement of the thermocouple 3 is not limited to the illustrated example. Moreover, it is preferable to arrange the thermocouple 3 on the long side 21 and the short sides 23 and 23 on the back side.

このように鋳型2に埋設された熱電対3は、鋳型2の温度(銅板温度)を測定することで鋳型2内の溶鋼の温度を推定するためのものであり、鋳型2の銅板温度に応じた電流信号を出力する。ここで、上記したように、連続鋳造装置1は、鋳型2内の溶鋼を攪拌し、溶鋼の流動を制御するための電磁攪拌手段としての電磁攪拌装置を一般的に備えている。この電磁攪拌装置(電磁攪拌用コイル)は、図示しないが、鋳型2の外面近傍に配設される。そのため、各熱電対3が出力する電流信号は、近傍位置の電磁攪拌用コイルに流れる交流電流が発する磁場の影響を受けて、電磁誘導ノイズが重畳した熱電対出力信号(出力信号)として出力されることとなる。   The thermocouple 3 embedded in the mold 2 is for estimating the temperature of the molten steel in the mold 2 by measuring the temperature of the mold 2 (copper plate temperature). Output current signal. Here, as described above, the continuous casting apparatus 1 is generally provided with an electromagnetic stirring device as an electromagnetic stirring means for stirring the molten steel in the mold 2 and controlling the flow of the molten steel. This electromagnetic stirring device (electromagnetic stirring coil) is disposed in the vicinity of the outer surface of the mold 2 although not shown. Therefore, the current signal output by each thermocouple 3 is output as a thermocouple output signal (output signal) on which electromagnetic induction noise is superimposed due to the influence of the magnetic field generated by the alternating current flowing in the electromagnetic stirring coil in the vicinity. The Rukoto.

図2は、鋳型2に埋設される熱電対3の概略構成例を示す図であり、1つの熱電対3を含む鋳型2の切断面を示している。図2に示すように、熱電対3は、鋳型2を構成する銅板に熱電対埋め込み穴211を形成し、熱電対埋め込み穴211の内部に熱電対配線31を配置することで鋳型2に埋設される。本実施の形態では、熱電対配線31の内側に電磁誘導を検出するための検出用配線4を配線しており、これによって熱電対3(熱電対配線31)を検出用配線4とともに鋳型2に埋設している。熱電対3(熱電対配線31)の熱電対出力信号および検出用配線4の検出用配線信号は回路部5に入力され、この回路部5を経て計測器6に出力される。   FIG. 2 is a diagram showing a schematic configuration example of the thermocouple 3 embedded in the mold 2, and shows a cut surface of the mold 2 including one thermocouple 3. As shown in FIG. 2, the thermocouple 3 is embedded in the mold 2 by forming a thermocouple embedded hole 211 in the copper plate constituting the mold 2 and disposing the thermocouple wiring 31 inside the thermocouple embedded hole 211. The In the present embodiment, a detection wiring 4 for detecting electromagnetic induction is wired inside the thermocouple wiring 31, whereby the thermocouple 3 (thermocouple wiring 31) is mounted on the mold 2 together with the detection wiring 4. Buried. The thermocouple output signal of the thermocouple 3 (thermocouple wiring 31) and the detection wiring signal of the detection wiring 4 are input to the circuit unit 5, and output to the measuring instrument 6 through the circuit unit 5.

本発明の発明者等は、前述のように熱電対埋め込み穴211の内部に熱電対配線31とともに検出用配線4を配置し、検出用配線4に発生する起電力および熱電対3の起電力の挙動を比較・検討した。その結果、本発明の発明者等は、検出用配線4に発生する起電力(検出用配線信号)として検出される電磁誘導と、熱電対出力信号に重畳される電磁誘導ノイズ量とは必ずしも一致しないが、これらがともに“0”となるタイミングは同じであることを知見し、熱電対埋め込み穴211内における熱電対配線31の位置と検出用配線4の位置とに若干のずれがあっても、検出用配線信号の信号値が“0”のときの熱電対3の起電力(熱電対出力信号)は電磁誘導ノイズを含まない値とみなせることを見出した。   The inventors of the present invention arrange the detection wiring 4 together with the thermocouple wiring 31 inside the thermocouple embedding hole 211 as described above, and the electromotive force generated in the detection wiring 4 and the electromotive force of the thermocouple 3 The behavior was compared and examined. As a result, the inventors of the present invention do not necessarily match the electromagnetic induction noise detected as the electromotive force (detection wiring signal) generated in the detection wiring 4 and the electromagnetic induction noise amount superimposed on the thermocouple output signal. However, it is found that the timing when both of them become “0” is the same, and even if there is a slight deviation between the position of the thermocouple wiring 31 and the position of the detection wiring 4 in the thermocouple embedded hole 211. It was found that the electromotive force (thermocouple output signal) of the thermocouple 3 when the signal value of the detection wiring signal is “0” can be regarded as a value not including electromagnetic induction noise.

図3は、鋳型2の銅板温度の測定原理を説明する図であり、熱電対出力信号の時間変化L11と、検出用配線信号の時間変化L13とを上下に並べて示している。また、図3中に示す直線Lは、検出用配線信号の信号値が“0”の信号値レベルを示している。 FIG. 3 is a diagram for explaining the measurement principle of the copper plate temperature of the mold 2, and shows the time change L 11 of the thermocouple output signal and the time change L 13 of the detection wiring signal side by side. A straight line L 0 shown in FIG. 3 indicates a signal value level at which the signal value of the detection wiring signal is “0”.

図3中の時間変化L11および時間変化L13に示すように、熱電対出力信号および検出用配線信号は、いずれも電磁攪拌装置による電磁誘導の影響を受けて電磁攪拌装置に印加される電圧周期毎に周期変動を繰り返すが、検出用配線信号の時間変化L13には、前述の電圧周期の半周期毎にその信号値が“0”であるタイミングT13が存在する。上記したように、例えば、検出用配線信号の信号値が“0”であるタイミングT13−1に着目すると、このタイミングT13−1における熱電対出力信号の信号値V11−1は、電磁誘導ノイズを含まない値とみなせる。そこで、計測器6は、このように検出用配線信号の信号値が“0”の各タイミングT13における熱電対出力信号の信号値V11を温度値に変換することで、鋳型2の銅板温度を算出する。 As shown in the time change L 11 and the time change L 13 in FIG. 3, both the thermocouple output signal and the detection wiring signal are affected by the electromagnetic induction by the electromagnetic stirrer and are applied to the electromagnetic stirrer. It repeated periodic fluctuation in each cycle, but the time variation L 13 of the detection wire signal timing T 13 is present which is a signal value of "0" in each half cycle of the voltage period of the above. As described above, for example, when attention is paid to the timing T 13-1 at which the signal value of the detection wiring signal is “0”, the signal value V 11-1 of the thermocouple output signal at the timing T 13-1 is electromagnetic It can be regarded as a value that does not include induced noise. Therefore, measuring instrument 6, by converting this manner the signal value V 11 of the thermocouple output signal at each timing T 13 of the signal value "0" of the detection wire signal to a temperature value, the copper plate temperature of the mold 2 Is calculated.

なお、実際の処理では、計測器6は、熱電対出力信号と検出用配線信号とを所定のサンプリング周期毎に同時にサンプリングする。そのため、必ずしもサンプリング時間と検出用配線信号の信号値が“0”となるタイミングとが一致するとは限らない。したがって、計測器6は、電圧周期の半周期毎に検出用配線信号の信号値が最も小さいサンプリング時間を選出し、選出したサンプリング時間における熱電対出力信号の信号値に基づいて鋳型2の銅板温度を算出する。   In actual processing, the measuring instrument 6 simultaneously samples the thermocouple output signal and the detection wiring signal at predetermined sampling periods. Therefore, the sampling time and the timing at which the signal value of the detection wiring signal becomes “0” do not always coincide. Therefore, the measuring instrument 6 selects the sampling time with the smallest signal value of the detection wiring signal every half cycle of the voltage period, and the copper plate temperature of the mold 2 based on the signal value of the thermocouple output signal at the selected sampling time. Is calculated.

以上のように構成される連続鋳造装置1は、鋳型2に埋設される熱電対3(熱電対配線31)の熱電対出力信号と検出用配線4に発生する起電力(検出用配線信号)とを電圧周期の半周期以上同時にサンプリングし、半周期毎に検出用配線信号の信号値が最も小さいサンプリング時間を選出し、この選出したサンプリング時間における熱電対出力信号の信号値に基づいて鋳型2の銅板温度を算出することによって温度測定方法を実施する。このように銅板温度を算出することによれば、熱電対3の熱電対出力信号に重畳される電磁誘導ノイズの影響を受けることなく鋳型2の銅板温度を高精度に測定することができる。また、検出用配線4を熱電対配線31の内側に配線することとしたので、熱電対3を埋設するための熱電対埋め込み穴211のサイズを大きくする必要がない。   The continuous casting apparatus 1 configured as described above includes a thermocouple output signal of the thermocouple 3 (thermocouple wiring 31) embedded in the mold 2 and an electromotive force (detection wiring signal) generated in the detection wiring 4. Are sampled at the same time for half or more of the voltage cycle, and the sampling time with the smallest signal value of the detection wiring signal is selected every half cycle, and the template 2 is selected based on the signal value of the thermocouple output signal at the selected sampling time. The temperature measurement method is implemented by calculating the copper plate temperature. By calculating the copper plate temperature in this way, the copper plate temperature of the mold 2 can be measured with high accuracy without being affected by electromagnetic induction noise superimposed on the thermocouple output signal of the thermocouple 3. Further, since the detection wiring 4 is arranged inside the thermocouple wiring 31, it is not necessary to increase the size of the thermocouple embedding hole 211 for embedding the thermocouple 3.

得られた鋳型2の銅板温度は例えばブレークアウトの予知等に利用できる。これによれば、熱電対3の熱電対出力信号の変化が電磁誘導ノイズに埋もれてしまう事態を防止できるので、鋳型2内の溶鋼の微小な温度変化を確実に検出してブレークアウトの予兆を適正に捉えることができる。   The obtained copper plate temperature of the mold 2 can be used, for example, for predicting breakout. According to this, since it is possible to prevent the change of the thermocouple output signal of the thermocouple 3 from being buried in the electromagnetic induction noise, it is possible to reliably detect a minute temperature change of the molten steel in the mold 2 and to give an indication of a breakout. Can be captured properly.

(実施例)
以上説明した連続鋳造装置1において、非操業時の鋳型2の銅板表面にヒータを取り付けて鋳型2を加熱した。その後、ヒータによる加熱を開始してから十分な時間が経過し、熱電対3の出力が安定した後で、設定周波数1[Hz]で電磁攪拌装置を稼動させた。この状態で、サンプリング周期を20[msec]とし、熱電対3の熱電対出力信号と検出用配線4に発生した起電力(検出用配線信号)とを2分間同時にサンプリングして記録した。続いて、記録した検出用配線信号の信号値をモニタ表示し、電磁攪拌装置に印加される電圧周期の半周期である0.5[sec]毎に検出用配線信号の信号値が最小となるサンプリング時間を240点選出した。そして、選出した240点のサンプリング時間における熱電対3の熱電対出力信号の信号値を温度値に変換し、鋳型2の銅板温度を算出した。これを発明例1とする。
(Example)
In the continuous casting apparatus 1 described above, the mold 2 was heated by attaching a heater to the copper plate surface of the mold 2 during non-operation. Then, after sufficient time had passed since heating by the heater was started and the output of the thermocouple 3 was stabilized, the electromagnetic stirring device was operated at a set frequency of 1 [Hz]. In this state, the sampling cycle was set to 20 [msec], and the thermocouple output signal of the thermocouple 3 and the electromotive force (detection wiring signal) generated in the detection wiring 4 were simultaneously sampled and recorded for 2 minutes. Subsequently, the signal value of the recorded detection wiring signal is displayed on the monitor, and the signal value of the detection wiring signal is minimized every 0.5 [sec] which is a half cycle of the voltage cycle applied to the electromagnetic stirring device. 240 sampling times were selected. And the signal value of the thermocouple output signal of the thermocouple 3 in the sampling time of 240 points | pieces selected was converted into the temperature value, and the copper plate temperature of the casting_mold | template 2 was computed. This is referred to as Invention Example 1.

また、発明例1において選出した240点のサンプリング時間における熱電対3の熱電対出力信号の信号値を温度値に変換し、時間的に隣接する3点での移動平均計算を行って鋳型2の銅板温度を算出した。これを発明例2とする。   In addition, the signal value of the thermocouple output signal of the thermocouple 3 at the sampling time of 240 points selected in the invention example 1 is converted into a temperature value, and a moving average calculation is performed at three points that are temporally adjacent to each other to calculate the mold 2 The copper plate temperature was calculated. This is referred to as Invention Example 2.

一方、サンプリング周期を500[msec]とする以外は同一の条件とし、熱電対3の熱電対出力信号と検出用配線4に発生した起電力(検出用配線信号)とを2分間同時にサンプリングして記録した。そして、サンプリング時間毎に熱電対出力信号の信号値から検出用配線信号の信号値を差し引き、求めた値を温度値に変換することで鋳型2の銅板温度を算出した。これを比較例とする。発明例1、発明例2、および比較例で算出した銅板温度の平均値および標準偏差を表1に示す。

Figure 0005915589
On the other hand, the same conditions except that the sampling period is set to 500 [msec], the thermocouple output signal of the thermocouple 3 and the electromotive force (detection wiring signal) generated in the detection wiring 4 are simultaneously sampled for 2 minutes. Recorded. And the copper plate temperature of the casting_mold | template 2 was computed by subtracting the signal value of the wiring signal for a detection from the signal value of a thermocouple output signal for every sampling time, and converting the calculated | required value into a temperature value. This is a comparative example. Table 1 shows the average values and standard deviations of the copper plate temperatures calculated in Invention Example 1, Invention Example 2, and Comparative Example.
Figure 0005915589

表1に示すように、発明例1,2では、比較例と比べて標準偏差が小さく、銅板温度を高精度に測定可能なことを確認できた。   As shown in Table 1, it was confirmed that in Invention Examples 1 and 2, the standard deviation was smaller than in the comparative example, and the copper plate temperature could be measured with high accuracy.

1 連続鋳造装置
2 鋳型
21 長辺
23 短辺
211 熱電対埋め込み穴
3 熱電対
31 熱電対配線
4 検出用配線
5 回路部
6 計測器
DESCRIPTION OF SYMBOLS 1 Continuous casting apparatus 2 Mold 21 Long side 23 Short side 211 Thermocouple embedding hole 3 Thermocouple 31 Thermocouple wiring 4 Detection wiring 5 Circuit part 6 Measuring instrument

Claims (2)

鋳型内の溶鋼を電磁力により攪拌する電磁攪拌手段を備えた連続鋳造装置において、前記鋳型の銅板温度を熱電対により測定する連続鋳造鋳型の温度測定方法であって、
前記熱電対は、熱電対配線の内側に配線された検出用配線とともに前記鋳型に埋設され、
前記熱電対の出力信号と前記電磁攪拌手段による電磁誘導の影響を受けて前記検出用配線に発生した起電力とを前記電磁攪拌手段に印加される電圧周期の半周期以上同時にサンプリングし、前記半周期毎に前記検出用配線に発生した起電力が最も小さいサンプリング時間を選出し、該選出したサンプリング時間における前記熱電対の出力信号に基づいて前記鋳型の銅板温度を算出することを特徴とする連続鋳造鋳型の温度測定方法。
In a continuous casting apparatus provided with an electromagnetic stirring means for stirring molten steel in a mold by electromagnetic force, a temperature measurement method for a continuous casting mold for measuring a copper plate temperature of the mold with a thermocouple,
The thermocouple is embedded in the mold together with the detection wiring wired inside the thermocouple wiring,
The output signal of the thermocouple and the electromotive force generated in the detection wiring under the influence of electromagnetic induction by the electromagnetic stirring means are simultaneously sampled over a half cycle of the voltage cycle applied to the electromagnetic stirring means, and the half A sampling time with the smallest electromotive force generated in the detection wiring for each cycle is selected, and the copper plate temperature of the mold is calculated based on the output signal of the thermocouple at the selected sampling time. Temperature measurement method for casting mold.
前記選出したサンプリング時間における前記熱電対の出力信号に基づいて移動平均計算を行い、前記銅板温度を算出することを特徴とする請求項1に記載の連続鋳造鋳型の温度測定方法。   The method for measuring a temperature of a continuous casting mold according to claim 1, wherein the copper plate temperature is calculated by performing a moving average calculation based on an output signal of the thermocouple at the selected sampling time.
JP2013101201A 2013-05-13 2013-05-13 Temperature measurement method for continuous casting mold Active JP5915589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101201A JP5915589B2 (en) 2013-05-13 2013-05-13 Temperature measurement method for continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101201A JP5915589B2 (en) 2013-05-13 2013-05-13 Temperature measurement method for continuous casting mold

Publications (2)

Publication Number Publication Date
JP2014221481A JP2014221481A (en) 2014-11-27
JP5915589B2 true JP5915589B2 (en) 2016-05-11

Family

ID=52121304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101201A Active JP5915589B2 (en) 2013-05-13 2013-05-13 Temperature measurement method for continuous casting mold

Country Status (1)

Country Link
JP (1) JP5915589B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825475A (en) * 2016-12-26 2017-06-13 中冶连铸技术工程有限责任公司 Eliminate digital filtering method and system that electromagnetic agitation is disturbed thermocouple signal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939120A (en) * 1982-08-27 1984-03-03 Chino Works Ltd Input switching circuit
JP2004219098A (en) * 2003-01-09 2004-08-05 Canon Inc Method for canceling noise generated in thermocouple wiring
JP2007245208A (en) * 2006-03-16 2007-09-27 Jfe Steel Kk Method for measuring molten steel temperature in mold

Also Published As

Publication number Publication date
JP2014221481A (en) 2014-11-27

Similar Documents

Publication Publication Date Title
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
JP5878166B2 (en) Measurement in metallurgical vessel
JP5253615B2 (en) Method and apparatus for detecting cracks in metallic materials
JP5505086B2 (en) Method, apparatus and program for estimating state in mold in continuous casting
KR100768395B1 (en) Method for detecting solidification completion position of continuous casting cast piece, detector, and method for producing continuous casting cast piece
JP5915589B2 (en) Temperature measurement method for continuous casting mold
JP2003181609A (en) Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
Balogun et al. Shell measurements and mold thermal mapping approach to characterize steel shell formation in peritectic grade steels
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
JP4842195B2 (en) Slab surface temperature measuring device and slab surface temperature measuring method
JP5672909B2 (en) Molten steel flow velocity measuring method, molten steel flow velocity measuring apparatus, and continuous casting operation method
MX2011004335A (en) Method and apparatus for a non contact metal sensing device.
JP4112783B2 (en) Breakout detection method in continuous casting equipment
JP4681127B2 (en) Hot water surface height detection apparatus, method, and computer-readable storage medium
JP5800241B2 (en) Measuring method of molten metal level and mold powder thickness in continuous casting mold
JP4752366B2 (en) Multi-frequency eddy current mold powder melt thickness measurement method
JP3779809B2 (en) Method and apparatus for continuous casting of molten metal
JP3537625B2 (en) Method and apparatus for measuring solidified shell thickness in continuous casting
JP4123862B2 (en) Method for determining the level of hot water in the mold using a thermocouple level meter
JP6206352B2 (en) Molten steel flow velocity measuring method and molten steel flow velocity measuring apparatus
JP4506431B2 (en) Method and apparatus for evaluating flow state of molten metal
JP4505536B2 (en) Slab surface temperature measuring device and slab surface temperature measuring method
ATE520484T1 (en) METHOD FOR MEASURING AND MONITORING THE LEVEL OF LIQUID METAL IN A CRYSTALIZER
JPS62192243A (en) Detection of casting slab longitudinal cracking in continuous casting
JP2007245208A (en) Method for measuring molten steel temperature in mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R150 Certificate of patent or registration of utility model

Ref document number: 5915589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250